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Abstract. Chaotic Pattern Recognition (PR) is a relatively new sub-
field of PR in which a system, which demonstrates chaotic behavior under
normal conditions, resonates when it is presented with a pattern that it
is trained with. The Adachi Neural Network (AdNN) is a classic neu-
ral structure which has been proven to demonstrate the phenomenon of
Associative Memory (AM). In their pioneering paper [1,2], Adachi and
his co-authors showed that the AdNN also emanates periodic outputs
on being exposed to trained patterns. This was later utilized by Calitoiu
et al [4,5] to design systems which possibly possessed PR capabilities.
In this paper, we show that the previously reported properties of the
AdNN do not adequately describe the dynamics of the system. Rather,
although it possesses far more powerful PR and AM properties than was
earlier known, it goes through a spectrum of characteristics as one of its
crucial parameters, α, changes. As α increases, the AdNN which is first
an AM become quasi-chaotic1. The system is then distinguished by two
phases which really do not have clear boundaries of demarcation. In the
former of these phases it is quasi-chaotic for some patterns and periodic
for others. In the latter of these, it exhibits properties that have been un-
known (or rather, unreported) till now, namely, a PR capability (which
even recognizes masked or occluded patterns) in which the network res-
onates sympathetically for trained patterns while it is quasi-chaotic for
untrained patterns. Finally, the system becomes completely periodic. All
these results are, to the best of our knowledge, novel.
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1 Introduction

Although the field of PR has been extensively studied, the entire area of designing
and implementing Neural Networks (NNs) which are inherently chaotic, and
which simultaneously possess PR capabilities is relatively new2. As far as we
know, the pioneering papers in this regard are those due to Calitoiu and his co-
authors [4,5]. The aim of this paper is to demonstrate the fundamental properties
of the NN used in [4,5], the AdNN, (which was earlier proposed by Adachi and
his co-authors [1,2]). Quite simply, we shall show that the AdNN is an extremely
powerful and efficacious system, and that its properties that have been reported
in the literature are but a shadow of its true underlying capabilities. Indeed,
we shall demonstrate that the same NN can demonstrate the phenomena of
Associate Memory (AM), quasi-chaos, pattern recognition and periodicity for
different values of a certain parameter3.

An AM permits its user to specify part of a pattern, and to thereafter re-
trieve the values associated with that pattern. One of the limitations of most
ANN models of AM is the dependency on an external input. Once an output
pattern has been identified, the ANN remains in that state until the arrival of a
new external input. This is in contrast to real biological neural networks which
exhibit sequential memory characteristics. To be more specific, once a pattern is
recalled from a memory location, the brain is not “stuck” to it, it is also capable
of recalling other associated memory patterns without being prompted by any
additional external inputs. This ability to “jump” from one memory state to
another in the absence of a stimulus is one of the hallmarks of the brain, and
this is one phenomenon that a chaotic PR system has to emulate.

The evidence that indicates the possible relevance of chaos to brain functions
was first obtained by Freeman [7,13] through his clinical work on the large-scale
collective behavior of neurons in the perception of olfactory stimuli. Based on his
experiments, he conjectured that the quiescent state of the brain is chaos, while
during perception, when attention is focused on any sensory stimulus, the brain
activity becomes more periodic. The controlling of chaos gives rise to periodic
behavior, culminating in the identification of the sensory stimulus that has been
received. Thus, mimicing this identification on a neural network can lead to a
new model of PR. encounters one of the memorized patterns as an input to the
network, we want the network to resonate with that pattern, i.e., to generate
that pattern with a certain periodicity. Between two consecutive appearances of
the memorized pattern, the network can also be in an infinite number of states,
but in none of the memorized ones. greater detail in [4,5], where we also show
that in order to achieve recognition, one must decrease the level of chaos until a
periodic behavior is obtained.
2 The issue of how this sub-field of PR differs from the previously reported sub-fields

and the sub-fields of NNs [3,8,9,11] (including those capable of associative memory
and learning [6,12]), is described in [4,5,10].

