
pMapper: Power and Migration Cost Aware

Application Placement in Virtualized Systems

Akshat Verma1, Puneet Ahuja2, and Anindya Neogi1

1 IBM India Research Lab
2 IIT Delhi

Abstract. Workload placement on servers has been traditionally driven
by mainly performance objectives. In this work, we investigate the design,
implementation, and evaluation of a power-aware application placement
controller in the context of an environment with heterogeneous virtual-
ized server clusters. The placement component of the application man-
agement middleware takes into account the power and migration costs
in addition to the performance benefit while placing the application con-
tainers on the physical servers. The contribution of this work is two-fold:
first, we present multiple ways to capture the cost-aware application
placement problem that may be applied to various settings. For each
formulation, we provide details on the kind of information required to
solve the problems, the model assumptions, and the practicality of the
assumptions on real servers. In the second part of our study, we present
the pMapper architecture and placement algorithms to solve one prac-
tical formulation of the problem: minimizing power subject to a fixed
performance requirement. We present comprehensive theoretical and ex-
perimental evidence to establish the efficacy of pMapper.

1 Introduction

Resource provisioning or placement of applications on a set of physical servers
to optimize the application Service Level Agreements (SLA) is a well studied
problem [6,24]. Typically, concerns about application performance, infrequent
but inevitable workload peaks, and security requirements persuade the provi-
sioning decision logic to opt for a conservative approach, such as hardware iso-
lation among applications with minimum sharing of resources. This leads to
sub-optimal resource utilization. Bohrer et al. have studied real webserver work-
loads from sports, e-commerce, financial, and internet proxy clusters to find that
average server utilization varies between 11% and 50% [3]. Such inefficient pro-
visioning leads to relatively large hardware and operations costs when compared
to the actual workload handled by the data center. However, recently two im-
portant trends, viz. server virtualization and the heightened awareness around
energy management technologies, have renewed interest in the problem of ap-
plication placement. The placement logic in the middleware now need to look
beyond just application SLAs into increasing energy-related operations costs. In
this paper, we investigate the Power-aware Application Placement problem and

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 243–264, 2008.
c© IFIP International Federation for Information Processing 2008

244 A. Verma, P. Ahuja, and A. Neogi

present pMapper, an application placement controller that dynamically places
applications to minimize power while meeting performance guarantees.

System management costs have escalated rapidly with the growing number
of densely packed under-utilized machines in the data center. Virtualization is
seen as a solution that can provide the required isolation layer to consolidate
applications running on a large number of low utilization servers to a smaller
number of highly utilized servers. The virtualization layer typically provides flex-
ible runtime mechanisms for fine grain resource allocation. In fact, high speed
live migration of virtual machines is also possible between the physical servers
in a cluster. This enables applications in virtual machine containers to be moved
at runtime in response to changing workload to dynamically optimize the ap-
plication placement on physical servers. Thus mechanisms to allow dynamic
resizing and migration of virtual machine containers among physical servers
enables research in dynamic application placement middleware beyond static
provisioning.

A second trend that is important for dynamic application placement is the
growing awareness about energy consumption in data centers and the significant
adverse impact on the environment in terms of CO2 emissions from the cooling
systems. The current power density of data centers is typically around 100 Watt
per sq.ft. and growing at the rate of 15− 20% per year [17]. Thus, it is increas-
ingly being realized that inefficient use of servers in a data center leads to high
energy costs, expensive cooling hardware, floor space, and also adverse impact on
the environment. There is a large initiative in the industry as well as academia
to develop technologies that will help to create “green” or environment-friendly
data centers that will optimize energy consumption and consolidate hardware
resources, besides being sensitive to application performance and availability
SLAs. To this extent, a dynamic application placement controller can use virtu-
alization to resize VM containers of applications or migrate VMs at runtime to
consolidate the workload on an optimal set of physical servers. Servers unused
over a period of time can be switched to low power states to save energy. Further,
we observed a fairly large dynamic power range (e.g., the static power of an IBM
HS-21 blade was 140Watt and the dynamic potentially non-linear power range
was almost 80Watt for the daxpy benchmark). Hence, even in scenarios where
servers can not be switched off by consolidation, power savings can be obtained
by packing the servers at optimal target utilization.

The use of power management techniques during application placement has its
own implications. A dynamic application placement controller uses live migration
and we found from our testbed experimentation that the cost of live migration
is significant, and needs to be factored by the dynamic placement controller.
For example, a 512MB VM running HPC benchmarks require almost a minute
to migrate and causes a 20-25% drop in application throughput during the live
migration. We also observed that a large number of live migrations are required
for dynamic placement, thus emphasizing the importance of taking migration
cost into account.

pMapper: Power and Migration Cost Aware Application Placement 245

Contributions: In this paper, we make the following contributions to advance
the state of the art. We describe the architecture and implementation of a power-
aware application placement framework, called pMapper, which can incorporate
various scenarios involving power and performance management using virtualiza-
tion mechanisms. pMapper provides the solution to the most practical possibility,
i.e. power minimization under performance constraints. We have implemented
the framework, some algorithms, and the interfaces with an existing commercial
IBM performance-oriented workload manager. We have benchmarked applica-
tions on virtualized server platforms to create utilization-based power models
of application and server combinations and quantify the virtualization related
costs. The characterization study provides us with insights into the structure of
the power-aware placement problem that can be used to design tractable appli-
cation placement solutions. We used the power models, migration cost models,
and power-aware placement algorithms to design a dynamic placement controller
that, under various assumptions, performs better than a static or load balancing
placement controller with increasing heterogeneity of the server platforms, i.e.
their power models. All input models and assumptions in pMapper have been
validated on a testbed using a set of benchmark applications. The various algo-
rithms implemented in pMapper have been compared through simulation on real
utilization trace data obtained from a large production environment.

The rest of the paper is organized as follows. Section 2 describes the var-
ious flavors of the problem and the tool architecture. Section 3 discusses the
assumptions made in the formulation and validates the assumptions through
testbed experiments. Section 4 provides the details of the algorithms. Section 5
describes our implementation and a trace-driven evaluation study of our algo-
rithms. Section 6 presents a comparative discussion with the related work.

2 pMapper: Power and Migration Cost-Aware
Application Placement Framework

In this section, we present the pMapper application placement framework for
power management and the various optimization formulations for power-aware
application placement. We first present the pMapper architecture framework
that leverages power management techniques enabled by virtualization.

