
N. da Vitora Lobo et al. (Eds.): SSPR&SPR 2008, LNCS 5342, pp. 775–781, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A New Solution Scheme of Unsupervised Locality 
Preserving Projection Method for the SSS Problem  

Yong Xu1 and David Zhang2 

1 Harbin Institute of Technology, Shenzhen Graduate School 
518055 Shenzhen, China 

laterfall2@yahoo.com.cn 
2 The Biometrics Research Centre, The Hong Kong Polytechnic University 

Kowloon, Hong Kong, China  
csdzhang@comp.polyu.hk 

Abstract. When locality preserving projection (LPP) method was originally 
proposed, it takes as the LPP solution the minimum eigenvalue solution of an 
eigenequation. After that, LPP has been used for image recognition problems 
such as face recognition. However, almost no researcher realizes that LPP usu-
ally encounters several difficulties when applied to the image recognition prob-
lem. For example, since image recognition problems are usually small sample 
size (SSS) problems, the corresponding eigenequation cannot be directly 
solved. In addition, it seems that even if one can obtain the solution of the ei-
genequation by using the numerical analysis approach, the obtained conven-
tional LPP solution might produce the ‘presentation confusion’ problem for 
samples from different classes, which is disadvantageous for the classification 
to procedure a high accuracy.  In this paper we first thoroughly investigate the 
characteristics and drawbacks of the conventional LPP solution in the small 
sample size (SSS) problem in which the sample number is smaller than the data 
dimension. In order to overcome these drawbacks, we propose a new LPP solu-
tion for the SSS problem, which has clear physical meaning and can be directly 
and easily worked out because it is generated from a non-singular eigenequa-
tion. Experimental results the proposed solution scheme can produce a much 
lower classification error rate than the conventional LPP solution. 

Keywords: Locality preserving projection; Feature extraction; Face 
recognition. 

1   Introduction 

LPP is well-known as a linear graph embedding method. While LPP transforms dif-
ferent samples into their respective new representations using a same linear transform, 
it tries its best to preserve the local structure of the samples [1]--[12]. That it, after the 
LPP transformation, close samples in the original space is still close in the new space. 
LPP was firstly proposed as an unsupervised method that does not exploit the class-
label information. So far a number of improvements of LPP such as 
kernel-based LPP [10], [13], two-dimensional LPP [14] and orthogonal LPP [15] have 
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been developed. Recently, it has been demonstrated that LPP is theoretically related 
to other linear dimensionality reduction methods. In other words, these methods can 
be described as implementations of the linear graph embedding framework with dif-
ferent choices of the weight matrix and a related matrix [16]. 

Conventional LPP, which takes as the optimal solution of LPP the minimum ei-
genvalue solution of an eigenequation, will suffer from several difficulties in the SSS 
problem, in which the data dimension is much larger than the number of samples. The 
first difficulty is as follows: since the dimension of the sample is larger than the num-
ber of the samples, the eigenequation cannot be directly solved due to matrix singular-
ity. An image recognition problem such as face recognition is a typical SSS problem. 
Note that image recognition covers a wide range of pattern recognition problems; 
therefore, the study to how to properly apply LPP to the SSS problem is very signifi-
cant. But to our best knowledge, almost no researcher has worked for this and no 
satisfactory approach is proposed. It seems that existing LPP-based image recognition 
applications are usually interested in avoiding the SSS problem rather than finding a 
good solution to this problem. For example, most of face recognition applications of 
LPP firstly reduce the size of the face image and then implement the LPP algorithm 
based on the resized images. Theoretically, to make the LPP algorithm be workable, 
the dimension of the one-dimensional vector of the resized image should be smaller 
than the number of the training samples. Consequently, in order to make the dimen-
sion of the image not be larger than the sample number to avoid the SSS problem, the 
original image usually should be resized into a quite low size. Therefore, the process 
of reducing the size of the face image will case a large quantity of image information 
loss. This is disadvantageous for recognition to obtain a high accuracy. 

The second difficulty of conventional LPP in the SSS problem is that the minimum 
eigenvalue solution seems not to be the genuine optimal solution for the purpose of 
locality preserving projection. The reason is as follows. According to the theory of 
eigenvalue, if a real symmetric matrix is not full rank, it has zero eigenvalues and the 
number of zero eigenvalues is the same as the result of its dimension subtracted by the 
rank.  As a result, in the SSS problem, even if the eigenequation can be numerically 
solved by employing the numerical analysis approach, there will be a large number of 
zero eigenvalues. Conventional LPP will take as transforming axes the eigenvectors 
corresponding to the zero eigenvalues. Consequently, after conventional LPP trans-
forms samples into new representations using these transforming axes, a sample sta-
tistically will have the same representation as its ‘neighbors’, as demonstrated in the 
context below. Indeed, in this case, even if the ‘neighboring’ samples are from differ-
ent same classes, conventional LPP will still produce the same representation for 
them, which is harmful for the classification procedure.  

