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Abstract. Recently, Desmedt et al. studied the problem of achieving secure n-
party computation over non-Abelian groups. They considered the passive ad-
versary model and they assumed that the parties were only allowed to perform
black-box operations over the finite group G. They showed three results for the
n-product function fG(x1, . . . , xn) := x1 ·x2 · . . . ·xn, where the input of party
Pi is xi ∈ G for i ∈ {1, . . . , n}. First, if t ≥ �n

2 � then it is impossible to have
a t-private protocol computing fG. Second, they demonstrated that one could t-
privately compute fG for any t ≤ �n

2 � − 1 in exponential communication cost.
Third, they constructed a randomized algorithm with O(n t2) communication
complexity for any t < n

2.948 .
In this paper, we extend these results in two directions. First, we use perco-

lation theory to show that for any fixed ε > 0, one can design a randomized
algorithm for any t ≤ n

2+ε
using O(n3) communication complexity, thus nearly

matching the known upper bound �n
2 � − 1. This is the first time that percola-

tion theory is used for multiparty computation. Second, we exhibit a determin-
istic construction having polynomial communication cost for any t = O(n1−ε)
(again for any fixed ε > 0). Our results extend to the more general function
˜fG(x1, . . . , xm) := x1 · x2 · . . . · xm where m ≥ n and each of the n parties
holds one or more input values.

Keywords: Multiparty Computation, Passive Adversary, Non-Abelian Groups,
Graph Coloring, Percolation Theory.

1 Introduction

In multiparty computation, a set of n parties {P1, . . . , Pn} want to compute a function
of some secret inputs held locally by these participants. Since its introduction by Yao
[19], multiparty computation has been extensively studied. Most multiparty computa-
tion protocols rely on algebraic structures which are at least Abelian groups [14] as in
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[1, 3, 4, 8, 10, 11, 12] for instance. The usefulness of Abelian groups in cryptography
is not restricted to multiparty computation as numerous cryptographic primitives are
developed over such groups [6, 7, 17]. However, the construction of efficient quantum
algorithms to solve the discrete logarithm problem as well as the factoring problem pre-
vent the use of many of these primitives over those machines [18]. Since quantum algo-
rithms seem to be less efficient over non-Abelian groups, there is increasingly a need for
developing cryptographic constructions over such mathematical structures. The reader
may be aware of the existence of public key cryptosystems for such groups [15, 16].

Recently, Desmedt et al. studied the problem of designing secure n-party protocol
over non commutative finite groups for the passive (or semi-honest) adversary model
[5]. Their goal is to guarantee unconditional security simply using a black-box represen-
tation of the finite non-Abelian group (G, ·). This assumption means that the n parties
can only perform three operations in (G, ·): the group operation ((x, y) �→ x · y), the
group inversion (x �→ x−1) and the uniformly distributed group sampling (x ∈R G).

Desmedt et al. focused on the existence and the design of t-private protocols for the n
product function fG(x1, . . . , xn) := x1 · . . . · xn where the input of party Pi is xi ∈ G
for i ∈ {1, . . . , n}. In such a protocol, no colluding sets C of at most t participants
learn anything about the data hold by any of the remaining members {P1, . . . , Pn} \ C.
Desmedt et al. obtained three important results. First, if t ≥ �n

2 � (dishonest majority)
then it is impossible to construct a t-private protocol to compute fG. Second, if t < �n

2 �
then one can always design a deterministic t-private protocol computing fG with an

exponential communication complexity of O(n
(2 t+1

t

)2
) group elements. Third, they

built a probabilistic t-private protocol computing fG with a polynomial communication
complexity of O(n t2) group elements when t < n

2.948 .
That work leads to two important questions. First, we would like to know if it is pos-

sible to construct a t-private protocol for values of t ∈
[

n
2.948 , �n

2 � − 1
]

with polyno-
mial communication complexity. Second, Desmedt et al.’s construction shows that one
can t-privately compute fG with polynomial communication cost for any t = O(log n).
A natural issue is to determine the existence and to construct a deterministic t-private
protocol with polynomial communication complexity for other values t (ideally, up to
the threshold �n

2 � − 1).
In this article, we give a positive answer to these two questions. First, we demonstrate

that the random coloring approach and the graph construction by Desmedt et al. can be
used to guarantee t-privacy for any t < n

2+ε (for any fixed ε > 0). The communication
complexity of our construction is O(n3) group elements. This result is obtained using
percolation theory. To the best of our knowledge, this is the first use of this theory in
the context of multiparty computation. Second, we provide a deterministic construction
for any t = O(n1−ε). This scheme has polynomial communication complexity as well.