2.1 Architecture

We have designed the pMapper framework to utilize all the power management
capabilities available in virtualized platforms. As per the terminology used in
[15], power management actions can be categorized as (i) soft actions like CPU
idling in the hypervisor, (ii) hard actions like DVFS or throttling and (iii) consol-
idation actions. Commercial hypervisors drop all the power management actions
that are taken by the OS. Further, for multi-tiered applications, a single VM
instance may not be able to determine the application end-to-end QoS thus ne-
cessitating the need for a power management channel from the the management

246 A. Verma, P. Ahuja, and A. Neogi

Placement

PERF MODEL

POWER MODEL

MIG MODEL

HYPERVISOR

VM

PM
C

HYPERVISOR

VM

PM
C

HYPERVISOR

VM

PM
C

SERVER FARM

M
O

N
IT

O
R

IN
G

 E
N

G
IN

E

ARBITRATOR

Power
Minimizing
Allocation

Power

Estimate

Estimate

Benefit
Mig Cost
Estimate

Migration Action

MANAGER

PERFOMANCE

MANAGER MANAGER

POWER MIGRATION

VIRTUALIZATION MANAGER

POWER DATA

KNOWLEDGE BASE

PMC

Migration Action

VM Sizes

VM

PERFORMANCE

CHARACTERIZATION

ENGINE

VM
Sizes

Middleware

Fig. 1. pMapper Application Placement Architecture

middleware. In pMapper, all the power management actions are communicated
by three different managers, with an arbitrator ensuring consistency between the
three actions. The soft-actions like VM re-sizing and idling are communicated by
the Performance Manager, that has a global view of the application in terms of
QoS met and performance SLA. Power Manager triggers power management at
a hardware layer whereas a Migration Manager interfaces with the Virtualization
Manager to trigger consolidation through VM live migration.

The resource management flow of pMapper starts with the Monitoring engine,
which collects the current performance and power characteristics of all the VMs
and physical servers in the farm. Performance Manager looks at the current
performance and recommends a set of target VM sizes based on the SLA goals.
In case, the target VM sizes are different from the current VM sizes, it also
presents an estimate of the benefit due to resizing. Similarly, Power Manager
looks at the current power consumption and may suggest throttling (by DVFS or
explicit CPU throttling). The central intelligence of pMapper lies in Arbitrator,
which explores the configuration space for eligible VM sizes and placements and
implements an algorithm to compute the best placement and VM sizes, based
on the estimates received from Performance, Power and Migration managers.

Performance Manager supports interfaces using which the Arbitrator can
query for the estimated benefit of a given VM sizing and placement (for all the
VMs). In order to cater for heterogeneous platforms, the Performance Manager
consults a Knowledge Base to determine the performance of an application, if one
of its VM is migrated from one platform to another. Similarly, Power Manager
supports interfaces using which Arbitrator can get the best power-minimizing
placement for a given set of VM sizes. Also, Power Manager uses a power model
in the Knowledge Base to determine the placement, as well as estimate the power
for a given placement. Migration Manager estimates the cost of moving from a
given placement to a new placement and uses the Migration Model for making
the estimate. Once the Arbitrator decides on a new configuration, Performance
Manager, Power Manager, and Migration Manager execute the VM sizing, server
throttling and live migration operations, respectively.

pMapper: Power and Migration Cost Aware Application Placement 247

We note that for standalone applications running on power-aware virtualized
platforms such as [15], our framework can make use of the OS hints by pass-
ing them on to the Arbitrator. Hence, our framework and proposed algorithms
(Section. 4) can also be used in other power management frameworks [15,23].

2.2 Optimization Formulations

We now formulate the problem of placing N application on M virtualized servers
that have power management capabilities. The power-aware application place-
ment problem divides the time horizon in time windows. In each window, we
compute the application placement that optimizes the performance-cost trade-
off, i.e., maximizes performance and minimizes cost. The cost metric may consist
of management cost, power cost or the application cost incurred due to the mi-
grations that are required to move to the desired placement. We next present
various formulations of the application placement problem.

Cost Performance Tradeoff. The generic formulation of the problem solves
two sub-problems: (i) application sizing and (ii) application placement. Given a
predicted workload for each application, we resize the virtual machine hosting
the application and place the virtual machines on physical hosts in a manner
such that the cost-performance tradeoff is optimized. In this paper, we focus
on the power and migration costs only. Formally, given an old allocation Ao, a
performance benefit function B(A), a power cost function P (A), and a migration
cost function Mig for any allocation A, we need to find an allocation AI defined
by the variables xi,j , where xi,j denotes the resource allocated to application
Vi on server Sj , such that the net benefit (defined as the difference between
performance benefit and costs) is maximized.

maximize
N∑

i=1

M∑

j=1

B(xi,j) −
M∑

j=1

P (AI) − Mig(Ao, AI) (1)

Cost Minimization with Performance Constraint. Data centers today are
moving towards an SLA-based environment with fixed performance guarantees
(e.g., response time of 100 ms with throughput of 100 transactions per second).
Hence, in such a scenario, performance is not a metric to be maximized and
can be replaced by constraints in the optimization framework. In practice, it
amounts to taking away the VM sizing problem away from the Arbitrator. The
VM sizes are now fixed by the Performance Manager based on the SLA and the
Arbitrator only strives to minimize the overall cost of the allocation. Hence, the
optimization problem can now be formulated as

minimize

M∑

j=1

P (AI) + Mig(Ao, AI) (2)

248 A. Verma, P. Ahuja, and A. Neogi

Performance Benefit Maximization with Power Constraints. A third
formulation for the application allocation problem is to maximize the net perfor-
mance benefit given a fixed power budget for each server, where the net benefit
is computed as the difference between the performance benefit and migration
cost.

maximize

N∑

i=1

M∑

j=1

B(xi,j) − Mig(Ao, AI) (3)

We next present the various model assumptions that pMapper needs to make
to solve the application placement problem.

3 Model Assumptions and Experimental Reality

In this section, we study the various underlying model assumptions and the
feasibility of constructing estimation models required by the three formulations
of the application placement problem.

Our testbed to experimentally validate the model assumptions consists of
two different experimental setups. The first setup is an IBM HS-21 Bladecenter
with mutiple blades. Each blade has 2 Xeon5148 dual-core Processors and runs
two compute-intensive applications from an HPC suite, namely daxpy and fma
and a Linpack benchmark HPL [16] on VMWare ESX Hypervisor . Each blade
server has an L2 cache of 4MB, FSB of 1.33 GHz, with each processor running
at 2.33 GHz. The second setup consists of 9 IBM x3650 rack servers running
VMWare ESX with L2 cache of 4MB. Each server has a quad-core Xeon5160
processor running at 2.99 GHz. This setup runs the Trade6 application as well as
the two HPC applications daxpy and fma. The overall system power is measured
through IBM Active Energy Manager APIs [13]. We now list the key model
assumptions and our experimental findings on the veracity (or the lack of it)
of the assumptions. We use these findings to investigate the practicality of the
optimization formulations discussed earlier.