In this paper, we propose a new solution scheme for LPP. The new solution 
scheme does not suffer from the same difficulties as conventional LPP. Moreover, the 
new solution scheme appears to be subject to the motivation of locality preserving 
projection and has clear justification. The remainder of the paper is organized as fol-
lows. In Section 2 we introduce conventional LPP and its difficulties in the SSS prob-
lem. In Section 3 we present our LPP solution scheme and show its advantages. In 
Section 4 we describe the experimental results. Finally we offer our conclusion in 
Section 5. 
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2   Algorithm and Analysis of Unsupervised LPP 

LPP was proposed to transform samples into a new space by use a linear transform 
and to make close samples from the original space be still close in the new space. 
According to the objective function of LPP, its optimal transforming axis should be 
the minimum eigenvalue solution z of the following eigenequation:  

zzXLXXDX TT λ=−1)(  (1) 

where WDL −= , X  stands for the matrix consisting of n  training samples 

nxxx ...21 i.e. ]...[ 21 nxxxX = . D is defined as 

∑=
jii ij
wD . Note that D  is a dialog matrix and W  is a symmetric matrix and the 

element 
ij

w  of W is defined as follows: if jx  (or ix ) is one of k  neighbors of  ix  

(or jx ), then ）||||（exp 2 txxw jiij
−−= ; otherwise, 0=

ij
w . Both L  and D  

are positive semi-definitive matrices. For simplicity of presentation, hereafter we 

define that TXDXD =1 and TXLXL =1 . 

We call the eigenvector corresponding to the minimum eigenvalue of (1) conven-
tional LPP solution and call the solving scheme conventional LPP. For real-world 
applications, conventional LPP usually firstly sorts the eigenvectors in increasing 
order of the corresponding eigenvalues and takes the first number of eigenvectors as 
transforming axes to implement the LPP transform. The dimension of the transform 
result of the sample is same as the number of the used transforming axes.  

Conventional LPP may suffer from the following problem: in the case of the so-
called SSS problem where the dimension of the sample is larger than the number of 
the samples, the eigenequation (1) cannot be directly solved since the matrix D  is 

usually singular. Indeed, it is clear that the rank of 1D  must not be larger than the 

number of the samples. Consequently, if the dimension of the sample vector is larger 
than the number of the samples, (1) cannot be solved directly. On the other hand, if 
one modifies Eq. (1) into the form following form: 

zzLID λμ =+ −
1

1
1 )(  (2) 

where μ  is a small positive constant, conventional LPP solution can be directly 
worked out by solving (2). In practice, a similar procedure to solve singular ei-
genequation has been widely used in numerical computation [17], [18]. However, 
another problem arises in the above procedure for solving LPP. It is when the ob-
tained minimum eigenvalue solution serves as LPP transforming axes of the SSS 
problem, the transform result will have poor data representation. This is because in 
the case of the SSS problem, there are a number of zero eigenvalues and conventional 
LPP will take as transforming axes the eigenvectors corresponding to zero eigenval-
ues of the eigenequation. Consequently, as shown in the following theorem, different 
samples may produce the same transform result. 
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Theorem 1. In the case where the minimum eigenvalue of the eigenequation is zero, 
after conventional LPP transforms samples into new representations by using the 
eigenvectors corresponding to the minimum eigenvalues as transforming axes, a sam-
ple will statistically have the same representation as its ‘neighbors’.  

Proof. Based on (2), we have  zIDzzLz TT )( 11 μλ += . If (2) has zero eigenvalues 

and 0z  is the eigenvector corresponding to a zero eigenvalue, then we can ob-

tain 0010 =zLzT . We know that zLzwyy T

ij ijji 1
2)(

2

1 =∑ − [4]. As a result, if the 

eigenvector corresponding to a zero eigenvalue is taken as the transforming axis, the 
transform result will statistically satisfy the following condition 

0)(
2

1 2 =∑ −
ij ijji

wyy , which implies that in the transform space the ‘neighbor-

ing’ samples must have the same representation. Indeed, because 1
1

1 )( LID −+ μ  is 

positive semi-definitive, no negative eigenvalue exists and the minimum eigenvalue is 
of course zero. Theorem 1 shows that the conventional LPP solution is not quite sub-
ject to the purpose of local structure preservation, which requires that the transform 
results of ‘neighbor samples’ be also close rather than the same. Another drawback of 
conventional LPP is that the ‘neighbor samples’ from different same classes also 
statistically have the same representation in the transform space. We call this problem 
the presentation confusion problem, because it is disadvantageous for pattern classifi-
cation tasks.  