This paper is organized as follows. In the next section, we will recall the different
reductions performed in [5] to solve the t-privacy issue over non-Abelian groups. In
Sect. 3, we present our randomized construction achieving t-privacy for any value t ≤

n
2+ε which is closed to the theoretical bound �n

2 � − 1. In Sect. 4, we show how to
construct deterministic t-private protocols having polynomial communication cost for
any t = O(n1−ε). In the last section, we conclude our paper with some remaining open
problems for multiparty computation over non-Abelian black-box groups.
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2 Achieving Secure Computation over Non-Abelian Groups

In this section, we present some of the results and constructions developed by Desmedt
et al. which are necessary to understand our improvements from Sect. 3 and Sect. 4.
First, we recall the definition of secure multiparty computation in the passive, computa-
tionally unbounded attack model, restricted to deterministic symmetric functionalities
and perfect emulation as in [5].

We denote [n] the set of integers {1, . . . , n}, {0, 1}∗ the set of all finite binary strings
and |A| the cardinality of the set A.

Definition 1. We denote f : ({0, 1}∗)n �→ {0, 1}∗ an n-input and single-output func-
tion. Let

∏

be a n-party protocol for computing f . We denote the n-party input se-
quence by x = (x1, . . . , xn), the joint protocol view of parties in subset I ⊂ [n] by

VIEW
∏

I (x), and the protocol output by OUT
∏

(x). For 0 < t < n, we say that
∏

is a t-private protocol for computing f if there exists a probabilistic polynomial-time
algorithm S, such that, for every I ⊂ [n] with |I| ≤ t and every x ∈ ({0, 1}∗)n

, the
random variables

〈S(I, xI , f(x)), f(x)〉 and 〈VIEW
∏

I (x), OUT
∏

(x)〉

are identically distributed, where xI denotes the projection of the n-ary sequence x on
the coordinates in I .

In the remaining of this paper, we assume that party Pi has a personal input xi ∈ G
(for i ∈ [n]) and the function to be computed is the n-party product fG(x1, . . . , xn) :=
x1 · . . . · xn.

Desmedt et al. first reduced the problem of constructing a t-private n-party protocol
for fG to the problem of constructing a symmetric (strong) t-private protocol

∏′ (see
[5] for a detailed definition of symmetric privacy) to compute the shared 2-product
function f ′

G(x, y) := x · y where the inputs x and y are shared amongst the n parties.
They demonstrated that iterating (n − 1) times the protocol

∏′ would give a t-private
protocol to compute fG.

The second reduction occurring in [5] consists of constructing a t-private n-party
shared 2-product protocol

∏′ from a suitable coloring over particular directed graphs.
We will detail the important steps of this reduction as they will serve the understanding
of our own constructions.

Definition 2 ([5]). We call graph G an admissible Planar Directed Acyclic Graph
(PDAG) with share parameter � and size parameter m(≥ �) if it has the following
properties:

– The nodes of G are drawn on a square m × m grid of points (each node of G is
located at a grid point but some grid points may not be occupied by nodes). The
rows of the grid are indexed from top to bottom and the columns from left to right
by the integers 1, 2, . . . , m. A node of G at row i and column j is said to have index
(i, j). G has 2 � input nodes on the top row, and � output nodes on the bottom row.

– The incoming edges of a node on row i only come from nodes on row i − 1, and
outgoing edges of a node on row i only go to nodes on row i + 1.
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– For each row i and column j, let η
(i,j)
1 < · · · < η

(i,j)
q(i,j) denote the ordered column

indices of the q(i, j) > 0 nodes on level i+1 which are connected to node (i, j) by
an edge. Then, for each j ∈ [m − 1], we have:

η
(i,j)
q(i,j) ≤ η

(i,j+1)
1

which means that the rightmost node on level i + 1 connected to node (i, j) is to
the left of (or equal to) the leftmost node on level i+1 connected to node (i, j +1).