3.1 Performance Isolation in Virtualized Systems

Virtualization allows applications to share the same physical server by creating
multiple virtual machines in a manner such that each application can assume
ownership of the virtual machine. However, such sharing is possible only if one
virtual machine is isolated from other virtual machines hosted on the same phys-
ical server. Hence, we first studied this fundamental underlying assumption by
running a background load using fma and a foreground load using daxpy. The
applications run on two different VMs with fixed reservations. We varied the
intensity of the background load and measured the performance (throughput)
of the foreground daxpy application (Fig. 2(a)).

One can observe that the daxpy application is isolated from the load variation
in the background application. However, we conjectured that applications may
only be isolated in terms of CPU and memory, while still competing for the
shared cache. To validate this conjecture, we increased the memory footprint of

pMapper: Power and Migration Cost Aware Application Placement 249

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

T
im

e

Background Utilization

Time taken on x3650(daxpy)
Time taken on HS21(daxpy)

Time taken on HS21(HPL)

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

T
im

e

Background Utilization

Time taken on HS21 (daxpy)
Time taken on x3650 (daxpy)

(a) (b)

Fig. 2. Running Time of 30 Billion daxpy operations with change in background load on
HS-21 and x3650 systems at (a) low memory footprint and (b) high memory footprint

both the foreground daxpy and background fma. We observed that as the size
of the arrays being operated exceeded the L2 cache size (4MB), the applications
were no longer isolated (Fig. 2(b)). The throughput of the foreground application
decreases with increase in background traffic as a result of the large number
of cache misses, which are due to increased cache usage by the background
application. However, as one increases the memory footprint of each application
beyond the cache size, the applications are no longer able to use the cache even
in isolation. Hence, we concluded that for a large range of application use (small
and large working set sizes), virtualization is able to successfully isolate two VMs
from each other.

3.2 Migration Cost Modeling

We have proposed the application placement problem as a continual optimiza-
tion problem, where we dynamically migrate the live virtual machines from one
physical server to another in order to optimize the allocation. The migration
of virtual machines requires creation of a checkpoint on secondary storage and
retrieval of the VM image on the target server. Applications can continue to
run during the course of migration. However, the performance of applications
is impacted in the transition because of cache misses (hardware caches are not
migrated) and possible application quiesces. Thus, each migration is character-
ized by a migration duration and a migration cost. The Migration Manager in
pMapper needs to estimate this migration cost for use by the Arbitrator. Hence,
we next studied the feasibility of characterizing migration cost for an application
and study the parameters that affect this cost.

We observed (Fig. 3) that the impact of migration was independent of the
background load and depends only on the VM characteristics. Hence, the cost
of each live migration can be computed a priori. This cost is estimated by quan-
tifying the decrease in throughput because of live migration and estimating the
revenue loss because of the decreased performance (as given by SLA). Hence,

250 A. Verma, P. Ahuja, and A. Neogi

Background Load (CPU) Migration Duration Time (w/o Mig) Time (With Mig)

0 60 210s 259s

12 70 214s 255s

30 63 209s 261s

Fig. 3. Impact of Migration on application throughput with different background traffic

we conclude that it is possible to estimate the cost of live migration of each
application for use by pMapper.

3.3 Power Modeling

The power-aware application placement controller explores various candidate
placements and needs to estimate the overall power drawn for each candidate
placement while selecting a good placement. This estimation is especially re-
quired to solve the power-constraints and power-performance tradeoff formula-
tions. We next study the feasibility of modeling the power for a server given a
mix of applications running on it.

Give a set of N applications and M servers, we can potentially mix a large
variety of applications on each server. Further, any optimization algorithm may
seek to change the ratio of various applications on a server. Hence, creating a
model for all mixes of all applications on all the servers is practically infeasible.
Thus, we may be able to estimate the power drawn by a server only if it is
independent of the applications running on it. We next conducted experiments
to validate this assumption by creating power models for various applications on
the two testbeds.

We found (Fig. 4(a)) that the power drawn by a server varies with the appli-
cations running on it. Hence, an algorithm that requires an exact power model

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

P
ow

er

Utilization

daxpy on x3650
fma on x3650

Trade6 on x3650
daxpy on HS21

fma on HS21
 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

M
ar

gi
na

l P
ow

er

Background Utilization

(fma,fma,hs21)
(fma,daxpy,hs21)

(daxpy,daxpy,hs21)
(daxpy,fma,hs21)

(daxpy,daxpy,x3650)
(fma,fma,x3650)

(a) (b)

Fig. 4. (a) Power drawn by various applications with change in server utilization. (b)
Marginal Power consumed by HPC applications on various platforms with change in
background load and background mix. (A,B, C) denotes incremental power drawn by
A with background traffic of B on platform C.

pMapper: Power and Migration Cost Aware Application Placement 251

for each allocation may be infeasible in practice. Further, since migration takes
a significant amount of time, any measurement-based strategy that tries to learn
the power models for all used application mixes is also practically infeasible in
a dynamic consolidation setting.

We concluded that the power-capping and power-performance tradeoff frame-
works, though interesting in theory, are not feasible in practice as they need
one to compute the exact power consumed by an application. However, we note
that an algorithm to solve the power minimization problem does not need actual
power numbers. The problem that the power minimization framework solves is to
minimize power, without really knowing what the exact power would be. Hence,
an algorithm that can be listed out as a sequence of steps, where each step is
a decision problem for some application to determine which of the candidate
servers the application should be placed on, does not need estimates of power
values. Instead, if the algorithm can figure out which server minimizes the in-
cremental increase in total power due to the new application being placed, then
it can place the application appropriately.

One may, however, note that this approach restricts the algorithm choices to
only those algorithms that take a local view of the problem, and hence can be
locally optimal in the best case. Further, one still needs to solve the ordering
problem, where for any given placement of N − 1 applications on M servers, we
should be able to estimate the best server (in terms of power minimization) to
place the N th application. We next investigate two properties such that even if
any one of them holds, one can make this decision.

