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Abstract. This paper presents a novel approximate nearest neighbor
classification scheme, Local Fisher Discriminant Component Hashing
(LFDCH). Nearest neighbor (NN) classification is a popular technique in
the field of pattern recognition but has poor classification speed particu-
larly in high-dimensional space. To achieve fast NN classification, Prin-
cipal Component Hashing (PCH) has been proposed, which searches the
NN patterns in low-dimensional eigenspace using a hash algorithm. It is,
however, difficult to achieve accuracy and computational efficiency simul-
taneously because the eigenspace is not necessarily the optimal subspace
for classification. Our scheme, LFDCH, introduces Local Fisher Discrim-
inant Analysis (LFDA) for constructing a discriminative subspace for
achieving both accuracy and computational efficiency in NN classifica-
tion. Through experiments, we confirmed that LFDCH achieved faster
and more accurate classification than classification methods using PCH
or ordinary NN.

Keywords: approximate nearest neighbor classification, high-
dimensional space, hash, dimensionality reduction.

1 Introduction

Nearest neighbor (NN) classification [I] is a popular technique in the field of
pattern recognition. Given a query pattern, a NN classifier classifies the pattern
by simply finding the nearest pattern among training ones. However, the NN
classification is not regarded as a practical, because of its inefficient memory use
and poor classification speed.

To accelerate classification speed, fast NN search algorithms have been pro-
posed. These search algorithms introduce the following two ideas:

— Reducing the number of comparisons: The number of distance calculations
between a query and each training patterns is minimized by using the triangle
inequality. [10][1T][12][13]

— Aborting the number of distance calculation: Distance calculation are not
necessary for those training patterns that can not possibly be the nearest
neighbor of the query pattern. [2]
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However, the previous methods have the limitation that search cost does not
reduce in high-dimensional space (more than a few tens of dimensions). In this
case, NN search is no better than brute force. Thus, recently, approximate NN
search methods have been gathering interest. These approximate methods do
not guarantee to find the nearest pattern among training patterns.

Principal Component Hashing (PCH) [3] is one of the approximate NN search
methods. PCH projects training patterns into an eigenspace obtained using prin-
cipal component analysis (PCA) []. The eigenspace is generated by the maxi-
mizing the variance of training patterns in the lower-dimensional space. We refer
to this eigenspace as PCA space. In the experiments of [3], PCH is a faster and
more accurate search method than normal fast NN search methods and previous
approximate methods.

However, PCH has the following barriers to achieving faster classification
speed while keeping accuracy of classification.

(1) PCA space is not necessarily the optimal subspace for classification.
(2) PCH has a significant trade-off relationship between classification speed and
classification accuracy.

To solve these problems, we propose a novel approximate nearest neighbor clas-
sification scheme, Local Fisher Discriminant Component Hashing (LFDCH). For
problem (1), above, we introduce Local Fisher Discriminant Analysis (LFDA) [7],
which is a supervised dimensionality reduction method, for obtaining a discrim-
inative subspace by maximizing between-class and minimizing the within-class
variance. We refer to this discriminative subspace as LEFDA space. LFDCH in low
dimensional LEDA space is a more accurate NN classifier than PCH in low dimen-
sional PCA space. For problem (2), above, we recognize that the ultimate goal of
NN classification is to classify the class label of the query pattern, rather than
simply to find the NN pattern. Thus, LFDCH can abort the classification process
when all training patterns have the same class label. LFDA space helps to increase
the probability of this event compared with PCA space. As a result, classification
speed on LFDCH is further accelerated, compared with the classification method
based on PCH.

The remainder of this paper is organized as follows: Section 2 and Section 3
explain PCH and LFDA respectively. We propose LEDCH in Section 4 and show
experimental results in Section 5. Finally Section 6 presents conclusions.

2 Principal Component Hashing

Principal Component Hashing (PCH) [3] is a search method using the hash
function in one of the approximate NN search algorithms. Other approximate
NN search algorithms (e.g. Locality Sensitive Hashing [5][6]) have the following
drawbacks.