An admissible PDAG has 2� input nodes. The first � ones (i.e. (1, 1), . . . , (1, �)) rep-
resent the x-input nodes while the remaining ones represent the y-input nodes. Let
C : [m] × [m] �→ [n] be a n-coloring function that associates to each node (i, j) of G a
color C(i, j) chosen from a set of n possible colors. The following notion will be used
to express the property we expect the graph coloring to have in order to build

∏′ .

Definition 3 ([5]). We say that C : [m] × [m] �→ [n] is a t-reliable n-coloring for the
admissible PDAG G (with share parameter � and size parameter m) if for each t-color
subset I ⊂ [n], there exist j∗ ∈ [�] and j∗y ∈ [�] such that:

– There exists a path PATHx in G from the j∗th x-input node to the j∗th output node,
such that none of the path node colors are in subset I (it is called an I-avoiding
path), and

– There exists an I-avoiding path PATHy in G from the j∗y th y-input node to the j∗th
output node.

If j∗y = j∗ for all I , we say that C is a symmetric t-reliable n-coloring.

Important Remark: Even if the graph G is directed, it is regarded as non-directed
when building the I-avoiding paths in Definition 3.

Desmedt et al. built a protocol
∏′(G, C) taking as input a graph G and a n coloring

C. We do not detail this protocol in our paper as its internal design does not have
any influence in our work. The reader can find it in [5]. However, in order to ease the
understanding of our work, we recall the relation between multiparty protocols over a
non-Abelian group G and coloring of admissible PDAGs as it appear in [5].

The n participants {P1, . . . , Pn} are identified by the n colors of the admissible
PDAG G. The input/output nodes of the graph G are labeled by the input/output ele-
ments of the group G. Each edge represents a group element sent from one participant
to another one. Each internal node contains an intermediate value of the protocol. Those
values are computed, at each node N of G, as the group operation between the elements
along all the incoming edges of N from the leftmost one to the rightmost one. This
intermediate value is then redistributed along all the outgoing edges of N using the fol-
lowing ON -of-ON secret sharing where ON represents the number of outgoing edges
of node N .

Proposition 1 ([5]). Let g be an element of the non-Abelian group G. Denote λ and
μ two integers where μ ∈ [λ]. We create a λ-of-λ sharing (sg(1), . . . , sg(λ)) of g by
picking the λ−1 shares {sg(ξ)}ξ∈[λ]\{μ} uniformly and independently at random from
G, and computing sg(μ) to be the unique element of G such that:

g = sg(1) · sg(2) · . . . · sg(λ)
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Then, the distribution of the shares (sg(1), . . . , sg(λ)) is independent of μ.

We recall the following important result:

Theorem 1 ([5]). If G is an admissible PDAG and C is a symmetric t-reliable n-
coloring for G then

∏′(G, C) achieves symmetric strong t-privacy.

The last reduction is related to the admissible PDAG. Desmedt et al. only consider
admissible PDAGs as defined below and represented in Fig. 1.
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Fig. 1. The admissible PDAG Gtri(�′, �)

Definition 4 ([5]). The admissible PDAG Gtri(�′, �) is a �′ × � directed grid such that:

– [horizontal edges] for i ∈ [�′] and for j ∈ [� − 1], there is a directed edge from
node (i, j + 1) to (i, j),

– [vertical edges] for i ∈ [�′ − 1] and for j ∈ [�], there is a directed edge from node
(i, j) to node (i + 1, j),

– [diagonal edges] for i ∈ [�′ − 1] and for j ∈ {2, . . . , �}, there is a directed edge
from node (i, j) to node (i + 1, j − 1).

According to Definition 2, an admissible PDAG has 2 � input nodes and no horizontal
edges. Desmedt et al. indicated that the y-input nodes could be arranged along a column
on Gtri(�′, �) instead of being along the same row as the x-input nodes. They also ex-
plained that Gtri(�′, �) could also be drawn according the requirements of Definition 2.
By rotating Gtri(�′, �) by 45 degrees anticlockwise, the x-input nodes and y-input nodes
of Gtri(�′, �) are now on the same row and the horizontal edges of Gtri(�′, �) have be-
come diagonal edges which satisfies Definition 2.

