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Abstract. We propose simultaneous low rank approximation of tensors
(SLRAT) for the dimensionality reduction of tensors and modify it to
the robust one, i.e., the robust SLRAT. For both the SLRAT and the
robust SLRAT, we propose iterative algorithms for solving them. It is
experimentally shown that the robust SLRAT achieves lower reconstruc-
tion error than the SLRAT when a dataset contains noise data. We also
propose a method for classifying sets of tensors and call it the subspace
matching, where both training data and testing data are represented by
their subspaces, and each testing datum is classified on the basis of the
similarity between subspaces. It is experimentally verified that the ro-
bust SLRAT achieves higher recognition rate than the SLRAT when the
testing data contain noise data.

1 Introduction

Dimensionality reduction is an important topic in image processing, pattern
recognition, computer vision and data mining researches. Recently, Yang et al. [1]
presented two-dimensional principal component analysis (2DPCA) for reducing
the dimensions of matrices. In the 2DPCA, each matrix does not need to be
transformed into a vector prior to the dimensionality reduction. However, the
2DPCA is approximately equivalent to the traditional PCA operated on the row
vectors of matrices [2,3,4]. Ye [5] proposed generalized low rank approximation
of matrices (GLRAM). Different from the 2DPCA, the GLRAM reduces the
dimensions of both rows and columns of matrices. Inoue and Urahama [6] showed
a relationship between the GLRAM and the other non-iterative algorithms. Ding
et al. [7] provided the error analysis of these methods and derived error bounds
similar to Eckart-Young theorem which plays critical role in the development
and application of singular value decomposition (SVD). Lu et al. [8] proposed a
multilinear PCA (MPCA) for tensor object feature extraction and discussed the
issues of initialization, convergence and subspace dimensionality determination.
Huang and Ding [9] proposed robust tensor factorization using R1 norm, i.e.,
rotationally invariant L1 norm.

In this paper, we propose simultaneous low rank approximation of tensors
(SLRAT) which is an extension of the GLRAM to higher-order tensors, and
then we modify the SLRAT to its robust version. We also propose a method for
classifying sets of tensors, which we call the subspace matching. The proposed

T. Wada, F. Huang, and S. Lin (Eds.): PSIVT 2009, LNCS 5414, pp. 574–584, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Robust Simultaneous Low Rank Approximation of Tensors 575

subspace matching method calculates the similarity between subspaces of sets of
tensors and classifies each set of tensors on the basis of the similarity. Therefore,
using the subspace matching, we can calculate the similarity between two sets
of different cardinalities. Experimental results on the ORL face image database,
which is a widely used face image database, show the effectiveness of the proposed
methods.

The rest of this paper is organized as follows: In Section 2, we propose the
SLRAT and derive an iterative solution algorithm. In Section 3, we modify
the SLRAT to its robust version and derive an iterative solution algorithm. In
Section 4, we propose the subspace matching method for classifying sets of ten-
sors. Experimental results are shown in Section 5, where examples of image
reconstruction and face recognition are shown. Section 6 summarizes the main
results of this paper.

2 Simultaneous Low Rank Approximation of Tensors

In this section, we propose simultaneous low rank approximation of tensors
(SLRAT). The notations used in this paper follow De Lathauwer et al. [10,11]
and Bader and Kolda [12] mainly.

Let Ai = [ai1...iN i] ∈ R
I1×···×IN for i = 1, . . . , M , where ai1...iN i is the

(i1, . . . , iN) element of Ai and R
I1×···×IN denotes an (I1 × · · ·× IN)-dimensional

real space. Then the simultaneous low rank approximation of tensors (SLRAT)
is formulated as follows:

min
U, {Bi}M

i=1

M∑

i=1

‖Ai − Bi × {U}‖2
F (1)

subj.to U (n)T U (n) = IRn , n = 1, ..., N, (2)

where U = {U (1), ..., U (N)} is a set of U (n) = [u(n)
ini′

n
] ∈ R

In×Rn for in = 1, . . . , In,
i′n = 1, . . . , Rn and n = 1, ..., N , and Bi × {U} = Bi ×1 U (1) · · · ×N U (N) [12],
where Bi = [bi′