— Hash may fail to find the corresponding bucket when the query lies in a low-
density area of training patterns. The PCA space is divided into equal-sized
buckets by hashing, for each axis.
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— The number of NN candidates will not decrease drastically when the query
is given at a high-density area of training patterns.

Those problems are caused by the hash function which produces a disjoint
decomposition of the space by equal-sized buckets.

For solving these problems, PCH searches by dividing the space into finite
buckets that each contain the same expected number of training patterns. We
describe below how to decompose the space into buckets in this way.

2.1 Bucket Decomposition

Previous approximate NN search methods using hash functions, such as Locality
Sensitive Hashing, divided PCA space into equal intervals, with each interval
referred to as a bucket, and made training patterns within buckets to hash to
the same index. These methods construct the hash function without any relation
to training pattern distribution, or do not allocate buckets to cover the whole
pattern space. As a result, if a query falls into a high-density area of training
patterns, NN search becomes less efficient. Conversely, if a query falls into an
area with no training patterns, there may be no training patterns that hash to
the same index as the query hash index.

@ Training pattern

?

subspace TTTeesmecccccocemom-oeemmmTT

Fig. 1. Each axis is divided depending on the cumulative frequency of training patterns
in PCA space. The divided interval is called a bucket, and training patterns in the same
bucket hash to the same index.

The hash function constructed for PCH depends on the training pattern dis-
tribution, and each bucket contains a fixed number of training patterns as shown
in Fig. [

Let z; € R¢ (i = 1,2,...,n) be d-dimensional training patterns and ¢ (z — Z)
be the training patterns projected into the subspace, where matrix ¢ is made
up of the A components of the subspace, forming an orthonormal basis. Let
T denotes the transpose of a matrix or vector, and Z is an average vector of
all training patterns. The bucket is decomposed to contain a fixed number of
training patterns on ;. This process, which is called bucket decomposition,
represents threshold processing on ¢;, and the bucket that contained the query
can be determined by binary search.
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2.2 Query Search

The PCH’s search algorithm steps are shown in the following. Stepl. and Step2.
are preprocessing.

Stepl. Obtain the PCA space for training patterns using PCA.

Step2. Let A be the number of dimensions of the PCA space, each bucket is
decomposed, and training patterns are ascribed to the corresponding buck-
ets.

Step3. On each ¢ obtained in preprocessing, the bucket that contained query
q is determined.

Step4. For each training pattern, let it’s overlapped number be the number of
occasions when the patterns and the query pattern fall into the same backet.
Let candidate NN patterns C' (¢) be the training patterns that correspond
to the highest b% of the calculated overlapped numbers, where b% is called
cutoff rate.

Step5. After the approximate NN pattern of the query is determined by dis-
tance calculation from among C (g), the process finishes.

Because complex processing to refer to neighboring buckets was necessary for
Step4. in the original PCH, Step4. was simplified as shown above.

2.3 Refinement by Aborting the Distance Calculation

Since the approximate NN pattern of a query is determined from among C' (q)
as shown above, the training pattern that has the most overlapped number is
Tmaz, and the distance from query ¢ to Tmaz 18 D (¢, Tmag). This distance is
called provisional distance z, which means that

z2=D(q,Tmaz), where Tmq. € C(q) (1)

The distance calculation is able to be aborted using this provisional distance z.
In the following discussions, this paper uses L,, distance Dy, (21, x2). L, distance
is given by

M
D, (z1,x2) = ¢ Z (w1 — m2;)" (2)

in M dimensional space.

To be based on Parseval’s theorem, L, distance can be calculated between
projected vector and discretional orthonormal basis, and let L,, distance in sub-
space be

M
Dy (x1,22) = 2| Y |@T w1 — ool 3)
=1
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Consequently, candidate x that satisfies the following conditions is not able
to be NN pattern.

m
Z |<P1Tq - %qu|p > 2P where m < M. (4)
i=1

Based on this property, Step5. (see[Z2]) is modified using refinement by abort-
ing the distance calculation by the following steps. Let A be the number of di-
mensions in PCA space, N be the number of NN pattern candidates, provisional
NN pattern be z;, and provisional distance be zP.