A priori, Gtri(�′, �) is a rectangular grid. In [5], Desmedt et al. considered square
grids Gtri(�, �) for which they introduced the following notion.

Definition 5 ([5]). We say that C : [�] × [�] �→ [n] is a weakly t-reliable n-coloring for
Gtri(�, �) if for each t-color subset I ⊂ [n]:
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– There exists an I-avoiding path Px in Gtri(�, �) from a node on the top row to a
node on the bottom row. Such a path is called an I-avoiding top-bottom path.

– There exists an I-avoiding path Py in Gtri(�, �) from a node on the rightmost col-
umn to a node on the leftmost column. Such a path is called an I-avoiding right-left
path.

As said in [5], the admissible PDAG requirements (Definition 2) are still satisfied if we
remove from Gtri some ’positive slope’ diagonal edges and add some ’negative slope’
diagonal edges (connecting a node (i, j) to node (i + 1, j + 1), for some i ∈ [�′ − 1]
and j ∈ [� − 1]). Such a generalized admissible PDAG is denoted Ggtri.

Lemma 1 ([5]). Let C : [�] × [�] �→ [n] be a weakly t-reliable n-coloring for square
admissible PDAG Gtri(�, �). Then, we can construct a t-reliable n-coloring for a rect-
angular admissible PDAG Ggtri(2� − 1, �).

Thus, Desmedt et al. have demonstrated that it was sufficient to get a weakly t-reliable
n coloring for some Gtri(�, �) in order to construct a t-private protocol for computing
the n-product fG. The cost communication cost of this protocol is (n − 1) times the
number of edges of Ggtri(2� − 1, �). Since that grid is obtained from Gtri(�, �) using a
mirror, the communication cost of the whole protocol is O(n �2) group elements. The
constructions that we propose in this paper are colorings of some grids Gtri(�, �).

3 A Randomized Construction Achieving Maximal Privacy

In this section, we present a randomized construction ensuring the t-privacy of the com-
putation of fG up to n

2+ε . Our scheme has a linear share parameter � = O(n).
We use the same random coloring Crand for the grid Gtri(�, �) as in [5]. However,

our analysis is based on percolation theory while Desmedt et al. used a counting-based
argument. We first introduce the following definition which is illustrated in Fig. 2.

Algorithm 1. Coloring Crand

Input: A grid Gtri(�, �).
1. For each (i, j) ∈ [�] × [�], choose the color C(i, j) of node (i, j) independently and uni-
formly at random from [n].

Output: A n-coloring of the grid.

Definition 6. The triangular lattice of depth � denoted T (�) is a directed graph drawn
over a � × (3 � − 2) grid such that:

– [horizontal edges] for i ∈ [�] and for j ∈ [�−1], there is a directed edge from node
(i, i + 2 j) to (i, i + 2 (j − 1)),

– [right downwards edges] for i ∈ [� − 1] and for j ∈ {0, . . . , � − 1}, there is a
directed edge from node (i, i + 2 j) to node (i + 1, i + 2 j + 1),

– [left downwards edges] for i ∈ [� − 1] and for j ∈ [� − 1], there is a directed edge
from node (i, i + 2 j) to node (i + 1, i + 2 j − 1).
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Fig. 2. The triangle T (5)

Proposition 2. For any positive integer �, we have a graph isomorphism between
Gtri(�, �) and T (�).

Proof. Consider the mapping:

Gtri(�, �) −→ T (�)
(i, j) �−→ (i, i + 2 (j − 1))

It is easy to see that the nodes of the two graphs are in bijective correspondence while
the direction of each edge is maintained. �

Theorem 2. For any ε > 0, there exists a constant cε such that if t ≤ n

2+ε and � ≥ cεn,
then there exists a weakly t-reliable n-coloring for Gtri(�, �).