3   A New LPP Solution Scheme 

3.1   Formal Description of the New Solution Scheme 

In this subsection, we present a new LPP solution scheme that does not suffer from 

the same difficulties as conventional LPP. Suppose that rααα ,...,, 21  are the eigen-

vectors corresponding to positive eigenvalues of 1D  and Nrr ααα ,...,, 21 ++  are the 

eigenvectors corresponding to the zero eigenvalues. It is easy to prove that valid LPP 

solution should be from the range space of 1D . Therefore, the new solution scheme is 

designed as follows. We first define that ]...[ 21 rR ααα= . Using R , we re-

spectively transform 1D  and 1L  into the following matrices:  RDRD T
1=

−
, 

RLRL T
1=

−
. We construct the eigenequation

−−−−
= zDzL λ (3) Since 

−
D  is of full 

rank, we can directly solve this equation. Moreover, according to experimental re-

sults, the rank of
−
L  is usually close to that of 

−
D . As a result, (3) almost has no zero 

eigenvalue. Therefore, the minimum eigenvalue solution of (3) usually transforms 
close samples into close rather than the same presentation in the transform space. This 
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means that the new solution scheme is more subject to the goal of LPP than conven-

tional LPP. Let rβββ ,...,, 21 denote the eigenvectors corresponding to increasing 

eigenvalues rλλλ ,...,, 21 of Eq.(3). If the sample is required to be transformed into 

an m -dimensional space, we should select mβββ ,...,, 21  as the m  transforming 

axes of LPP.  

3.2   Transform Procedure  

We summarize the transform procedure associated with the new LPP solution scheme 

as follows.  Using the matrix R , we first produce Rxx T=1  for a sample x . Then 

we transform 1x  into y , where Η= 1xy , ]...[ 21 mβββ=Η .                                              

4   Experimental Design and Results 

In this section, we test the new solution scheme (NSS) and the conventional LPP 
solution. The experiment is performed on the ORL database (http://www.cam-
orl.co.uk). In this experiment the first five face images of all the subjects are used as 
training samples, and the corresponding remaining images are regarded as test sam-
ples. Conventional LPP is implemented using three schemes. The first scheme (FS) 
takes the minimum eigenvalue solutions of (2) as the LPP solution.  The second 
scheme (SS) takes nonzero minimum eigenvalue solutions of (2) as the LPP solution. 
The third scheme (TS) first resizes each image and then solves Eq. (1) as previous 

literatures did. To obtain non-singular 1D and make Eq. (1) be directly solvable, we 

reduce the size of each image to 7 by 23 by down-sampling [19]. Fig. 1 shows that 
NSS obtains a low classification error rate with the minimum being 17.5%, whereas 
the three schemes of conventional LPP have higher error rates. This clearly demon-
strates that our solution to unsupervised LPP outperforms the conventional LPP solu-
tion. The reason why FS performs badly is that in the SSS problem there are a number 
of zero eigenvalue serving as the minimum eigenvalues and consequently 
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Fig. 1. Classification error rates of NSS, FS, SS and TS. The parameter k  in the weight matrix 

W  is set to 1=k . 
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the transform results of neighboring samples are the same even if they belong to dif-
ferent classes. This prevents the classification procedure from obtaining a high accu-
racy. Though SS and TS almost do not suffer from the zero-eigenvalue problem and 
outperform FS, their performances are still unsatisfactory. The following are the rea-
sons. In SS, the minimum eigenvalues are quite small so that the transform results of 
two neighboring samples will be too close even if they are from different classes. 
Consequently, in SS weak ‘presentation confusion’ problem also occurs. For TS, the 
reason why it also does not obtain good result is that resizing images causes too much 
image information loss. 

5   Conclusion 

Solid theoretical analysis presented in this paper shows that the proposed LPP solu-
tion scheme is quite suitable for the SSS problem, because it does not suffer from the 
difficulties of conventional LPP such as the matrix singularity problem and the pres-
entation confusion problem. The proposed scheme produces a well defined ei-
genequation that is directly solvable. Moreover, the obtained solution is more subject 
to the essence of locality preserving projection. Experimental results sufficiently show 
the validness and effectiveness of the solution proposed in this paper. 
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