3 It is also very interesting to note that the parameter of interest in this paper, namely
α, is one that has not been examined in the literature when it concerns any of these
phenomena.
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One of the primary differences between our results and the results reported
earlier for the AdNN (and its variants) [1,2,4,5] is the demonstration that it is
powerful enough to accomplish PR even if the pattern is masked or occluded.
This phenomenon, which is almost “mystical” and inexplicable, has been both
unknown and unreported. The second major difference between our results and
the results reported earlier for the AdNN (and its variants) [1,2,4,5] is the concept
of what we shall refer to as quasi-chaotic behavior, explained presently. The
final difference of importance is that we show that all of the above-mentioned
properties are a consequence of varying the parameter α and not the parameters
kr and kf , as was previously anticipated.

1.1 Rationale and Contributions of the Paper

The entire field of Chaotic PR is in its infancy, and every step into the unknown
leads to fascinating results. In particular, the papers of Adachi and his co-authors
[1,2] first presented the AdNN with the conjecture that it demonstrated chaotic
phenomena. Later, in [4,5], the authors showed by an analysis of the Lyapunov
exponents, that the AdNN was not chaotic. But this was by virtue of only
considering the coefficients, kr and kf . We emphasize here that no previous
result delved into the importance of the parameter, α, the refractory scaling
parameter4.

The initial rationale for investigating the AdNN was to procure a clearer
understanding of the role that α played. It turns out that unlike the coefficients
kr and kf , α seems to have a more pronouncing effect on the chaotic, periodic
and PR capabilities of the NN. Thus, by considering the range of values that
α can assume, we encounter a fascinating spectrum of behavioral properties,
which were previously unreported. Indeed, although the reason for the “peculiar”
behavior is unknown, our experimental results (see Section 3.2) illustrate that
the AdNN can truly be used to develop chaotic PR systems. Indeed, (a) We
have shown that the chaotic behavior of the AdNN is not merely constrained
by the coefficients kr and kf ; (b) We have clearly demonstrated that unlike the
parameters kr and kf , the refractory scaling parameter, α, plays a significant
role in determining the phenomenon displayed by the NN. (c) As opposed to
the previously claimed results, we show that the AdNN is not chaotic. Rather,
it exhibits a behavior which is quasi-chaotic, implying that it is chaotic if the
output is merely compared to the input, but if the output is examined as a
stream in its own right, it is periodic all the same. Such a behavior was previously
unknown; (d) We have shown that the same network, the AdNN can be made to
demonstrate a wide spectrum of phenomena – Associative Memory, periodicity,
pattern recognition and quasi-chaos. This fact was previously unknown too; and
(e) Finally, and most importantly, we have shown that there is a “range” in the

4 Adachi and his co-authors [1,2] set the value for α as 10 in their experiments, but
this seemed rather arbitrary. No explanation was given as to how and why this
value of α was used. The same comment can be made about the results of Calitoiu
et al. [4,5].
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value of the parameter α, in which the system is quasi-chaotic for untrained
patterns, but periodic for trained patterns or their noisy incarnations.

We conclude this sub-section by observing that we are not aware of any com-
parable results in the field of NNs and CNNs.

2 The Adachi Neural Network Model and Its Variants

The AdNN5 is a network of neurons with weights associated with the edges, a
well-defined Present-State/Next-State function, and a well-defined State/Output
function. It is composed of N neurons (Adachi set N = 100), topologically
arranged as a completely connected graph, i.e, each neuron communicates with
every other neuron, including itself. It is described by means of the following
equations relating the two internal states ηi(t) and ξi(t), i = 1...N , and the
output xi(t) as:

xi(t + 1) = f(ηi(t + 1) + ξi(t + 1)), (1)