Proof. We prove that the coloring Crand will work with high probability. Let tε =
⌊

n
2+ε

⌋

where �·� denotes the floor function. Instead of considering the probability that

Crand is a weakly tε-reliable n-coloring for Gtri(�, �), we study the complementary
event. A suitable value for � will be given at the end of this demonstration.
The coloring Crand is called bad if there exists a color set I ⊂ [n] with |I| = tε, such
that either there are no I-avoiding top-bottom paths or there are no I-avoiding right-left
paths. By the union bound, we obtain the following upper bound on Pr(Crand is bad):

2 Pr(∃I ⊂ [n], |I| = tε, there are no I-avoiding top-bottom paths in Gtri(�, �))

≤ 2
∑

I⊂[n],|I|=tε

Pr(there are no I-avoiding top-bottom paths in Gtri(�, �)). (1)

The factor 2 in (1) comes from the fact the top-bottom probability is equal to the right-
left probability due to the symmetry of the grid Gtri(�, �) and the coloring Crand.

Next, we demonstrate that for a fixed color set I ⊂ [n] with |I| = tε, the probability
that there are no I-avoiding top-bottom paths in Crand is exponentially small. Let us
fix the color set I . We call a vertex closed if its color belongs to I . Otherwise, the
vertex is called open. The random coloring Crand of each vertex is equivalent to open it
independently and randomly with probability p := 1− tε

n . An I-avoiding path is simply
an open path. Therefore, we get:

Pr(there are no I-avoiding top-bottom paths in Gtri(�, �))
= Prp(there are no open top-bottom paths in Gtri(�, �))
= 1 − Prp(there is an open top-bottom path in Gtri(�, �)) (2)
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We have the following result.

Lemma 2 ([2]). The triangular lattice T (�) has the following property:

Prp(there is an open top-bottom path in T (�))
+

Prp(there is a closed right-left path in T (�))
= 1

When we combine Lemma 2, Proposition 2 and (2), we obtain the following:

Pr(there is no I-avoiding top-bottom path in Gtri(�, �))
=

Prp(there is a closed right-left path in T (�))
=

Pr1−p(there is an open right-left path in T (�)) (3)

In (3), Pr1−p(·) means that we open each vertex with probability 1 − p. We have the
following result from percolation theory.

Lemma 3 ([13]). Let T be the triangular lattice in the plane. Then, the critical proba-
bility of site percolation ps

c(T ) is equal to 1
2 .

When the open probability is less than the critical probability, the percolation has the
following properties (see for example Chapter 4, Theorem 9 in [2]).

Lemma 4 ([9]). If p < ps
c(T ), then there is a constant c = c(p),

Prp(0
n−→) < e−c n.

where {x
n−→} is the event that there is an open path from x to a point in Sn(x) with

Sn(x) := {y : d(x, y) = n} and d(x, y) denotes the distance between x and y.

Remark: The value 0 from Lemma 4 represent the zero element of Z × Z when the
graph is represented as a lattice over that set. In the case of the triangular lattice depicted
as Fig. 2, the value 0 can be identified to the node (1, 1).

In our case, we have: 1 − p = tε

n ≤ 1
2+ε < ps

c(T ). Using Lemma 4, we get:

Pr1−p(there is an open right-left path in T (�)) ≤ � Pr1−p(0
�−1−→) ≤ � e−c (�−1) (4)

The first inequality is due to the fact that any right-left path has length at least (� − 1)
in T (�). Combining (1)-(4), we obtain:

Pr(Crand is bad) ≤ 2
(

n

tε

)

� e−c (�−1)

Thus, if we choose � := cε n for some large enough constant cε, we have:

Pr(Crand is bad) ≤ 1
2n

which guarantees the fact that Crand is a weakly tε-reliable n-coloring for Gtri(�, �)
with overwhelming probability in n. �

Corollary 1. There exists a black box tε-private protocol for fG with communication
complexity O(n3) group elements where tε = � n

2+ε�. Moreover, for any δ > 0, we



Graph Design for Secure Multiparty Computation over Non-Abelian Groups 45

can construct a probabilistic algorithm, with run-time polynomial in n and log(δ−1),
which outputs a protocol

∏

for fG such that the communication complexity of
∏

is
O(n3 log2(δ−1)) group elements and the probability that

∏

is not tε-private is
at most δ.