Step5-1. Let z,,4, be the pattern that has maximum overlapped number among
C (¢), and calculate the provisional distance zP.

Step5-2. n:=1

Step5-3. Select x,, among C (¢) without ;. If n = N, NN search is finished as
NN pattern is x;.

Step5-4. m =1

Step5-5. If x,, satisfies Eqsldl z,, is deleted, n = n + 1, and go to Step5-3.. If
m = A, go to Step5-T..

Step5-6. m = m + 1 and go to Step5-5..

Step5-7. Calculate Dy, (¢, zn). If D} (q,2n) < 2P, 24 = m,, and 2P = D} (q, 7).
Go to Step5-3..

These steps are processed with ¢ vectors in decreasing order of training pat-
tern variance. Therefore, aborting the number of distance calculation becomes
efficient because more training patterns satisfy Eqn.(d). This ensured that the
true NN pattern is not rejected by above steps.

3 Local Fisher Discriminant Analysis

Fisher Discriminant Analysis (FDA) [§] is a popular method for linear supervised
dimensionality reduction. FDA seeks an embedding transformation such that the
between-class scatter is maximized and the within-class scatter is minimized.

Let W and B be the within-class scatter matrix and the between-class scatter
matrix and {¢}¢_, be the generalized eigenvectors associated with the gener-
alized eigenvalues A\ > Ay > --- > Ay of the following generalized eigenvalue
problem:

By = \We. (5)
The FDA transformation matrix Tppa is given by

Trpa = (p1 | w2l -] wr), (6)

where 7 is rank(Trp4). The between-class scatter matrix B has at most rank ¢—
1. This implies that the multiplicity of lambda = 0 is at least d—c+ 1. Therefore,
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FDA can find at most ¢ — 1 meaningful features; the remaining features found
by FDA are arbitrary. This is an essential limitation of FDA for dimensionality
reduction and is very restrictive in practice. Additionally, FDA can perform
poorly if patterns in a class form several separate clusters (i.e., multimodal).

To overcome these problems, Local Fisher Discriminant Analysis (LFDA)
evaluates the levels of the between-class scatter and the within-class scatter
in a local manner. Namely, according to the affinity matrix defined by similarity
from pattern pairs, LFDA weights the values for the pattern pairs in the same
class. This means that far apart pattern pairs in the same class have less influ-
ence on the within-class scatter matrix W and the between-class scatter matrix
B. This allows LFDA to attain between-class separation and within-class local
structure preservation simultaneously. Additionally, because the between-class
scatter matrix B in LFDA is always full rank for various data sets, thanks to
the affinity matrix, LFDA can find at most d meaningful features.

4 Local Fisher Discriminant Component Hashing

For faster and more accurate classification, Local Fisher Discriminant Compo-
nent Hashing (LFDCH) introduces the following two ideas into PCH.

— LFDA obtains the subspace that maximizes between-class and minimizes the
within-class variance.

— NN classification does not necessarily need to find the NN pattern, but only
needs to classify its class label.

LFDCH projects training patterns into LFDA space and searches by hash
function, which produces a disjoint decomposition of the space by finite buckets
that each contain the same numbers of training patterns. LFDCH aborts the
process when all training patterns have the same class label.

In contrast to PCH aimed at NN search, LFDCH is aimed at NN classification
and does not need to store the vector of training patterns in the original space.
LFDCH only stores the projected vectors to memory. As a result, LFDCH can
use memory more efficiently than PCH can.

The LEFDCH’s classification algorithm steps are shown in the following. Step1.,
Step2., and Step3. are preprocessing.

Stepl. Obtain the LFDA space for training patterns using LFDA.

Step2. Let A be the number of dimensions of the LFDA space. All training
patterns are projected to the LFDA space. LEFDCH only stores training
patterns after dimensionality reduction.