Definition 1. Ordering Property: For any two applications V Mi and V Mi′ and
servers Sj and Sj′ at loads ρj and ρj′ respectively, if the server Sj is more power
efficient than Sj′ for V Mi, then Sj is more power-efficient than Sj′ for all V Mi′

as well. Hence, the slopes for any two servers satisfy a uniform ordering across
all applications.

Definition 2. Background Independence Property: An application and a server
are said to satisfy that Background Independence Property if the incremental
power drawn due to the application on the server depends only on the background
load intensity and is independent of the traffic mix in the background.

We next investigate if these properties can be made to hold in certain situations
where we know about the class of applications we are placing. For example, if we
restrict ourselves to consider only HPC applications or only J2EE applications in
a cluster we can demonstrate that these properties hold. We ran two applications
on the two testbeds for various mixes of background traffic picked from the HPC
benchmarks. We observed the Ordering Property to hold for the two applications
on the two testbeds. We noted (Fig. 4(b)) that the x3650 platform is more power-
efficient (incrementally) for both the applications. This is true even when we
changed the background traffic from daxpy to fma on the HS21 Blades. We also
observe that the incremental power drawn by daxpy for both the background
traffic at any given background load value is almost same. Hence, one can assume
the Background Independence Property to hold at a coarse granularity in most

252 A. Verma, P. Ahuja, and A. Neogi

scenarios. We next propose algorithms that use these properties to solve the
power-minimization optimization problem.

4 Application Placement Algorithms

In this section, we describe the various placement algorithms designed for mini-
mizing the overall cost, while meeting a fixed performance SLA. The algorithms
assume that a performance manager provides them with a VM size for each ap-
plication, that can meet its performance goals. We start with a brief description
of the key ideas behind the algorithms.

4.1 Algorithm Idea

Our application placement algorithms that minimize the power and migration
costs are based on three key observations

1. Estimating the power cost of a given configuration may not be possible
because power drawn by a server depends on the exact application mix on
a server.

2. Background Independence Property and Ordering Property allows one to
pick a server for an application that will minimize the incremental power
due to the new application. Hence, local searches are feasible.

3. The above properties may not hold always if servers are equally loaded.
However, the properties will definitely hold if we compare an idle server
with a loaded server.

The first two observations dictate the design of algorithms to be based on local
searches. One can view the application placement problem as a bin-packing
problem with differently sized bins. The servers represent the bins and the virtual
machines represent the balls. The power drawn by a server is represented as the
cost of the bin and the power-minimizing allocation is a packing that minimizes
the cost of the packed bins. Since power drawn by a server depends on the actual
mix of applications, the cost of packing a bin varies depending on the balls being
packed in the bin. Bin packing has many local search algorithms like First-Fit
Decreasing(FFD) [25], Best-Fit and Worst-fit.

We took a close look at FFD, where balls are ordered by size (largest first).
The balls are then packed in the first bin that can accommodate them. We
observed that if servers are ordered based on power efficiency (static power per
unit capacity), then the FFD algorithm can employ the Ordering property to
minimize power. This is because FFD unbalances load, and as per our third
observation, the Ordering property always holds if we are comparing an idle
server with a loaded server. Further, by placing servers based on their power
efficiency, we ensure that more power efficient servers are the ones that are
utilized first. Finally, FFD has good theoretical bounds and is also known to
perform well in practice [25]. Hence, we focus on adapting First Fit to work for
different sized bins with ball-dependent cost functions.

pMapper: Power and Migration Cost Aware Application Placement 253

4.2 Algorithm Details

We first present an algorithm min Power Parity (mPP) in Fig. 5 to place the
VMs on the given set of servers in a manner such that the overall power consumed
by all the servers is minimized. The algorithm takes as input the VM sizes for
the current time window that can meet the performance constraints, a previous
placement and the power model for all the available servers. It then tries to place
the VMs on the servers in a manner that minimizes the total power consumed.

algorithm mPP

Input : ∀iV Mi, Allocold Output = Allocnew

∀Serverj

Allocj = φ, Usedj = 0
Sort VMs by size in decreasing order
for i = 1 to N

∀Serverj compute Slope(Usedj)
Pick the Servermin with the least Slope
Add V Mi to Allocmin, Usedmin+ = Size(V Mi)

End For
Allocnew = FFD(Used)
returnAllocnew

end mPP

Fig. 5. Power-minimizing Placement Algorithm

mPP works in two phases: In the first phase, we determine a target utilization
for each server based on the power model for the server. The target utilization
is computed in a greedy manner, where we start with a utilization of 0 for each
server. We then pick the server with the least power increase per unit increase
in capacity. We continue the process till we have allocated capacity to fit all the
VMs. Since we may not be able to estimate the server with the least slope for all
possible background traffic mixes, we pick an arbitrary traffic mix to model the
power for each application and use this model in the selection process. We will
later show that modeling based on an arbitrary background traffic mix also leads
to a good solution. In the second phase, we call the bin-packing algorithm FFD
based on First Fit Decreasing to place the VMs on the servers, while trying to
meet the target utilization on each server. The bins in our version have unequal
capacity, where the capacity and order of each bin is defined in the first phase
whereas standard FFD that works with randomly ordered equal-sized bins.

Theorem 1. If the Ordering Property or the Background Independence Prop-
erty hold for a given set of servers and applications, then the allocation values
obtained by mPP in its first phase are locally optimal.

Proof. Let there be any two servers Sj and Sk such that we can shift some load
between the two. For simplicity, assume that the load shift requires us to move

254 A. Verma, P. Ahuja, and A. Neogi

algorithm iFFD
Input : Alloco, Used Output = Allocn

Donors = φ, Receivers = φ

For all servers Sj

Prevj =sum of VMs in SjbyAlloco

If(Prevj > Usedj)

Add Sj to Donors

Migj = Prevj − Usedj

Else

Add Sj to Receivers

End − For

For all Sj in Donors

Pick the smallest VMs that add upto

Migj and add them to MigList

End − For

Sort MigList based on size

For all V Mi in MigList

Place V Mi on the first Donorj that

can pack it within Usedj

End − For

Return Allocn

algorithm pMaP
Input : Alloco, V Mi Output : Migs

Allocn = mPPH(Alloco, V Mi)

MList = getMigList(Alloco , Allocn)

∀Serverj with no VMs placed in Allocn

V Gj =VMs placed on Serverj in Alloco

Add V GjtoMList

∀migi ∈ MList

Costi = getMigrationCost(migi),

Benefiti = getBenefit(migi)

Sort MList by Benefiti/costi (decreasing)

migbest = most profitable entry in MList

while(profitbest > costbest)AND(MList �= Φ)

Migs = Migs ∪ migbest

Delete migbest from MList

Recompute Cost and Benefit for MList

End While

return Migs

end pMaP Algorithm

(a) (b)

Fig. 6. (a)History Aware Packing Algorithm, (b) Migration Cost-aware Locally Opti-
mal Placement Algorithm

the VM V Mi from Sj (at load ρj) to Sk (at load ρk). Also, since we had selected
Sj over Sk for the additional load, there exists some VM V Mi′ for which the
slope of Sj at load ρj is less than the slope for the server Sk at load ρk. However,
by the Ordering assumption, such a VM V Mi′ can not exist. This leads to a
contradiction and proves the required result.

