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Abstract. Various forms of additive modeling techniques have been
popularly used in many pattern recognition and machine learning re-
lated applications. The efficiency of any additive modeling technique
relies significantly on the choice of the weak learner and the form of
the loss function. In this paper, we propose a novel scale-space kernel
based approach for additive modeling. Our method applies a few in-
sights from the well-studied scale-space theory for choosing the optimal
learners during different iterations of the boosting algorithms, which are
simple yet powerful additive modeling methods. For each iteration of the
additive modeling, weak learners that can best fit the current resolution
of the data are chosen and then increase the resolution systematically.
We demonstrate the results of the proposed framework on both syn-
thetic and real datasets taken from the UCI machine learning repository.
Though demonstrated specifically in the context of boosting algorithms,
our approach is generic enough to be accommodated in general additive
modeling techniques. Similarities and distinctions of the proposed algo-
rithm with the popularly used radial basis function networks and wavelet
decomposition method are also discussed.

Keywords: additive modeling, boosting, weak learner, wavelet decom-
position, scale-space theory.

1 Introduction

In statistical pattern recognition, additive modeling methods have been proven
to be very effective for not only improving the classification accuracies but also in
reducing the bias and variance of the estimated classifier. We choose to demon-
strate our framework using ‘boosting’ methods, which is a standard additive
modeling algorithm popular in pattern recognition applications. In spite of its
great success, boosting algorithms still suffer from a few open-ended issues such
as the choice of the parameters for the weak learner. In this paper, we propose
a novel scale-space based scheme for choosing optimal weak learners at multi-
ple resolutions during the iterations in boosting or generic additive modeling.
The proposed framework can model any arbitrary function using the boosting
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methodology at different resolutions of the data. In the scale-space based ap-
proach to statistical additive modeling, the weak learners are determined by
analyzing the data at different resolutions. Our algorithm provides the flexibil-
ity of choosing the weak learners dynamically which will improve the modeling
performance compared to using the static learners. For every learner in the addi-
tive model, the resolution is either maintained or doubled and a weak learner is
modeled for fitting the data. To begin with, complete input data is considered for
fitting a Gaussian model. As the iterations progress, the number of data points
to be considered for fitting is reduced and a Gaussian model is fit to the data
for every boosting iteration. We obtain an optimal Gaussian model that can fit
the given number of data points at that particular resolution of interest in that
iteration.

The scale-space concept allows for effective modeling of the dataset at any
given resolution [6]. Scale-space based techniques have also been widely used for
effective clustering [5]. In terms of analyzing a dataset at different resolutions, our
approach closely resembles wavelet decomposition techniques which are effective
tools in the field of multi-resolution signal analysis [4]. The main contributions
of our work is: Multi-resolution additive modeling by fitting the data using the
concepts of scale-space theory. This is an extended version of our previous work
on scale-space based regression [7]. Though our method can be potentially ap-
plied with any base (or weak) learner, we chose to have Gaussian model because
of its nice theoretical properties in the scale-space framework [8]. The rest of the
paper is organized as follows: Section [2 shows the problem formulation in detail
and discusses the concepts necessary to comprehend our algorithm. Section [3]
describes our scale-space based additive modeling framework. Section Ml gives
the experimental results of our algorithm on both synthetic and real datasets.
Finally, Section [l concludes our discussion with future research directions.

2 Preliminaries

This section gives details on boosting algorithm, introduces scale-space kernels
and wavelet decomposition methods.

2.1 Problem Formulation

Let us consider N i.i.d. training samples D = (X,))) consisting of samples
(X,Y) = (z1,11), (x2,92), -, (v, yn) where X € RV*4 and Y € RV*!. For the
case of binary classification problems, we have y; € {—1,+1} and for regression
problems, y; takes any arbitrary real value. In other words, the univariate response
Y is continuous for regression problems and discrete for classification problems.
The goal of a regression problem is to obtain the function F(X) that can approx-
imate ). We chose to demonstrate the power of scale-space kernels in the context
of Logitboost algorithm because of its popularity and the power of additive mod-
eling. Let us denote p(z) is an observation for Ply = 1|X = z]. Algorithm I gives
generic Logitboost algorithm to solve two class classification problem.
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Algorithm 1. Logitboost Algorithm

Initialize F©)(z;) = 0 and probabilities p® (z;) = é, fori=1,2,..,.N
fort=1toT do
1. Compute response and weights for all datapoints

ol =i (1)

@ i — " (@)
2 =
7 w(t)

2. Fit a weak learner f) to the training data using weights w;.
®) = grgmin ne (z@ — fz: )2
f gmj ; iz — )
3. Update the Classifier and the probabilities
FO(;) = FO(x) + ;f(t)(xi)

P (@) = (1+ en(—2F (@)

end for
Output C(X) = sign(F® (z;)).