1...i′
N i] ∈ R

R1×···×RN and Bi ×n U (n) = [
∑Rn

i′
n=1 bi′

1...i′
n...i′

N iu
(n)
ini′

n
] ∈

R
R1×···×Rn−1×In×Rn+1×···×RN is the n-mode product of Bi and U (n) [10,11]. ‖ ·

‖F denotes the Frobenius norm and IRn is the Rn × Rn identity matrix. We
assume that Rn ≤ In for n = 1, ..., N . Let E(U, {B}) be the objective function in
Eq. (1). Then it follows from ∂E/∂Bi = 0 that

Bi = Ai × {UT }, i = 1, ..., M, (3)

where UT = {U (1)T , ..., U (M)T }. By substituting Eq. (3) into E we find that

E(U) =
M∑

i=1

‖Ai‖2
F − Ẽ(U), (4)

where

Ẽ(U) =
M∑

i=1

∥∥Ai × {UT }
∥∥2

F
. (5)
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Since
∑M

i=1 ‖Ai‖2
F is a constant, we may rewrite Eq. (1) as follows:

max
U

Ẽ(U). (6)

Ẽ(U) can be written in the form

Ẽ(U) =
M∑

i=1

∥∥∥
(
Ai ×−n {UT }

)
×n U (n)T

∥∥∥
2

F
(7)

=
M∑

i=1

∥∥∥U (n)T
Ãi(n)

∥∥∥
2

F
(8)

= tr
(
U (n)T Ã(n)U

(n)
)

, (9)

where tr denotes the matrix trace and Ã(n) =
∑M

i=1 Ãi(n)Ã
T
i(n) where Ãi(n) is

the mode-n matricizing [12] or the matrix unfolding [10,11] of

Ai ×−n {UT } = Ai ×1U (n)T · · ·×n−1U (n−1)T ×n+1U (n+1)T · · ·×N U (N)T . (10)

Thus, from Eq. (9), we see that if U (1), ..., U (n−1), U (n+1), ..., U (N) are fixed,
then the optimal U (n) is a matrix whose columns are the principal eigenvectors
of Ã(n). Consequently, we obtain an iterative algorithm as follows:

[SLRAT]

Step 0 (Initialization): Initialize U (n) for n = 1, . . . , n as U (n,0) = [v(n)
1 , . . . ,

v
(n)
Rn

] where v
(n)
1 , . . . , v

(n)
Rn

are the eigenvectors of
∑M

i=1 Ai(n)A
T
i(n) correspond-

ing to the largest Rn eigenvalues, where Ai(n) is the mode-n matricizing
[12] or the matrix unfolding [10,11] of Ai. Initialize the iteration counter
t as t = 0. Initialize the root mean squared error (RMSE) at t = 0 as

RMSE(0) =
√

1
M

∑M
i=1 ‖Ai‖2

F .

Step 1: For n = 1, ..., N , compute the eigenvectors u
(n,t+1)
1 , ..., u

(n,t+1)
Rn

of
∑M

i=1

Ãi(n,t)Ã
T
i(n,t) corresponding to the largest Rn eigenvalues and form U (n,t+1)

= [u(n,t+1)
1 , ..., u

(n,t+1)
Rn

], where Ãi(n,t) is the mode-n matricizing [12] or the

matrix unfolding [10,11] of Ai×−n{U
(t)
n } for U

(t)
n = {U (1,t+1), ..., U (n−1,t+1),

U (n,t), ..., U (N,t)}.
Step 2: Compute the RMSE as

RMSE(t+1) =

√√√√ 1
M

M∑

i=1

∥∥∥Ai − Ã(t+1)
i

∥∥∥
2

F
, (11)

where Ã(t+1)
i = B(t+1)

i ×{U (t+1)} for B(t+1)
i = Ai ×{U (t+1)T } and U (t+1) =

{U (1,t+1), . . . , U (N,t+1)}. If (RMSE(t) − RMSE(t+1))/RMSE(t) < ε for ε > 0
then proceed to the next step, otherwise increase t by 1 and go to Step 1.
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Step 3: Output U∗ = Ut+1 and B∗
i = Ai × {U∗T } for i = 1, ..., M .