The proof for the Background Independence Property is straightforward. If this
property holds, then the incremental load due to application V Mi is independent
of the workload mix, and as a result, we can always compute the exact increase
in power on all candidate servers for V Mi and pick the best server. Hence, the
shares allocated to the servers are locally optimal. This completes the proof.

One may also observe that if all the power models are concave, then the utiliza-
tion allocation obtained is globally optimal as well. However, we did not observe
this property to hold in our experiments and concluded that mPP can provably
lead to locally optimal allocations only.

The mPP algorithm is designed to minimize power. However, it is oblivious of
the last configuration and hence may entail large-scale migrations. This may lead
to a high overall (power + migration) cost. Hence, we next propose a variant of
FFD called incremental FFD (iFFD) for packing the applications on physical
servers, given a fixed target utilization for each server in Fig. 6(a).

iFFD first computes the list of servers that require higher utilization in the
new allocation, and labels them as receivers. For each donor (servers with a
target utilization lower than the current utilization), it selects the smallest sized
applications to migrate and adds them to a VM migration list. It then runs FFD

pMapper: Power and Migration Cost Aware Application Placement 255

with the spare capacity (target capacity - current capacity) on the receivers as
the bin size and the VM migration list as the balls. iFFD has the nice property
that it starts with an initial allocation, and then incrementally finds a set of
migrations that will help it reach the target utilization for each server. Hence,
the packing algorithm migrates VMs only to the extent required to reach the
target utilization for each server.

We use iFFD to design a power-minimizing placement algorithm that in-
cludes history, and is aptly named as min Power Placement algorithm with His-
tory mPPH . It works identically as mPP in the first phase. For the second
phase, it invokes iFFD instead of FFD, thus selecting a placement that takes
the earlier placement as a starting point. mPPH algorithm tries to minimize mi-
grations by migrating as few VMs as possible, while moving to the new optimal
target utilization for the servers. However, even though it is migration aware, it
does not compromise on the power minimization aspect of the algorithm. Hence,
if the target utilization for servers change significantly in a time-window, mPPH
still resorts to large scale migrations to minimize power cost.

We next propose an algorithm PMaP that takes a balanced view of both
power and migration cost, and aims to find an allocation that minimizes the sum
of the total (power + migration) cost. pMaP (Fig. 6(b)) continually finds a new
placement for VMs in a fashion that minimizes power, while taking the migration
cost into account. The algorithm is based on the fundamental observation that
all the migrations that take us from an old power-minimizing placement to a
new power-minimizing placement may not be optimizing the power-migration
cost tradeoff. Hence, the algorithm first invokes any power-minimizing placement
algorithm (mPPH is our choice) and gets a new power-minimizing placement. It
then computes the difference between the two placements (the set of migrations
that will change the old placement to the new placement) and determines a
subset to select. The selection process is based on sorting all the migrations
based on their incremental decrease in power per unit migration cost. We note
that a set of multiple migrations may be atomic and have to be separately
considered en masse as well, while estimating their incremental decrease in power
per unit migration cost. We then select the most profitable migration if the
power savings due to migration is higher than the migration cost. We repeat the
above procedure till no migrations exist that optimize the power-migration cost
tradeoff. We prove the following Local Optimality property for PMaP along the
same lines as Theorem 1.

Lemma 1. If pMaP at any given time has a placement P , then the next mi-
gration selected by P achieves the highest power-migration cost tradeoff. Hence,
every iteration that selects the next migration in pMaP is locally optimal.

5 pMapper Implementation and Experimental Validation

We now present our implementation of pMapper and an experimental study to
demonstrate its effectiveness.

256 A. Verma, P. Ahuja, and A. Neogi

5.1 Implementation

We have implemented pMapper to solve the cost minimization problem de-
scribed in Eqn. 2. In this formulation, the Arbitrator is driven by performance
goals and only arbitrates between the Power Manager and Migration Manager
to find a placement that optimizes the power-migration cost tradeoff. The Power
Manager implements the power-minimization algorithms mPPH and mPP ,
whereas the Arbitrator implements the pMaP algorithm to optimize the power
migration tradeoff.

We use IBM Active Energy Manager [13] for monitoring power usage and
EWLM [14] as the performance manager. In order to use the Active Energy
Manager for monitoring, we have writen a monitoring agent that is co-located
with the IBM Director Server and uses network sockets to communicate with
the pMapper framework. EWLM uses a metric called Performance Index (PI)
to indicate if an application is meeting its required SLA. A PI value of 1 is
achieved when the response time of the application equals the target response
time as specified in its SLA. Whenever, an application fails to meet its PI or
outperforms its SLA, EWLM automatically resizes the VM so that the PI value
for the application reaches 1. We have implemented our Arbitrator to work with
a workload manager independent datastructure that captures a configuration in
terms of VM sizes and their placements. Hence, the Arbitrator uses an adapter
that allow it to understand the performance characteristics and partition sizes as
reported by EWLM. We have implemented pMapper for VMWare ESX-based
platforms and hence we use VMWare Virtual Center as the Virtualization Man-
ager. We use the VI API provided by VMWare ESX 3.0 to communicate with
the Virtualization Manager and execute migration actions. In order to execute
throttling actions, we use the IBM Active Energy Manager interface that directly
communicates with the BMC via IPMI commands.

We next describe our experimental setup for the performance study.

5.2 Experimental Setup

Our experimental testbed is driven by server utilization traces obtained from the
server farm of a large data center. We initially wanted to conduct our experiments
on the complete implementation of pMapper. However, we soon realized that
this would take an inordinately long time (running the experiments for Fig. 7(b)
only would take 4 months as it required 60 different runs). Initially, we looked
at ways to speed up the experiments but we could not do so because the data
refresh rate of Active Energy Manager was 5 minutes. We realized that our
implementation was not focussing on performance (which was out-sourced to
EWLM) and we only needed to study the power and migration cost minimization
ability of pMapper.