2.2 Scale-Space Kernels

In scale-space theory, mapping p(z) is embedded into a continuous family
P(z,0). Our method starts with an approximation of the entire dataset with
Gaussian kernel of ¢ = co. As the resolution (or scale) increases, the sigma
value is reduced and eventually converges to zero. In our case, the highest fre-
quency (or resolution) corresponds to fitting every datapoint with a Gaussian
kernel. Several practical considerations were made to make the implementation
more efficient. More study on the scale-space kernels was made in the image
processing literature and not much focus is given by the pattern recognition
community.

Gaussian kernels are a simple and trivial choice for scale-space kernels which
follow all the scale-space axioms [I]. The main reasons for choosing Gaussian
kernels in the context of additive modeling as weak learners are that they are
powerful universal approximators and they allow systematic hierarchical mod-
eling. We choose to reduce the width by halves using the concepts of wavelet
decomposition methods which were again well studied concepts in the context of
handling image operations efficiently. Be it a classification, regression or image
operation, one can consider in a generic way by treating them as a signal and
the processing of this signal has to be done efficiently in order to obtain some
interestingness of the signal. In this way, one can provide a unification framework
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(a) Wavelet Decomposition (b) Scale-space Boosting

Fig. 1. Similarities and differences between wavelet decomposition methods and scale-
space boosting. (a) Wavelet techniques decompose the signal into approximations and
details. (b) Scale-space based additive modeling decomposes the function by weak
learners and the corresponding residuals.

that combines several well-studied concepts in a unique manner to handle some
key challenges efficiently.

2.3 Wavelet Decomposition

In signal processing applications, wavelet transformation constructs a family
of hierarchically organized decompositions. At a given level j, the j-level ap-
proximation is called A; and a deviation signal called the j-level detail D;. A;
corresponds to the approximation of the original signal corresponding to the low
frequencies of Ag, whereas the detail Dy corresponds to the high frequency devi-
ation. The selection of a suitable level for the hierarchy will depend on the user
needs and is usually chosen based on a desired low-pass cutoff frequency. Fig. [l
shows a comparison of wavelet decomposition with scale-space additive model-
ing. Successive approximations A;, As and Az with lower resolution of a given
signal are built. The original signal .S can be built by summing up all the details
with the approximation at the highest frequencies. i.e. S = As+ D3+ Dy + Dy.
Our scale-space boosting algorithm works in a similar manner. The frequencies in
the wavelet domain correspond to resolutions in our scale-space based algorithm.
Basically, the low frequency components in wavelet decomposition correspond
to fitting a Gaussian for the entire dataset and the high frequency components
correspond to fitting fewer datapoints. The original target function ()) is de-
composed using weak learners(f) and residuals(r). The final model at any given
resolution is obtained by a weighted linear combination of the weak learners
obtained so far. It should be noted the residual indicates the difference between
the target function and the final learner (F') at that particular resolution. i.e.
r=|Y—F|
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3 Scale-Space Based Additive Modeling

Algorithm 2l describes our scale-space based approach for additive modeling. We
demonstrate our approach on Logitboost algorithm, though our algorithm can
be used to any additive modeling framework. The initial model is set to null or
the mean value of the target values. Initially, the number of datapoints to be
modeled will be the entire dataset. The feature values are first sorted (column-
wise) independently which will facilitate the scale-space kernel based modeling
that will be performed later on. As the iterations progress, the number of data-
points considered for fitting the weak regressor is retained or halved depending
on the error of the model. For every iteration, the residual r is set to the abso-
lute difference between the target value ())) and the final learner (F'). The best
multivariate Gaussian model will be fitted to this data at a given resolution.
The details of the procedure bestgaussian fit which obtains the best Gaussian
regressor at a particular resolution of the data is described later. The best Gaus-
sian model corresponding to the resolution is obtained at every iteration and the
model with the least error is chosen for that particular iteration.

Algorithm 2. Scale-space based Boosting

Input: Data (D), No. of samples (N), No. of iterations (7).
Output: Final Regressor (F)
Algorithm:
sstn=N, F=0
fori=1:ddo
[X, idx(:,4)] =sort(X(:,4))
end for
fort=1:7T do
r=Y-F R
[fo, erro] = bestgauss fit(X,r, N,d,n,idz)
[f1, erri] = bestgaussfit(é%, r,N,d,n/2,idx)
if errg < erry then
F=F+fo
else
F=F+ f1
n=n/2
end if
end for
return F'