ηi(t + 1) = kfηi(t) +
N∑

j=1

wijxj(t), (2)

ξi(t + 1) = krξi(t) − αxi(t) + ai. (3)

In the above, xi(t) is the output of the neuron i which has an analog value
in [0,1] at the discrete time t. The internal states of the neuron i are ηi(t)
and ξi(t), f(·) is the logistic function with the steepness parameter, ε, satisfying
f(y) = 1/(1+e−y/ε). kf and kr are the decay parameters for the feedback inputs
and the refractoriness, respectively. {wij} are the synaptic weights from the ith

constituent neuron to the jth constituent neuron, and ai denotes the temporally
constant external inputs to the ith neuron. From the perspective of this paper,
most importantly, α is the refractory scaling parameter, whose significance has,
to date, not been investigated.

While the network dynamics are described by Equations (2) and (3), the out-
puts of the neurons are obtained by Equation (1). The feedback interconnections
are determined according to the following symmetric auto-associative matrix of
the p stored patterns by:

wij =
1
p

p∑

s=1

(2xs
i − 1)(2xs

j − 1), (4)

where xs
i is the ith component of the sth stored pattern.

Calitoiu et al [5] proposed a model of CNNs which modifies the AdNN to
enhance its PR capabilities. This NN, referred to as the Modified AdNN (M-
AdNN), is actually also a Hopfield-like model, and manipulates the internal
5 This review is necessarily very brief in the interest of space. However, we mention

that the AdNN was initially modeled to serve as a dynamical Associative Memory.
More details of the AdNN are found in [1,2,4,5,10].
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structure and Present-State/Next-State equations of the original AdNN. Struc-
turally, it is also composed of N neurons, topologically arranged as a completely
connected graph. Again, each neuron i, i = 1...N , has internal states ηi(t) and
ξi(t), and an output xi(t). Calitoiu et al [5] presented a brief rationale for each
modification. The fundamental difference between the AdNN and the M-AdNN
in terms of their Present-State/Next-State equations is that the latter has only
a single global neuron (and its corresponding two global states) which is used
for the state updating criterion for all the neurons.

Calitoiu et al [4] later enhanced the M-AdNN to yield an even more interesting
NN, the Modified Blurring AdNN (Mb-AdNN). The latter was designed to solve
the inverse PR problem, namely that of understanding how a neural system,
which receives an exact pattern, can perceive it accurately in certain settings
and yet see it as “blurred” in other settings. The authors of [4] accomplish this
by forcing a set of neurons to have Present-State/Next-State functions which
are updated using their current values, while the corresponding functions for the
other neurons involve only a single global neuron as in the case of the M-AdNN.
As we will not be investigating the Mb-AdNN in any detail here, the details of
its design and analysis are omitted, but can be found in [4].

Since a detailed survey of the AdNN, the M-AdNN and the Mb-AdNN is not
possible here, in the interest of completeness and continuity, we mention that its
salient features are listed in [4,5,10]. However, we mention that the drawbacks of
the current schemes are its excessive computational burden, the long transient
phases, its imprecise PR capability, and the resonance for the untrained patterns.
These have been tested for the data sets used by [1,2] and [4,5] given in Figure 1.
Graphs demonstrating this are given in [10], and additional experimental results
which clarify this phenomenon (which was earlier unreported) are listed in Table
1 for these data sets. We attempt to rectify these disadvantages here.

Table 1. Periodicities for trained and untrained patterns for the data set used by
Adachi et al (the first two rows), and the digital data set used by Calitoiu et al (the
last two rows). The entries of particular interest are in a bold font.