Hence, we simulated the performance infrastructure by replacing the Per-
formance Manager with the application trace data. Further, once the Arbitrator
came up with a final placement, we fed the output to a Simulator that estimated
the overall cost of the placement. Since we had characterized the applications on
the platform earlier, we could design a table-driven simulator that was accurate

pMapper: Power and Migration Cost Aware Application Placement 257

with 99% confidence. The Simulator simulates the placement of these servers on
a HS-21 Bladecenter according to the configuration given by the Arbitrator. For
comparison, we used the following algorithms

– Load Balanced: This placement strategy places the VM in a manner such
that the load is balanced across all the blades in the Bladecenter.

– Static: This algorithm takes long term history into account to find the place-
ment that minimizes the power. The algorithm first estimates the minimum
number of servers required to serve all the requests without violating blade
server capacities. It then places the VMs (only once) on the servers to min-
imize power

– mPP: The minPowerPlacement Algorithm dynamically determines the place-
ment that minimizes the power for that time window and is based on FFD.

– mPPH: The minPowerPlacement with History Algorithm determines the
power-minimizing placement that takes into account the previous placement.

– PMaP: The PMaP Algorithm optimizes the tradeoff between power cost and
migration cost, while computing the new placement for the window.

In our experiments, the Performance Simulator maps each server utilization
trace to a Virtual Machine (VM) on the HS-21 with the VM size being set to
the CPU utilization on the server. The trace is divided into time windows, and
in each time window, the Arbitrator determined a new placement for each of
the placement strategies based on the utilization specified by the Performance
Manager in the time window. We feed the placements to the Simulator, which
estimates the cost of each placement and logs it.

We studied the various methodologies with respect to the power consumed,
the migration cost incurred, and the sum of power cost and migration cost. We
then conducted a comparative study of the algorithms with change in server
utilization. We also increased the number of blades in the Bladecenter to inves-
tigate the ability of the algorithms to scale and deal with fragmentation. We used
a metric to quantify the relative impact of migration cost with power cost and
termed it MP Ratio. The migration cost is determined by estimating the impact
of migration on application throughput and consequent revenue loss, computed
as per the SLA. This cost is compared with the power cost using the power
drawn and the price/watt paid by the enterprise. We pick a reasonable value for
this ratio in our baseline setting based on typical SLAs and then vary this ratio
to study its impact on the performance of various algorithms. We also plugged in
some other power models to investigate if the algorithms are dependant on spe-
cific power models. Further, by mixing different kinds of physical servers (with
different power models), we investigate the ability of the algorithms to handle
heterogeneity. We finally studied the practicality of the assumptions made.

5.3 Results

We first study the behaviour of various algorithms as the traces are played with
time (Fig. 7(a)). The aggregate utilization of the VMs varies during the run and
the dynamic algorithms continually try to adapt to the changed workload. We

258 A. Verma, P. Ahuja, and A. Neogi

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200 250 300
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ow

er
(W

at
ts

)

A
ve

ra
ge

 U
til

iz
at

io
n

Time

Average Utilization
Static Power
mPP Power

mPPH Power
LB Power

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y(

K
ilo

jo
ul

es
)

Utilization

Static Energy
mPP Energy

mPPH Energy
LB Energy

(a) (b)

Fig. 7. Power consumed by various placements strategies with (a) time and (b) in-
creasing overall utilization

observe that the dynamic algorithms mPP and mPPH are able to save about
200W of power (25%) from the Load Balanced and Static Placements. However,
as the utilization exceeds 0.75, the savings drop significantly. This is because,
at high utilization, there is not much scope for consolidation. However, even at
high loads, our algorithms are able to save some power by taking the decreasing
slope of the power curves into account. We observed that our algorithms try to
run most servers at close to their full capacity because the power-curve saturates
at high capacity. Hence, instead of balancing the load across all servers, it makes
sense to unbalance load even when all the servers are switched on. We also
observe that the proposed algorithms show very strong correlation with the
average utilization. This establishes their ability to continually adapt to workload
variations and save power accordingly.

We next investigate the impact on power at different average utilization val-
ues. Towards this purpose, we compressed (or decompressed) all the traces so
that the average utilization of the servers could be varied. The trace was com-
pressed to achieve a higher utilization than the baseline, and decompressed to
achieve lower utilizations. We observed that the power savings obtained by the
proposed power-minimizing algorithms is significant at low utilization values.
This is because our algorithms are able to consolidate the VMs on a few servers
only, and save a significant amount of power due to the high static power cost.
Our study (Fig. 7(a)) reaffirms that most savings come from consolidation and
not by unbalancing load. This is evident because the savings of proposed algo-
rithms increase significantly when the average utilization goes below 0.75 and
0.5. These are the utilization values at which one can switch off an additional
server. Note that the discontinuities are not so noticeable in Fig. 7(b). However,
since at an average utilization of 0.75, there are many time instances where the
utilization goes beyond 0.75 and no server can be switched off, the difference
between overall energy consumption between average utilization of 0.7 and 0.75
is not as large as one would expect from Fig. 7(a).

We have only investigated the performance of algorithms w.r.t power con-
sumed by their corresponding placements. We now take into account the

pMapper: Power and Migration Cost Aware Application Placement 259

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 100

 200

 300

 400

 500

T
ot

al
 C

os
t

M
ig

 C
os

t

Utilization

Static Total Cost
mPP Total Cost

mPPH Total Cost
pMaP Total Cost

LB Total Cost
mPP MigCost

mPPH MigCost
pMaP MigCost

LB MigCost

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 100

 200

 300

 400

 500

 600

 700

 800

T
ot

al
 C

os
t

M
ig

 C
os

t

Migration Cost Ratio

Static Total Cost
mPP Total Cost

mPPH Total Cost
pMaP Total Cost

LB Total Cost
mPP MigCost

mPPH MigCost
pMaP MigCost

LB MigCost

(a) (b)

Fig. 8. Migration Cost and Overall Cost with (a) increasing overall utilization (b)
change in MP (Migration to Power Cost) Ratio

migration cost and compare the power-minimizing algorithms with the migration
cost aware pMaP algorithm as well (Fig. 8(a)). We observe that even though
the power drawn by pMaP (difference of total cost and migration cost) is higher
than mPP or mPPH , the total cost of pMaP is the least amongst all com-
peting algorithms. This establishes the importance of taking both the migration
and power cost into account, while coming up with a new placement. We also
observe that mPP pays a very high migration cost at higher utilization, and
underperforms even the LB(Load − balanced) and Static placements at very
high loads. On the other hand, mPPH incurs very low migration cost (of the
same order as load-balanced) and as a result, has a total cost very close to the
best performing algorithm pMaP . This is a direct result of the fact that mPPH
takes the previous placement into account while computing a new placement,
and tries to minimize the difference between the two placements. Hence, even
though mPPH does not compromise on saving power as opposed to pMaP ,
which can prefer a placement with high power and low migration cost, the mi-
gration costs incurred by mPPH are not significant. This establishes mPPH as
a good alternative to pMaP , because of its relative simplicity.