Proof. The existence of the protocol is a direct consequence of Theorem 2 as well as
the different reductions exposed in Sect. 2. As our construction requires � = O(n),
we deduce that the communication cost of the protocol computing fG is O(n3). The
justification of the running time of the algorithm and the probability of failure δ is
identical to what is done in [5]. �


We showed that it was possible to build a randomized algorithm to achieve
⌊

n
2+ε

⌋

-

private computation of fG using O(n3) group elements. Even if the probability of fail-
ure of our previous construction is small, we would like to remove the randomized
restriction so that we can get a (deterministic) protocol which is always guaranteed to
succeed. In [5], Desmedt et al. only provided deterministic protocols to compute fG in
polynomial communication cost when t = O(log n). In the next section, we present a
deterministic construction for any t = O(n1−ε) where ε is any positive constant. Our
construction requires polynomial communication complexity as well.

4 A Deterministic Construction for Secure Computation

In this section, we show how to build a deterministic t-private protocol to compute fG

with polynomial complexity cost for any t = O(n1−ε). First, we will focus on particular
pairs (t, n). Second, we generalize our result to any (t, n) with t = O(n1−ε).

We recursively construct our admissible PDAG Grec and its coloring Crec. Let d ∈
N \ {0, 1} be a constant. Denote Bd the binomial coefficient

(2d−1
d−1

)

.

Theorem 3. For any positive integer k, there is a weakly tk-reliable nk-coloring
Crec(�k) for the square admissible PDAG Grec(�k), where the parameters are:
tk := dk − 1, nk := (2d − 1)k and �k = Bk

d (Bd + 1)k−1.

Proof. We prove the theorem by induction on k.

k = 1: We have t1 = d−1, n1 = 2 d−1 and �1 = Bd. We set Grec(�1) := Gtri(�1, �1).
We define Crec(�1) as being the combinatorial coloring Ccomb designed in [5] and re-
called as Algorithm 2.

Algorithm 2. Coloring Ccomb

Input: A L × L grid where L =
(

N
T

)

.
1. Let I1, . . . , IL denote the sequence of all T -color subsets of [N ] (in some ordering).
2. For each (i, j) ∈ [L] × [L], define the color C(i, j) of node (i, j) in the grid to be any color
in the set Si,j := [N ] \ (Ii ∪ Ij).

Output: A N -coloring of the grid.
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Desmedt et al. noticed that, even if we removed the diagonal edges from Gtri(�1, �1),
we still had the existence of I-avoiding top-bottom and right-left paths. Thus, we as-
sume that Grec(�1) has no such edges so that Grec(�1) is a square grid the side length of
which is �1 nodes. Grec(�1) is an admissible PDAG.

k ≥ 1: Suppose we already have the construction and coloring for k, we recursively
construct Grec(�k+1) from Grec(�k).

We first build the block grid B by copying (Bd + 1) × (Bd + 1) times Grec(�1).
The connections between two copies of Grec(�1) are as follows. Horizontally, we draw
a directed edge from node (i, 1) in the right-hand side copy to node (i, �1) in the left-
hand side copy for i ∈ [�1] (i.e. we horizontally connect nodes at the same level).
Vertically, we draw a directed edge from node (�1, j) in the top side copy to node (1, j)
in the bottom side copy for j ∈ [�1] (i.e. we vertically connect nodes at the same level).

The block B is a (Bd (Bd + 1)) × (Bd (Bd + 1)) grid. It has the following property
the proof of which can be found in Appendix A.

Proposition 3. The block grid B admits a (2 d − 1)-coloring (just use the same Ccomb

for each copy of Grec(�1)), such that for any (d − 1)-color subset I ⊂ [2 d − 1], there
are Bd + 1 horizontal (vertical) I-avoiding straight lines in B.

Now, we construct Grec(�k+1) and its coloring Crec(�k+1) as follows. We replace each
node in Grec(�k) by a copy of B. If the node of Grec(�k) was colored by the color
c ∈ [nk], then we color B with the set of colors {(2d−1)(c−1)+1, (2d−1)(c−1)+
2, . . . , (2 d − 1) c}, using Ccomb. All the edges within each copy of B remain identical
in Grec(�k+1).