Our algorithm obtains the weak regressors and models the data in a more
systematic hierarchical manner. Most importantly, the increase in the resolution
is monotonically non-decreasing, i.e. the resolution either remains the same or
increased. For every iteration, the best weak Gaussian regressor is fit to the
data based on a single feature value at a particular resolution. The basic idea of
bestgaussian fit is to slide a Gaussian window across all the datapoints corre-
sponding to each feature at a given resolution. Depending on the given resolution
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residuals (y-F)

1 Predictor (x) N

Fig. 2. Demonstration of the sliding Gaussian kernel. There are N datapoints and each
has its corresponding response as a residual (y-F). A Gaussian kernel of resolution JZ
is slided across the entire range of data points to find the optimal fit. The optimal fit is
obtained by minimizing the L2 norm between the residual and the weighted Gaussian
fit. The dotted Gaussians represent the sliding windows while the dashed Gaussian

represent the active window.

(indicated by n datapoints), a Gaussian kernel containing n datapoints is slid
across all the data points and the location where the minimal residual error is
obtained. The concept of sliding kernels and active window is clearly illustrated
in Fig. @l Within each active window, the weight of individual data point is
computed based on the normalized regression value.

The error is computed between the weak learner and the target regression
values. It should be noted that the error is not computed using the given
window alone. In other words, Gaussian kernel that will fit the data is com-
puted based on the parameters computed within the window and the final
error is computed based on the deviation in the entire dataset (not just the
active window). This is a nontrivial aspect in our algorithm and failing to
perform this might lead to erroneous results that might fit the data locally.
This is due to the fact that every iteration, the result will be a local fit to
the data and each of this weak regressor might not perform well globally. Fi-
nally, the best weak regressor across each feature that has the minimum error is
returned.

The resolution is increased at a logarithmic scale. i.e. every time the resolution
is doubled or the number of datapoints considered to fit a Gaussian is halved.
In fact, we can use any other heuristic to change the resolution more efficiently.
Experimental results indicated that this change of resolution is optimal and also
this logarithmic change of resolution has nice theoretical properties (they mimic
wavelet decomposition methods).
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3.1 Relation to Other Models

Our method appears to have close connection to popularly used Radial Basis
Function (RBF) Networks [2]. The RBF networks rely on the fact that any
continuous function can be approximated by a sum of appropriately chosen
Gaussian functions. These networks are one form of neural networks which have
a static Gaussian function for the hidden layer processing elements to attain
non-linearity. The RBF networks compute the input to output map using lo-
cal Gaussian approximators. During the training phase the centers and width
of the Gaussians in the hidden units along with the weights of the connections
is determined. In spite of their success, the RBF networks suffer from some of
the popular drawbacks of neural networks like fixing the topology, including the
number of hidden nodes and the active connections between the layers. Our al-
gorithm contains very minimal user-defined parameters and doesn’t suffer from
these problems. It gives a systematic approach to automatically model the re-
gression function as a linear combination of Gaussian kernels. Being complex
models, the time taken for the RBF networks during the training and testing
phases are very high compared to our boosting algorithm. Being powerful local
approximators, RBF networks perform poorly on noisy data since the coeffi-
cients are adjusted so as to accommodate local data and these networks do not
average out noise over the entire data space. Using our approach, we avoid the
local approach to regression of RBF networks and at the same time benefit from
other nice properties of these networks.

4 Experimental Results

All programs were written in MATLAB 7.0 and run on pentium IV 2.8 GHz
machines. Experiments were performed on both synthetic and real datasets.

4.1 Synthetic Datasets

To demonstrate the robustness of the proposed scale-space boosting algorithm,
we performed experiments on two synthetic regression datasets. Regression
datasets were chosen to demonstrate the capability of our algorithm to obtain
smooth functions. Using, boost stumps or trees, one might be able to obtain
more accurate models in terms of metrics like mean square error. But, this will
come at a cost of obtaining highly discontinuous models which are not desirable.
Hence, we demonstrated the behaviour of algorithm on two synthetic sine wave
datasets: 1) noise-free sine wave and 2) the sine wave with Gaussian noise. For
the first dataset, 241 samples were generated from a sine wave (with z from 0
to 12 uniformly and y = sin(x)). For the second dataset, Gaussian random noise
with zero mean and 0.2 standard deviation is overlaid onto all the samples of
the first dataset. Figure B depicts the experiment results using the two synthetic
sine wave datasets: 1) noise-free sine wave in the first row and 2) sine wave with
Gaussian noise in the second row. To understand the difference between the
original and the final data, we overlaid the noise-free sine wave in the second
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Fig. 3. Experimental results along with the number of iterations using two synthetic
sinewave datasets. The first row is the sine wave without noise and the second row is
the sine wave with Gaussian noise with =0 and ¢=0.2. (N(0,0.2%)). The red color
and blue color represent the original data and our algorithm results respectively. The
green color in the second row represents the original sine wave without the Gaussian
noise.

row in order to compare the system output results not only with the given noisy
data but also with the original noise-free data.