The MP ratio (migration to power cost ratio) varies from one enterprise to
another and depends on factors such as energy cost and SLA revenue models.
We next investigate the various algorithms at different MP ratio. We observed
(Fig. 8(b))that MP ratio directly affects the overall performance of mPP . Hence,
mPP is the best performing algorithm (approaching mPPH and pMaP) at low
migration costs and underperforms even the power-unaware algorithms at very
high migration cost. This underscores the importance of taking migration cost
into account, along with the power cost for dynamic placement. On the other
hand, pMaP takes the increased migration cost factor into account by cutting
down migrations. Hence, a high MP ratio does not affect its performance.

In our next set of experiments, we investigated the scalability of the algorithms
along with their ability to deal with fragmentation (large VM sizes). Hence, we
increased the number of servers from 4 to 16. We observed that pMaP and

260 A. Verma, P. Ahuja, and A. Neogi

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 6 8 10 12 14 16

 0.2

 0.4

T
ot

al
 C

os
t

P
en

al
ty

Number of Servers

Static Total Cost
mPP Total Cost

mPPH Total Cost
pMaP Total Cost

mPP Penalty
mPPH Penalty
pMap Penalty

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

T
ot

al
 C

os
t

P
en

al
ty

Utilization

pMaP Total Cost
pMaP+ Total Cost

Static Penalty
mPP Penalty

mPPH Penalty
pMaP Penalty

pMaP+ Penalty
LB Penalty

(a) (b)

Fig. 9. (a) Overall Cost and Penalty with increase in servers (b) Power and Penalty
with increase in fragmentation for penalty aware and unaware algorithms

mPPH are the top two performing algorithms even with increased number of
servers. However, we observed (Fig. 9(a)) that while aiming to unbalance load
for minimizing power, pMaP was leading to a large number of requests being
dropped (or delayed). We call the drop in requests as Penalty of a placement. A
reason for this penalty is the huge variance in workload. Hence, at an average
load of 0.7 approximately, there are many instances when the transient load goes
beyond 1.0 and, as a result, many requests need to be dropped (irrespective of
the placement methodology). However, since pMaP is unaware of penalties, it
drops more requests than others, while striving to minimize cost. This makes
pMaP undesirable for use at high load intensities.

We next engineered pMaP to take penalty into account, while exploring the
search space between the old placement and the new placement. The modified
algorithm pMaP+, during its exploration, picks only those intermediates whose
penalty are below a bound. We fixed the bound to be 0.1 in our experiments.
We observe (Fig. 9(b)) that the penalty aware algorithm pMaP+ now incurs
the least penalty amongst mPP , mPPH , pMaP and static. The penalty seen
by the Load Balanced algorithm is the baseline penalty incurred solely because
of traffic variations and pMaP+ now has a penalty approaching that of Load
Balanced. This engineering allows pMaP+ to again be the algorithm of choice
under all scenarios. We also observe that the penalties of the Static placement
also varies a lot, approaching 20% in certain cases. This is again, a result of
the load-shifts that happen with time, re-affirming the importance of a dynamic
placement strategy.

In this set of experiments, we simulate heterogeneity with various power mod-
els. We simulate another server with a power model where the static power or
the dynamic power or both may be reduced to half. We increase the number of
such servers from 0 to 2 to increase the complexity in Static Power or Dynamic
Power (Fig. 10(a)). We observed that increased complexity (due to heterogene-
ity) leads to higher power savings relative to the Static Placement, which is the
best power-unaware placement method. Further, the power savings are almost

pMapper: Power and Migration Cost Aware Application Placement 261

00.511.52
0

0.5
1

1.5
2

10

15

20

25

30

Static Power ComplexityDynamic Power Complexity

P
ow

er
 S

av
in

gs
 (

%
)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

P
en

al
ty

 (
W

at
ts

)

VM Number (In order of placement)

Load Factor = 15%
Load Factor = 35%
Load Factor = 45%
Load Factor = 70%
Load Factor = 90%
Load Factor = 93%

(a) (b)

Fig. 10. (a) Power Savings of mPP and mPPH in comparison to Static Place-
ment with increasing heterogeneity. (b) Penalty incurred because of the Ordering
Assumption.

additive with increase in static or dynamic complexity. Hence, the proposed
algorithms are capable of working even better in heterogeneous clusters, thus
establishing their efficacy in a wide variety of settings.

Our algorithms are based on the assumption that for each application being
placed, we can characterize the incremental power drawn by it at various work-
loads on all the server platforms. We can then use this incremental power table
to decide which server to place the application on, during dynamic application
placement. We now investigate the practicality of this assumption. In order to
study this, we looked at a a random sample of 100 points from this selection
trace log and measured the incremental power drawn due to our selection and
the incremental power drawn by selecting any other server. Fig. 10(b) shows the
accuracy of our estimate in terms of the penalty accrued due to wrong selection
for each placed application. If we made the right selection, we get a penalty of
0 whereas if there was another server with less incremental power, we incur a
penalty equal to the difference. We observe that the Ordering property holds
for most of the applications with a few errors resulting in an error of 1 watts
or less. As compared to the total power consumption of about 750W , this er-
ror is insignificant. Further, we observe that the property does not hold only
for the last few applications being placed. Hence, any errors made do not get
cascaded to other applications, as most of them were already placed. This is a
direct result of the fact that we chose to adapt FFD, which leads to unbalanced
load. Hence, for most of the comparisons that used the Ordering property, we
compared an idle server with a loaded server, and very clearly the loaded server
was selected because of the huge static power cost. Hence, our local search based
on the Ordering property worked close to optimal. Further, a closer look at the
plots reveal that we pay the penalty only when the overall load approaches 50%
or 75%. This is because in these cases all the servers that were loaded were close

262 A. Verma, P. Ahuja, and A. Neogi

to their capacity. Hence, we had to select between servers that where all loaded.
In such a scenario, the Ordering property did not seem to hold in a few instances
(about 1 in 5). However, this scenario encompasses only a very small portion of
the overall problem space. Hence, we conclude that pMapper is able to make
use of the Ordering property to quickly come up with placements that are very
close to optimal (less than 0.2% penalty).