Now, we show how to connect two copies of B. We first focus on vertical connec-
tions. Consider an edge in Grec(�k) from a node in the i-th row to another node in the
(i + 1)-th row. Since these two nodes have been replaced by two copies of B, we de-
note the nodes on the top copy (i.e. those corresponding to the nodes of the i-th row
in Grec(�k)) as v1,1, . . . , v1,Bd

, v2,1, . . . , vBd+1,Bd
and the nodes on the bottom copy as

w1,1, . . . , w1,Bd
, w2,1, . . . , wBd+1,Bd

.
For each (i, j) ∈ [Bd] × [Bd], we add a directed edge (vi,j , wi,j+i−1) in Grec(�k+1).

If the index (j+ i−1) is greater than Bd, wi,j+i−1 is the node wi+1,j+i−1−Bd
. Figure 3

gives the example for d = 2. The connection process works similarly for two consec-
utive columns where we replace each horizontal edge from Grec(�k) by B2

d different
edges in Grec(�k+1).
It is clear that the number of nodes on each side of the square Grec(�k+1) is:

�k+1 = Bd (Bd + 1) · �k = Bk+1
d (Bd + 1)k

and the number of colors used in Crec(�k+1) is nk+1 = (2 d − 1) · nk = (2 d − 1)k+1.
The grid Grec(�k+1) obtained by this recursive process is also an admissible PDAG due
to the horizontal/vertical connection processes between two copies of B (as well as two
copies of Grec(�1) inside B).

The last point to prove is that for any tk+1-color subset I ⊂ [nk+1], there is an
I-avoiding top-bottom (and right-left) path in Grec(�k+1). We only prove the existence
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Fig. 3. How to vertically connect two copies of B when d = 2

of a top-bottom path in this paper as the demonstration of the existence for a right-left
path is similar. For each j ∈ [nk], we define the set Ij as:

Ij := I ∩ {(2d − 1)(j − 1) + 1, (2d − 1)(j − 1) + 2, . . . , (2 d − 1) j}

Since
|I1| + · · · + |Ink

| = |I| = tk+1 = dk+1 − 1 (5)

and each |Ij | ≤ 2d − 1, there are at least (nk − tk) subsets having at most (d − 1)
elements. Indeed, in the opposite case, we would have:

|I1| + · · · + |Ink
| ≥ d (nk − (nk − tk − 1)) = d · dk = dk+1,

which would contradict (5). Assume that S ⊆ [nk] is the set of these indices (i.e. for
each j ∈ S, |Ij | ≤ d − 1). We have: |[nk] \ S| ≤ tk. By the induction hypothesis, there
is a ([nk] \ S)-avoiding top-bottom path in Grec(�k), i.e., the colors used on this path
all belong to S. Let v1, . . . , vm be the vertices of the path and denote the color of node
vj as cj ∈ S (j ∈ [m]).

Now, we show there is an I-avoiding top-bottom path in Grec(�k+1). In
Grec(�k+1), each node vj has been replaced by a copy Bvj with colors in {(2d−1)(cj−
1)+1, (2d−1)(cj−1)+2, . . . , (2 d−1) cj}. Since the color set Icj satisfies |Icj | ≤ d−1,
by Proposition 3 we deduce that there are Bd horizontal and Bd vertical Icj -avoiding
paths in Bvj .

One can show that this property involves the existence of an I-avoiding top-bottom
path in Grec(�k+1). This top-bottom path is the connection of an Ic1 -avoiding path
(from Bv1), an Ic2-avoiding path (from Bv2),. . ., an Icm -avoiding path (from Bvm). The
reader can find more details about this process in Appendix B. A similar demonstration
leads to the existence of an I-avoiding right-left path in Grec(�k+1) which achieves the
demonstration of our theorem. �


The communication complexity of the protocol to tk-privately compute the function
fG(x1, . . . , xnk

) using the previous admissible PDAG is O(nk �2
k) group elements where
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�k ≤ Bk
d(Bd + 1)k−1 ≤ 2(2d−1)k × 2(2d−1)(k−1) ≤ 22k(2d−1) ≤ n

2(2d−1)
log2 (2d−1)

k

Note that the last inequality comes from 2k = n
1

log2 (2d−1)

k .
Now, we generalize our result to any (t, n) where t = O(n1−ε) for any fixed positive

ε. The class O(n1−ε) is the set of all functions f such that: ∃τf > 0 ∃n0 > 0 : ∀n ≥
n0 f(n) ≤ τf n1−ε. In our case, the function f is the privacy level t. Our main result is
stated as follows.