Pattern 1 2 3 4 With Noise Random
Periodicity 20 20 39 39 39 39

Pattern 1 2 3 4 5 6 7 8 9 0 With Noise Random
Periodicity 7,7,8 26 26 27 26 27 26 26 26 26 26 25

3 New Periodicity, Quasi-Chaotic and PR Properties of
the AdNN

The goal of the field of Chaotic PR systems can be vocalized as follows: To be
more specific, let us suppose that we want the chaotic PR system to recognize
patterns Pi and Pj . To accomplish this, we train the system using both the
patterns by a mere straightforward computation. This training phase assigns
the weights between the neurons of the CNN, which effectively memorizes the
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(a) (b)

Fig. 1. (a) is the set of patterns used in Adachi et al’s and our experiments. The first
four patterns constitute the set used by Adachi et al. Pattern5 is a noisy version of
Pattern1 with 15% noise. Pattern6 is a randomly generated pattern. (b) is the set of
patterns used in Calitoiu et al’s and our experiments. The first ten patterns constitute
the set used by Calitoiu et al. Pattern11 is a noisy version of Pattern6 with 10% noise.
Pattern12 is a randomly generated pattern, and is the reverse of Pattern6 in (a).

training patterns. Subsequently, on testing, if any pattern other than Pi or Pj

is presented, the CNN must continue to be chaotic since it is not trained to
recognize such a pattern. However, if Pi or Pj (or a pattern resembling either of
them) is presented, the CNN must switch from being chaotic to being periodic.
Note that as opposed to traditional PR systems, the output is not a single value.
It is a sequence of values, which is chaotic (i.e., displays no periodicity) unless
one of the trained patterns is presented.

We now present a sequence of results concerning the AdNN which were earlier
unreported.

3.1 Periodicity Analysis Using Quasi-energy Functions

Although the AdNN was initially thought to be chaotic, Calitoiu et al [4] showed,
by a Lyapunov analysis, that this was not the case. Rather, we present below an
informal analysis for the observed periodicity.

As per the definition of Adachi et al [1], an alternate formulation for the
dynamic equations of the AdNN is given by:

xi(t + 1) = f(
N∑

j=1

wij

t∑

d=0

kd
fxj(t − d) − α

t∑

d=0

kd
rxi(t − d) + ai)

= f(
N∑

j=1

wij

t∑

d=0

kt−d
f xj(d) − α

t∑

d=0

kt−d
r xi(d) + ai). (5)

Based on the above, we argue that the AdNN can never get “absorbed” into
a fixed point. The details of the argument are rather lengthy and are omitted
due to space limitations (they can be found in [10]) but can be summarized as:

1. If any neuron tends to converge towards the value ‘0’ as a fixed point, it
can be seen from the above equations that the dynamics of the system forces
the output value of that neuron towards unity.

2. If any neuron tends to converge towards the value ‘1’ as a forces the output
value of that neuron towards ‘0’.
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Fig. 2. A plot of the quasi-energy function with the parameters α = 17, kf = 0.2, kr =
0.9, ε = 0.00015, and ai = 2. The reader should observe the convergence and periodicity
of the plot.

Since we have clearly argued that no neuron will be trapped at either fixed
point ‘0’ or ‘1’, the question which has to be answered is that of knowing whether
the system will be chaotic or periodic? Here, we believe that the critical param-
eter is the refractory parameter, α, in Equation (5), which completely describes
the quasi-energy function of the dynamical AdNN.

Unfortunately, at this juncture, a formal analysis is unavailable due to the
complexity of the overall network. Rather, we resort to an experimental analysis
which shows that the system’s behavior is periodic after a short transient phase,
and that α is crucial to the length of this transient phase. As α increases, we
observe that the transient phase becomes increasingly shorter. For example, if
we set α ≤ 15, the transient phase is about 21, 000. However, the length of this
phase reduces sharply to about 5, 300 when α = 16. Thereafter, as α is increased
(even incrementally, to α = 16.0001), the quasi-energy function converges even
faster, displaying a transient phase of only approximately 1, 400 iterations, which
further reduces to only about 120 iterations when α = 17. Indeed, the plots of the
quasi-energy function (see for example, Figure 2) demonstrates that the AdNN
is both convergent and periodic.