6 Related Work and Conclusion

Energy management in server clusters has been a popular area of research since
the beginning of this decade [1,12]. Chen et al. [6] combine server level CPU
scaling techniques with the application provisioning problem in the same for-
mulation. However, in contrast to pMapper, they do not work in a virtualized
setting with migration costs and only deal with homogeneous clusters for place-
ment. Muse pose a resource allocation problem in [4], where services are allocated
to enough number of resource containers on physical servers based on an eco-
nomic model. Since energy cost is part of the model and the load is dynamic,
resources are allocated dynamically in a manner that is aware of the energy
costs. However, the model does not explicitly consider migration costs of con-
tainers or deal with the complexity of application specific power models in a
heterogeneous server cluster. Bobroff et al. [2] describe a runtime application
placement and migration algorithm in a virtualized environment. The focus is
mainly on dynamic consolidation utilizing the variability in workload but they
do not perform power-aware placements on heterogeneous servers.

Most of the cluster energy management literature addresses the problem of
distributing requests in a web server cluster in such a way that the performance
goals are met and the energy consumption is minimized [4,5,10,19,21]. There
are a number of papers that describe server or cluster level energy management
using independent [8,18] or cooperative DVS techniques [7,11]. There are other
efforts in reducing peak power requirements at server and rack level by doing
dynamic budget allocation among sub-systems [9] or blades [20].

In this work, we have presented an application placement controller pMapper
that minimizes power and migration costs, while meeting the performance guar-
antees. pMapper differs from all existing literature because it addresses the prob-
lem of power and migration cost aware application placement in heterogeneous
server clusters that support virtualization with live VM migration. It investigates
the viability of using CPU utilization based application specific power models
to develop placement algorithms and validates the assumptions through testbed
experimentation. Through a carefully designed experimental methodology on
two server platforms, we concluded that only a power minimization framework
is feasible practically. We use insights from our study to pin down the conditions
under which this problem can be solved. We proposed three dynamic placement
algorithms to minimize power and migration cost and experimentally demon-
strated the various scenarios in which each algorithm is effective. We established

pMapper: Power and Migration Cost Aware Application Placement 263

the superiority of our most refined algorithm pMaP+ under most settings over
other power unaware algorithms as well as power aware algorithms both theo-
retically and experimentally.

References

1. Bianchini, R., Rajamoni, R.: Power and energy management for server systems.
IEEE Computer, 68–76 (November 2004)

2. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing sla violations. In: IEEE IM (2007)

3. Bohrer, P., et al.: The case for power management in web servers. In: Power Aware
Computing (2002)

4. Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing energy and
server resources in hosting centers. In: Proc. ACM SOSP (2001)

5. Chase, J., Doyle, R.: Balance of power: Energy management for server clusters. In:
HotOS (2002)

6. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Man-
aging server energy and operational costs in hosting centers. In: Sigmetrics (2005)

7. Elnozahy, E., Kistler, M., Rajamony, R.: Energy- efficient server clusters. In: Pro-
ceedings of the Workshop on Power-Aware Computing Systems (2002)

8. Elnozahy, M., Kistler, M., Rajamony, R.: Energy conservation policies for web
servers. In: Proc. of USITS (2003)

9. Felter, W., Rajamani, K., Keller, T., Rusu, C.: A performance-conserving approach
for reducing peak power consumption in server systems. In: ICS (2005)

10. Heath, T., Diniz, B., Carrera, E., Meira Jr., W., Bianchini, R.: Energy conservation
in heterogeneous server clusters. In: Proc. of ACM PPoPP (2005)

11. Horvath, T.: Dynamic voltage scaling in multitier web servers with end-to-end
delay control. IEEE Trans. Comput. 56(4) (2007)

12. Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., Keller, T.W.: En-
ergy management for commercial servers. IEEE Computer 36(12), 39–48 (2003)

13. IBM Active Energy Manager,
http://www-03.ibm.com/systems/management/director/extensions/

actengmrg.html

14. IBM Enterprise WorkLoad Manager,
http://www.ibm.com/developerworks/autonomic/ewlm/

15. Nathuji, R., Schwan, K.: Virtualpower: coordinated power management in virtu-
alized enterprise systems. In: ACM SOSP (2007)

16. HPL-A Portable Implementation of the High Performance Linpack Benchmark for
Distributed Memory Computers, http://www.netlib.org/benchmark/hpl/

17. Control power and cooling for data center efficiency HP thermal logic technology.
An hp bladesystem innovation primer (June 2006)

18. Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., Rawson, F.: Application-aware
power management. In: IISWC, pp. 39–48 (2006)

19. Rajamani, K., Lefurgy, C.: On evaluating request-distribution schemes for saving
energy in server clusters. In: ISPASS (2003)

20. Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level power manage-
ment for dense blade servers. In: ISCA (2006)

http://www-03.ibm.com/systems/management/director/extensions/actengmrg.html
http://www-03.ibm.com/systems/management/director/extensions/actengmrg.html
http://www.ibm.com/developerworks/autonomic/ewlm/
http://www.netlib.org/benchmark/hpl/

264 A. Verma, P. Ahuja, and A. Neogi

21. Rusu, C., Ferreira, A., Scordino, C., Watson, A.: Energy-efficient real-time hetero-
geneous server clusters. In: Proc. of RTAS (2006)

22. VMWare Distributed Resource Scheduler,
http://www.vmware.com/products/vi/vc/drs.html

23. Stoess, J., Lang, C., Bellosa, F.: Energy management for hypervisor-based virtual
machines. In: Proc. Usenix Annual Technical Conference (2007)

24. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. In: Sigmetrics (2005)

25. Yue, M.: A simple proof of the inequality ffd(l) ≤ (11/9)opt(l) + 1, for all l, for the
ffd bin-packing algorithm. Acta Mathematicae Applicatae Sinica (1991)

http://www.vmware.com/products/vi/vc/drs.html

	pMapper: Power and Migration Cost Aware Application Placement in Virtualized Systems
	Introduction
	pMapper: Power and Migration Cost-Aware Application Placement Framework
	Architecture
	Optimization Formulations

	Model Assumptions and Experimental Reality
	Performance Isolation in Virtualized Systems
	Migration Cost Modeling
	Power Modeling

	Application Placement Algorithms
	Algorithm Idea
	Algorithm Details

	pMapper Implementation and Experimental Validation
	Implementation
	Experimental Setup
	Results

	Related Work and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