Step3. For A components ¢, each bucket is decomposed, and training patterns
are ascribed to corresponding bucket as well as PCH.

Step4. On each ¢ obtained in preprocessing, the bucket that contained query
q is determined.

Step5. Let the candidate NN patterns C (g) be the patterns corresponding to
the highest b7 of overlapped numbers.
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Step6. Refine C (q) by aborting the distance calculation where possible, the
same as with PCH. LFDCH can also abort the process and classify query
when all C' (¢) have the same class label.

5 Experimental Results

In the experiment, we compared the following methods with Correct Match Rate
(CMR) and in terms of classification time:

LFDCH: Proposed algorithm.

PCH: Query is classified into the same class with NN pattern searched by PCH.

NN: Query is classified into the same class with NN pattern searched by naive
NN search engine.

The classification time is the elapsed time taken to classify one query pattern.
All experimental results described here are obtained on Intel Xeon PC, 3.0 GHz
CPU, 16 GB memory using Microsoft Visual Studio 2005. We use the following
settings as default for LFDCH and PCH:

Number of PCA and LFDA special dimensions: 20
Number of buckets per axis: 500
cutoff rate: 20%

100 100%

80%

Classification Time (msec)
CMR(%)

0.1

NN

B Classification time <+ CMR

Fig. 2. This figure shows the classification time per query pattern and the CMR. The
left vertical axis shows a logarithmic scale of classification time and the right vertical
axis shows the CMR. The bar graph shows the classification time, and the line graph
shows the CMR, for each method.

5.1 Gender Classification Using Face Image

We use multiple face image data sets and illustrate how LEFDCH classifies a two-
class classification problem. We classify gender using a normalizetion method
that uses a generic 3D face model [9]. We describe the in-depth data as follows.

Distance: Euclidean Distance
Number of classes: 2 (male, female)
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Number of training patterns: 18239 (11453 male, 6786 female)
Number of query patterns: 21573 (15991 male, 5582 female)
Dimension of patterns: 1024

Fig. 2l shows the classification time per query pattern and the corresponding
CMR. LFDCH and PCH are much faster than NN. LFDCH is about 0.1 msec
slower than PCH, but the CMR of LFDCH is about 7 points higher than that of
PCH. Additionally, the CMR of LFDCH is about 5 points higher than that of NN.
Shown on the left in fig. [ are the classification times per query pattern and the
CMR for LFDCH and PCH, changing the number of both LFDA and PCA spa-
tial dimensions from 1 to 100. The CMR of LFDCH is always higher than that of
PCH in each dimension. CMR of PCH becomes higher by adding the PCA spa-
tial dimensions, but that of LFDCH becomes maximum in low LFDA spatial di-
mensions. As a result, LFDCH can achieve faster more and accurate classification
than PCH. For example, LFDCH needs only 2 LFDA spatial dimensions to achieve
the same CMR as NN, but PCH needs 100 PCA spatial dimensions. In this case,
LFDCH is about 100 times faster than PCH, and 50 times smaller than PCH in
terms of memory use. Shown on the right in fig. 3 are the classification times per
query pattern and the CMR for LFDCH and PCH, changing the number of bucket
decompositions from 50 to 1000. The CMR of LFDCH is more independent fo the
number of bucket decompositions than PCH. Because both methods become fast
by increasing the number of bucket decompositions, LFDCH speed can be further
imprved while maintaing a good CMR.

Changing the subspace spatial dimensions from 1 to 100 Changing number of bucket deconposition from 50 to 1000

100% 100%
AR b A —— MAAAAAA A A A A A A kA h "
80% - - 80% |
& 60% & 60%
2 + LFDCH 2 ~+ LFDCH
40% < PCH 0% + PCH
20% 20%
0.001 0.01 0.1 1 10 100 0.1 1 10 100
Classification Time(msec) Classification Time(msec)

Fig. 3. The left figure shows the classification time per query pattern and the CMR
on LFDCH and PCH, changing both LFDA and PCA spatial dimensions from 1 to
100. The right figure shows the classification time per query pattern and the CMR of
LFDCH and PCH, changing the number of bucket decompositions from 50 to 1000. In
both figures, the horizontal axis shows logarithmic scale of classification time and the
vertical axis shows the CMR.