3.2 Quasi-Chaotic and PR Properties of the AdNN

We now report the PR properties of the AdNN. Although, in the ideal setting
we would have preferred the AdNN to be chaotic (when the value of α does not
lead to a periodic output), it turns out that, “unfortunately”, its output is not
really chaotic. Rather the AdNN demonstrates a phenomenon which we refer to
as being quasi-chaotic since it is neither completely chaotic nor simply periodic.
Indeed, this quasi-chaotic phenomenon implies that the system appears chaotic
if the output is merely compared to the input. But if, on the other hand, the
output is examined as a stream independently (i.e., by itself), it is periodic all
the same. This unexplained behavior was previously unknown.
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Table 2. The properties of the AdNN obtained for different values of α. The data set
used is the one used by Adachi et al (see Figure 1), and the values of the parameters
are kf = 0.2, kr = 0.9, and ε = 0.00015. The legend for the table is the following: AM
— Associative Memory; QC — Quasi-Chaotic; C* — Periodic for a short time and
then quasi-chaotic; P — Periodic. Observe the PR properties of the AdNN for α = 26.

P1 P2 P3 P4 P5 P6
α = 10 A A A A A A
α = 11 A A A A A A
α = 17 QC QC QC QC QC QC
α = 18 QC QC QC QC QC QC
α = 19 QC P QC QC QC QC
α = 25 C* C* C* C* C* C*
α = 26 P P P P P QC
α = 70 P P P P P P

Within this expanded view of perceiving things, we believe that it is still
possible to design, develop and implement chaotic PR systems6. First of all,
unlike the analysis done in [4,5] which concentrates on the Lyapunov analysis, it
turns out that the parameters kr and kf do not play a crucial role to determine
the overall phenomena – as was previously anticipated. Rather, it should be
emphasized that the parameter of interest to achieve this, namely α, is one that
has not been examined in the literature when it concerns a PR phenomena.

The highlights of the results obtained for the AdNN (for ai = 2) is tabulated
in Table 2. We summarize the results by stating that by increasing the value of
α, the AdNN demonstrates the following amazing results:

1. Associate Memory: When α = 10, the AdNN is merely an AM during its
long transient phase. It can retrieve all the trained patterns non-periodically
during its transient phase.

2. Periodic but neither AM nor PR: As α increases to 17, the AdNN
begins to display some interesting properties. Initially, for α = 17 or 18, the
AdNN reproduces unrecognized patterns as can be seen from the detailed
experimental figures included in [10] (omitted here in the interest of brevity).
Observe that none of the trained pattern will be retrieved since the Hamming
distance is never 0. Thus, amazingly, the AdNN is neither an AM nor a PR
system when α = 17!

3. Periodic and Quasi-Chaotic: If α = 19 or 20, the output is a repeated
version of unrecognized patterns for certain input patterns, while for other
patterns, the system possesses the capability of recognizing them. This can
also be observed from from the above-mentioned detailed experimental fig-
ures included in [10]. In this figure, the input is Pattern2, and the system
yields as output, the same pattern (Pattern2) with a periodicity of 7.

6 The detailed mechanics of such a system are, as yet, not fully explained. This is
currently being undertaken, and will be, hopefully, reported in a future work.
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Fig. 3. Visualization of the output obtained from time t=1 to t=400. The input for the
figure on the left is an untrained random pattern. The output yielded is neither chaotic
nor simply periodic because the input pattern is never repeated, although a completely
unknown pattern appears periodically at the output. This sequence of outputs given
by the figure on the right demonstrates that the AdNN is capable of recognizing the
input pattern correctly even if the percentage of noise is up to 90%.

4. Short-term Periodic and Quasi-Chaotic: If α = 21, 25, 29, 30 or 35,
the system has the ability of recalling the input patterns several times, and
subsequently these samples from its memory.