Note that the SLRAT is reduced to the generalized low rank approximation of
matrices (GLRAM) presented by Ye [5] when N = 2, i.e., the objective function
in Eq. (1) is reduced to

M∑

i=1

∥∥∥Ai − Bi ×1 U (1) ×2 U (2)
∥∥∥

2

F
=

M∑

i=1

∥∥∥Ai − U (1)BiU
(2)T

∥∥∥
2

F
, (12)

where Ai ∈ R
I1×I2 and Bi ∈ R

R1×R2 are the second-order tensors or the
matrices. The right hand side of Eq. (12) coincides with the objective function
of the GLRAM.

3 Robust Simultaneous Low Rank Approximation of
Tensors

The SLRAT described in the previous section is formulated as a minimization
of the sum of the Frobenius norm. Therefore, The SLRAT is not robust to noise
data. In this section, we modify Eq. (1) as follows:

min
U, {Bi}M

i=1

M∑

i=1

ρ (‖Ai − Bi × {U}‖F ) , (13)

where ρ(x) is the Welsch’s function commonly used in robust statistics [13]:

ρ(x) = 1 − e−αx2
, (14)

where α > 0. Let F (U, {Bi}) be the objective function in Eq. (13). Then we have

F (U, {Bi}) = M −
M∑

i=1

e−α‖Ai−Bi×{U}‖2
F . (15)

Since M is a constant, we may rewrite Eq. (13) as follows:

max
U, {Bi}M

i=1

F̃ (U, {Bi}), (16)

where

F̃ (U, {Bi}) = M − F (U, {Bi}) =
M∑

i=1

e−α‖Ai−Bi×{U}‖2
F . (17)

Then it follows from ∂F̃/∂Bi = 0 that

Bi = Ai × {UT }, i = 1, . . . , M, (18)



578 K. Inoue, K. Hara, and K. Urahama

where UT = {U (1)T , . . . , U (N)T }. Also, we have

∂F̃

∂U (n) = 2α

M∑

i=1

(
Ai(n) − U (n)B̃i(n)

)
B̃T

i(n)e
−α‖Ai−Bi×{U}‖2

F , (19)

where Ai(n) and B̃i(n) are the mode-n matricizing [12] or the matrix unfolding
[10,11] of Ai and Bi×−n{U} = Bi×1U

(1) · · ·×n−1U
(n−1)×n+1U

(n+1) · · ·×NU (N),
respectively. From ∂F̃/∂U (n) = 0, we have

U (n) =
M∑

i=1

Ai(n)B̃
T
i(n)e

−α‖Ai−Bi×{U}‖2
F

(
M∑

i=1

B̃i(n)B̃
T
i(n)e

−α‖Ai−Bi×{U}‖2
F

)−1

.

(20)
Since the right hand side of Eq. (20) contains U (n) in {U}, we cannot solve
Eq. (20) with respect to U (n) analytically. Instead, we solve Eq. (20) by an
iterative algorithm. First, we initialize U (n) as U (n,0) = [v(n)

1 , . . . , v
(n)
Rn

] where

v
(n)
1 , . . . , v

(n)
Rn

are the eigenvectors of
∑M

i=1 Ai(n)A
T
i(n) corresponding to the largest

Rn eigenvalues. Next, we update U (n) as

Ũ (n,t+1) =
M∑

i=1

Ai(n)B̃
T
i(n,t)e

−α
�
�
�Ai−Ã(t)

i

�
�
�

2

F

(
M∑

i=1

B̃i(n,t)B̃
T
i(n,t)e

−α
�
�
�Ai−Ã(t)

i

�
�
�

2

F

)−1

,

(21)
where t is the number of iterations, Ã(t)

i = B(t)
i × {U (t)} for B(t)

i = Ai × {U (t)T }
and U (t) = {U (1,t), . . . , U (N,t)}, and B̃i(n,t) is the mode-n matricizing [12] or the
matrix unfolding [10,11]of B(t)

i ×−n {U (t)}. Since Eq. (21) can be written as

Ũ (n,t+1) = U (n,t) +
1
2α

∂F̃ (t)