5.2 Handwriting Character Recognition

We use orientation component density of 256 dimensional features for uniquely
collected handwritten characters and illustrate how LEDCH classifies the multi-
class classification problem. We describe the in-depth data as follows.
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Distance: Euclidean Distance

Number of classes: 62 (case-sensitive alphabet (52), digit 0 to 9 (10)
Number of training patterns: 20150 (325 patterns per character)
Number of query patterns: 20150 (325 patterns per character)

Shown on the left in fig.[Blare the classification times per query pattern and the
CMR for LFDCH and PCH, changing both LFDA and PCA spatial dimensions
from 1 to 100.

Fig. @ shows the classification time per query pattern and the CMR. LFDCH
and PCH are much faster than NN. LFDCH is about 0.1 msec slower than PCH,
but the CMR of LEFDCH is about 7 points higher than that of PCH. Additionally,
the CMR of LFDCH is about 1 point higher than that of NN.

The CMR of LFDCH is always higher than that of PCH in every case. The
CMR of PCH becomes higher by increasing the number of spatial dimensions,

10 100%

1 80%

4 60%

CMR(%)

4 40%

l l -
. 0%

LFDCH PCH

B Classification Time <+ CMR

Classification Time(msec)

0.1

Fig. 4. This figure shows the classification time per query pattern and the CMR. The
left vertical axis shows a logarithmic scale of classification time and the right vertical
axis shows the CMR. The bar graph shows the classification time, and the line graph
shows the CMR, for each method.

Changing the subspace spatial dimensions from 1 to 100 Changing number of bucket deconposition from 50 to 1000

100% 100%

80% % 80% akkakAA A A A A A A A A& &%
ke R - . -
...... _ IR
S 60% /“T = S60%
Lr 0
G 40% /s ~+ LFDCH G 40% + LFDCH
20% f - PCH 20% « PCH
i
0% L 0%
0.001 0.01 0.1 1 10 100 0.1 1 10 100
Classification Time(msec) Classification Time (msec)

Fig. 5. The left figure shows the classification time per query pattern and the CMR,
on LFDCH and PCH, changing both LFDA and PCA spatial dimensions from 1 to
100. The right figure shows the classification time per query pattern and the CMR on
LFDCH and PCH, changing the number of bucket decomposition from 50 to 1000. In
both figures, the horizontal axis shows a logarithmic scale of classification time and the
vertical axis shows the CMR.
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but that of LFDCH exhibits a maximum at low LFDA spatial dimensions. As
a result, LFDCH can achieve faster and more accurate classification than PCH
which is the same as the situation described in Subsection [l For example,
LFDCH needs only 34 LFDA spatial dimensions to achieve the same CMR as
NN, but PCH needs more than 100 PCA spatial dimensions. In 100 PCA spatial
dimensions case, LFDCH is about 10 times faster than PCH, and 3 times smaller
than PCH in terms of memory use. Shown on the right in fig. [ are the classi-
fication times per query pattern and the CMR for LFDCH and PCH, changing
the number of bucket decompositions from 50 to 1000. The CMR of LFDCH is
more independent of the number of bucket decompositions than PCH. Because
both methods become fast by increasing the number of bucket decompositions,
LFDCH speed can be further improved while maintaining a good CMR.

6 Conclusions

In this paper, we proposed a fast and accurate NN classifier, LFDCH. The ex-
perimental results have confirmed the following properties.

— LFDCH is faster than NN search and classification methods using PCH and
ordinary NN in high-dimensional space.

— The CMR of LFDCH exhibits a maximum in low-dimensional LFDA space.

— LFDCH can maintain a good CMR  if the number of bucket decompositions
is large.

LFDCH was able to achieve a faster classification speed than the classification
method based on PCH while maintaining accuracy of classification. Future work
is to automate the optimization of the number of dimensions of the LEFDA space.
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