5. Pattern Recognition: The most interesting scenario, the one which does
yield PR, occurs when α = 26. In this case, the system’s output is periodic
(repeating the input) as long as the input is one of the trained patterns.
However, on the contrary, if the system is presented with untrained input
patterns, it will result in unrecognized quasi-chaotic output. This interesting
property can be seen from the figures in [10] and 3. The reader should observe
the importance of this result: This implies that unlike the earlier claim of
[4,5], the AdNN can be used to develop a chaotic PR system. Apart from the
case when α = 26, this powerful property is also exhibited at other values
of α such as 32, 38, 44, 49 and 61. Thus, it appears that part of the training
phase of a chaotic PR system would involve determining the value of α that
would lead such a behavior.

6. Purely Periodic: Finally, if α is increased to even larger values, for exam-
ple, α = 70, the output is a periodic version of the input independent of
what the input is.

7. Response to Weighted External Inputs: Another fascinating feature of
the AdNN is its behavior when external inputs are applied, that is, when
ai = 2 + 6xi. From our preliminary experimental results it appears as if, in
this case, the AdNN behaves like the Mb-AdNN [5].

8. Recognition of Inverted Patterns: Another property of the AdNN is
that it is even capable of recognizing completely inverted patterns. Indeed,
our experimental results demonstrate that the AdNN can recognize trained
patterns even if the input is almost completely inaccurate. Thus, if the
bit-wise percentage of noise is as high as 90% (implying that the input
is almost identical to a totally bit-wise inverted version of the original pat-
tern), the AdNN recognizes the input pattern accurately by a periodic and
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(a) (b)

Fig. 4. In the sequence of outputs on the left, (a), the input is a half-masked version
of Pattern2. At the output, the AdNN recognizes Pattern2 correctly, by presenting the
two halves in periodic consecutive outputs. Indeed, even if this masked pattern is garbled
with noise up to 30%, the AdNN continues to produce quasi-chaotic outputs, as seen in
the sequence of outputs on the right, (b). Again, the parameters are kf = 0.2, kr = 0.9,
and ε = 0.00015, with the crucial parameter, α being 26.

quasi-chaotic behavior. Detailed experiments demonstrating this property
also are found in [10], omitted here due to space limitations.

9. Recognition of Masked Patterns: Perhaps the most fascinating unre-
ported property of the AdNN is its ability to recognize masked or occluded
patterns. In this case, the system is trained with a set of training patterns.
On testing, however, the system is provided with a noisy version of one-half
of a trained pattern, while the other half is completely random. In this case
too, the network resonates sympathetically for trained patterns by present-
ing the two halves in periodic consecutive outputs7, while it is quasi-chaotic
for untrained patterns. This can be observed from Figure 4 where, in the first
case, the masked image is generated as alluded to here, and in the second
case, the input is further garbled with 30% noise. In both of these cases, the
system is capable of recognizing the true pattern with with a periodic and
quasi-chaotic behavior.

4 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have only
recently been investigated, demonstrate chaotic behavior under normal condi-
tions, and resonate when it is presented with a pattern that it is trained with.
The reported systems work with the Adachi Neural Network (AdNN) [1,2] which
has Associative Memory (AM) properties, and which also emanates periodic out-
puts on being exposed to trained patterns. In this paper, we have presented a
collection of previously unreported properties of the AdNN. We have shown that

7 There is no other expression to describe this phenomenon than amazing !
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it goes through a spectrum of characteristics as one of its crucial parameters, α,
changes. As α increases, it is first an AM, and it then becomes quasi-chaotic.
The system is subsequently distinguished by two phases where in the former it
is quasi-chaotic for some patterns and periodic for others, and in the latter, it
exhibits PR properties. It is fascinating that the AdNN also possesses the ca-
pability to recognize masked or occluded patterns, and even patterns which are
completely inverted – which properties, are to the best of our knowledge, novel.
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