∂U (n,t)

(
M∑

i=1

B̃i(n,t)B̃
T
i(n,t)e

−α
�
�
�Ai−Ã(t)

i

�
�
�

2

F

)−1

, (22)

this iterative algorithm can be interpreted as a gradient method [14]. Lastly, we
orthogonalize Ũ (n,t+1) as U (n,t+1) = orth(Ũ (n,t+1)), where orth(·) is an orthog-
onalization function, in order to satisfy the constraints in Eq. (2). The above
procedure is repeated until it converges. The proposed iterative algorithm is
summarized as follows:

[Robust SLRAT]

Step 0 (Initialization): Initialize U (n) for n = 1, . . . , n as U (n,0) = [v(n)
1 , . . . ,

v
(n)
Rn

] where v
(n)
1 , . . . , v

(n)
Rn

are the eigenvectors of
∑M

i=1 Ai(n)A
T
i(n) correspond-

ing to the largest Rn eigenvalues. Initialize the iteration counter t as t = 0.
Initialize the root mean squared error (RMSE) at t = 0 as RMSE(0) =√

1
M

∑M
i=1 ‖Ai‖2

F .

Step 1: Compute Ũ (n,t+1) for n = 1, . . . , n using Eq. (21).
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Step 2: Orthogonalize Ũ (n,t+1) for n = 1, . . . , N as U (n,t+1) = orth(Ũ (n,t+1)).
Compute B(t+1)

i = Ai × {U (t+1)T } for i = 1, . . . , M .
Step 3: Compute the RMSE as

RMSE(t+1) =

√√√√ 1
M

M∑

i=1

∥∥∥Ai − Ã(t+1)
i

∥∥∥
2

F
. (23)

If (RMSE(t) − RMSE(t+1))/RMSE(t) < ε for ε > 0 then proceed to the next
step, otherwise increase t by 1 and go to Step 1.

Step 4: Output U∗ = U (t+1) and B∗
i = B(t+1)

i for i = 1, . . . , M .

In our implementation, we used MATLAB orth function in Step 2 of the above
procedure.

4 Subspace Matching for Classifying Sets of Tensors

In this section, we propose a method for classifying sets of tensors.
Let Aic ∈ R

I1×···×IN for ic = 1, . . . , Mc and c = 1, . . . , C be a set of tensors
for training, where C is the number of classes. Then, for each class c, we solve
the following optimization problem:

min
Uc, {Bic}Mc

i=1

Mc∑

ic=1

ρ (‖Aic − Bic × {Uc}‖F ) (24)

subj.to U (n)
c

T
U (n)

c = IRn , n = 1, ..., N, (25)

where Uc = {U
(1)
c , . . . , U

(N)
c } is a set of U

(n)
c ∈ R

In×Rn for n = 1, . . . , N , and
Bic ∈ R

R1×···×RN . Let U∗
c = {U

(1)
c∗ , . . . , U

(N)
c∗ } be the solution of Eq. (24) with

(25). Then we store U∗
c for c = 1, . . . , C and use them for classifying test sets of

tensors to be classified.
Let Ai ∈ R

I1×···×IN for i = 1, . . . , M be a set of tensors to be classified.
Then we solve the optimization problem in Eq. (13) with Eq. (2). Let U∗ =
{U

(1)
∗ , . . . , U

(N)
∗ } be the solution of the optimization problem. Then we classify

the set of tensors into the c∗th class selected by the following rule:

c∗ = arg max
c∈{1,...,C}

S(U∗
c , U∗), (26)

where S(U∗
c , U∗) is a similarity between U∗

c and U∗, and is defined as follows:

S(U∗
c , U∗) = max

{xin},{yin}

N∑

n=1

Rn∑

in=1

xT
in

∣∣∣∣U
(n)
c∗

T
U

(n)
∗

∣∣∣∣
abs

yin (27)

subj.to xT
in

xi′
n

= δini′
n
, yT

in
yi′

n
= δini′

n
, (28)

xinjn ∈ {0, 1}, yinjn ∈ {0, 1}, (29)
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where xin = [xinjn ] ∈ R
Rn and yin = [yinjn ] ∈ R

Rn for jn = 1, . . . , Rn, δ is the
Kronecker delta, and |A|abs denotes the absolute value of a matrix A [15]. The
optimization problem in Eq. (27), (28) and (29) is no less than the assignment
problem. We compute the optimal solution using Munkres algorithm [16].

An advantage of the proposed classification method is that the proposed
method can accept various numbers of tensors in each set for training or testing,
because the sizes of Uc and U are independent of Mc and M , respectively.

5 Experimental Results

In this section, we experimentally evaluate the performance of the robust SLRAT
on the ORL face image database. The ORL database [17] contains face images
of 40 persons. For each person, there are 10 different images. That is, the total
number of the images in the database is 400. The size of each image is 112 × 92
pixels, i.e., I1 = 112, I2 = 92.

The reconstruction errors for R1 = R2 = 20, R1 = R2 = 30 and R1 = R2 = 40
are shown in Fig. 2(a), (b) and (c), respectively.

5.1 Image Reconstruction

We first demonstrate the robustness of the proposed robust SLRAT using the
ORL face images. Some example images are shown in Fig. 1, where the first
three persons in the database are selected and presented in Fig. 1(a), (b) and
(c), respectively. For each person, the original images are shown in the first
row, in which a noise image is added (the rightmost image). The reconstructed
images with the conventional and the robust SLRATs for R1 = R2 = 30 are
shown in the second and the third rows for each person in Fig. 1(a), (b) and
(c), respectively. The reconstructed images with the conventional SLRAT (the
second rows) are disturbed by the added noise images. On the other hand, the
reconstructed images with the robust SLRAT (the third rows) are less sensitive
to the noise images than that of the conventional SLRAT.

We set α = 10−6 for the robust SLRAT and ε = 10−6 for both the conventional
and the robust SLRATs.

The errors are measured by the RMSE for the face images except the noise
images. In each figure, the horizontal axis denotes the number of noise images per
person, and the vertical axis denotes the RMSE. The robust and the conventional
SLRATs are denoted by solid lines with “+” marks and broken lines with “×”
marks, respectively. The RMSEs for the robust SLRAT are lower than that for
the conventional SLRAT. Although the RMSEs for the conventional SLRAT
increase with the number of noise images, the RMSEs for the robust SLRAT are
almost constant.

5.2 Face Recognition

We next show the experimental results of face recognition by the subspace match-
ing method described in Sec. 4. From the ORL database [17], we select the first
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(a) First person

(b) Second person

(c) Third person

Fig. 1. Example images: for each person, input images, reconstructed images with the
conventional and the robust SLRATs are shown in the top, middle and bottom rows,
respectively
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Fig. 2. Reconstruction errors: (a) R1 = R2 = 20, (b) R1 = R2 = 30, (c) R1 = R2 = 40
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Fig. 3. Recognition rates: (a) K = 1, (b) K = 2, (c) K = 3



Robust Simultaneous Low Rank Approximation of Tensors 583

five images per person for training, and the remaining five images for testing. The
number of classes coincides with that of persons in the database, i.e., C = 40. In
the training phase, for each class c, we compute U∗

c for c = 1, . . . , C and store
them. In the testing phase, in order to verify the robustness of the proposed
robust SLRAT, we include noise images in the set of test images. For each per-
son, we add K = 1, 2, 3 noise images and then compute U∗. Each set of test
images with several noise images is classified on the basis of the classification
rule described in Eq. (26).