4.2 Real-World Datasets

Different real-world datasets were chosen from the UCI machine learning repos-
itory [3] to demonstrate our scale-space based modeling technique. Since, the
basic algorithm is for binary classification, we demonstrate the power of using
scale-space kernels on datasets with 2 classes. One has to realize that the main
claim of the paper is not about producing the best classification or regression
algorithm. Rather, this paper tries to give a systematic understanding of dif-
ferent kinds of kernels that can be used in the additive modeling techniques.
To the best of our knowledge, this is the first effort to combine the concepts
of scale-space theory in the context of additive modeling. Additive modeling
with smooth and continuous kernels will result in smooth functions for classifier
boundary and regression functions. Hence, we compare the scale-space kernels
with other static and dynamic kernels. Dynamic kernel (or random kernel) fits
a kernel of random width during the boosting process. Static kernels will have
static widths that do not change during the boosting process. We used kernel
width of n/8 for demonstrating the performance of static kernels.

The scale-space kernel doesn’t suffer from the generalization problem as
clearly illustrated by the results on the test data shown in Table[Il Experiments
were conducted using five-fold cross validation method and the test results are
reported for the algorithm using various kernels. Mean squared error is reported
between both training and test cases. Scale-space kernels are competitive with
the best possible kernels and can be generically be used for any dataset. Since,
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Table 1. Performance of scale-space kernels with other kernels on different real-world
datasets. Test error along with the standard deviation using five-fold cross validation
is reported.

Dataset Cancer Tonosphere Sonar Bupa
static kernel -n/8 0.244+ 0.0869 0.4118+ 0.1024 0.9148+ 0.1267 0.9453+ 0.0607
Dynamic kernel 0.18984 0.0338 0.3553 + 0.063 0.7543+ 0.0885 0.869 +0.053
Scale-space kernel 0.1895 + 0.043 0.3371+ 0.092 0.71254 0.1433 0.8962 + 0.1291

obtaining the width of the kernel during the additive modeling process can be a
challenging task, the use of scale-space kernels can resolve the problem by using
adaptive step-sizes. The fact that the scale-space kernels converge much faster
than static kernels make them much suitable for additive modeling algorithms.
Also, one can see that the results of the scale-space kernels are fairly robust
compared to other kernels.

5 Conclusions and Future Research

Recently, additive modeling techniques have received a great attention from
several researchers working in a wide variety of applications in science and en-
gineering. In this paper, we proposed a novel additive modeling framework that
uses scale-space theory to obtain the optimal weak learner at every iteration.
Advantages of our method compared to other popular models proposed in the
literature are clearly demonstrated. As a continuation of this work, we would like
to explore the idea of using other scale-space kernels (different from Gaussian) as
our weak learners. Optimal choice of the n value to be chosen adaptively during
each boosting iteration must be investigated more thoroughly depending on in-
dividual dataset to be modeled. More theoretical insights related to combination
of additive models and scale-space kernels are yet to be investigated.

References

1. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the gaussian
kernel for scale-space filtering. IEEE Transactions on Pattern Analysis and Machine
Intelligence 8(1), 26-33 (1986)

2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

3. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University
of California, Irvine, Dept. of Information and Computer Sciences (1998),
http://www.ics.uci.edu/~mlearn/MLRepository.html

4. Graps, A.L.: An introduction to wavelets. IEEE Computational Sciences and Engi-
neering 2(2), 50-61 (1995)

5. Leung, Y., Zhang, J., Xu, Z.: Clustering by scale-space filtering. IEEE Transactions
on Pattern Analysis Machine Intelligence 22(12), 1396-1410 (2000)


http://www.ics.uci.edu/~mlearn/MLRepository.html

Scale-Space Kernels for Additive Modeling 723

6. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Publish-
ers, Dordrecht (1994)

7. Park, J.-H., Reddy, C.K.: Scale-space based boosting for weak regressors. In: Kok,
J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni¢, D., Skowron, A.
(eds.) ECML 2007. LNCS, vol. 4701, pp. 666-673. Springer, Heidelberg (2007)

8. Sporring, J., Nielsen, M., Florack, L., Johansen, P.: Gaussian Scale-Space Theory.
Kluwer Academic Publishers, Dordrecht (1997)



	Scale-Space Kernels for Additive Modeling
	Introduction
	Preliminaries
	Problem Formulation
	Scale-Space Kernels
	Wavelet Decomposition

	Scale-Space Based Additive Modeling
	Relation to Other Models

	Experimental Results
	Synthetic Datasets
	Real-World Datasets

	Conclusions and Future Research
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