The recognition rates for K = 1, 2 and 3 are shown in Fig. 3(a), (b) and (c),
respectively. In each figure, the horizontal axis denotes the reduced dimension R
of each mode. We set R1 and R2 as R1 = R2 = R for simplifying our experiments.
The vertical axis denotes the recognition rate. The robust and the conventional
SLRATs are denoted by solid lines with “+” marks and broken lines with “×”
marks, respectively. The recognition rates for the robust SLRAT are higher than
that for the conventional SLRAT.

6 Conclusion

In this paper, we have formulated simultaneous low rank approximation of ten-
sors (SLRAT) as an optimization problem and modified it to the robust one. For
both the SLRAT and the robust SLRAT, we proposed iterative algorithms for
solving them. It is experimentally shown that the robust SLRAT achieves lower
reconstruction errors than the conventional SLRAT. We also proposed a method
for classifying sets of tensors, the subspace matching, where both training data
and testing data are represented by their subspaces. The similarity between two
subspaces are calculated by using Munkres algorithm [16] for assignment prob-
lems. The proposed classification method is applied to the example of face recog-
nition on the ORL database [17]. It is experimentally verified that the robust
SLRAT achieves higher recognition rates than the conventional SLRAT.

Acknowledgment

This work was partially supported by Grant-in-Aid for Young Scientists (B) No.
20700165.

References

1. Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: A new ap-
proach to appearance-based face representation and recognition. IEEE Trans. Pat-
tern Anal. Mach. Intell. 26, 131–137 (2004)

2. Wang, L., Wang, X., Zhang, X., Feng, J.: The equivalence of two-dimensional PCA
to line-based PCA. Pattern Recognition Letters 26, 57–60 (2005)

3. Gao, Q.: Is two-dimensional PCA equivalent to a special case of modular PCA?
Pattern Recognition Letters 28, 1250–1251 (2007)



584 K. Inoue, K. Hara, and K. Urahama

4. Zhang, D., Chen, S., Liu, J.: Representing image matrices: Eigenimages versus
eigenvectors. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497,
pp. 659–664. Springer, Heidelberg (2005)

5. Ye, J.: Generalized low rank approximations of matrices. Machine Learning 61,
167–191 (2005)

6. Inoue, K., Urahama, K.: Equivalence of non-iterative algorithms for simultaneous
low rank approximations of matrices. In: IEEE Proc. CVPR, pp. 154–159 (2006)

7. Ding, C., Huang, H., Luo, D.: Tensor Reduction Error Analysis – Applications to
Video Compression and Classification. In: Proc. CVPR (2008)

8. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: Multilinear principal
component analysis of tensor objects. IEEE Trans. Pattern Anal. Mach. Intell. 19,
18–39 (2008)

9. Huang, H., Ding, C.: Robust Tensor Factorization Using R1-Norm. In: Proc. CVPR
(2008)

10. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value de-
composition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

11. De Lathauwer, L., De Moor, B., Vandewalle, J.:On the best rank-1 and rank-
(R1, R2, ..., RN ) approximation of higher-order tensors. SIAM J. Matrix Anal.
Appl. 21, 1324–1342 (2000)

12. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algo-
rithm prototyping. ACM Trans. Math. Software 32, 635–653 (2006)

13. Huber, P.J.: Robust Statistics. Wiley, Chichester (1981)
14. Ortega, J.M., Rheinboldt, W.G.: Iterative Solution of Nonlinear Equations in Sev-

eral Variables. Academic Press, NY (1970)
15. Lütkepohl, H.: Handbook of Matrices. John Wiley & Sons, Chichester (1996)
16. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal

of the Society of Industrial and Applied Mathematics 5, 32–38 (1957)
17. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face

identification. In: Proc. 2nd IEEE Workshop on Appl. Comput. Vision (1994)


	Robust Simultaneous Low Rank Approximation of Tensors
	Introduction
	Simultaneous Low Rank Approximation of Tensors
	Robust Simultaneous Low Rank Approximation of Tensors
	Subspace Matching for Classifying Sets of Tensors
	Experimental Results
	Image Reconstruction
	Face Recognition

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