Theorem 4. For any fixed ε > 0, for any fixed τ > 0, there exists a constant nε,τ ∈ N,
such that for any n ≥ nε,τ , if t ≤ τ n1−ε, then there exists a black-box t-private
protocol to compute fG with communication complexity polynomial in n. Moreover,
there is a deterministic polynomial time algorithm to construct the protocol.

Proof. We fix ε > 0 and τ > 0. We set d = 2�
2
ε �−1 and k = �log(2d−1) n�. We have

d ≥ 2. If n ≥ 2 d − 1 then k ≥ 1. In such a condition, we can apply Theorem 3 for
the pair (k, d). There exists a tk-private protocol to compute the value fG(x1, . . . , xnk

)
using O(nk �2

k) group elements where tk, nk, �k are defined as in Theorem 3. It is clear
that the construction also t′-privately computes fG(x1, . . . , xn′) for any (t′, n′) such
that t′ ≤ tk and n′ ≥ nk. So, we only need to show τ n1−ε ≤ tk, n ≥ nk and
�k = poly(n). Due to our choice of d and k, we have:

nk ≤ (2d − 1)�log(2d−1) n	 ≤ (2d − 1)log(2d−1) n ≤ n

And:

tk ≥ d�log(2d−1) n	 − 1 ≥ dlog(2d−1) n−1 − 1 ≥ n
log2 d

log2(2d−1)

d
− 1 ≥ n

log2 d
log2 2d

d
− 1

Since d = 2�
2
ε �−1, we get:

tk ≥ n

� 2
ε

�−1

� 2
ε

�

2�
2
ε �−1

− 1 ≥ n1− ε
2

2�
2
ε �−1

− 1 ≥ n
ε
2

2�
2
ε �−1

n1−ε − 1

Since ε is a fixed positive constant, the mapping n �→ n
ε
2

2� 2
ε

�−1
has an infinite limit.

Therefore: ∃ñε,τ > 0 : ∀n ≥ ñε,τ
n

ε
2

2� 2
ε

�−1
≥ τ + 1

n1−ε .

Remember that we early required n ≥ 2 d − 1 in order to use Theorem 3. If we set
nε,τ := max(2 d − 1, ñε,τ) then:

∀n ≥ nε,τ

{

nk ≤ n
tk ≥ τ n1−ε ≥ t

It remains to argue about �k. Since nk ≤ n, we have: �k ≤ n
2 (2 d−1)

log2 (2 d−1) . Since d is
independent from n, �k is upper bounded by a polynomial in n. �
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The previous theorem claims that for any fixed ε, if n is chosen large enough then we
can t-privately compute fG for any t = O(n1−ε). Such an asymptotic survey is also
performed in [5]. However, in practical applications, the number of participants is not
asymptotically large. The deterministic construction by Desmedt et al. has polynomial
cost when t = O(log n). We now present a result valid for any group size n which
guarantees privacy for larger t’s than in [5] using polynomial communication as well.

Theorem 5. For any positive integer n no smaller than 3, there exists a black-box pro-
tocol for fG which is (�nlog3 2

2 � − 1)-private. It requires the n participants to exchange
O(n6) group elements. Moreover, there is a deterministic polynomial time algorithm to
construct the protocol.

Proof. We set d = 2 and k := �log3(n)�. The protocol obtained using Theorem 3 has
parameter tk ≥ nlog3 2

2 − 1 and nk ≤ n. We have: B2 = 3. Therefore: �k ≤ n1+2 log3 2

4 .
Thus, we obtain: nk�2

k = O(n6). �


5 Conclusion and Open Problems

In this paper, we first demonstrated that we could construct a probabilistic t-private
protocol computing the n-product function over any non-Abelian group for any t up to

n
2+ε (for any fixed positive ε), thus nearly matching the known upper bound �n

2 � − 1.
As the communication complexity of our construction is O(n3) group elements, this
result answers one of the questions asked by Desmedt et al. concerning the largest col-
lision resistance achievable with an admissible PDAG of size polynomial in n. Note that
Desmedt et al. indicated the discovery of a construction for (n, t) = (24, 11) improving
locally their own theoretical bound n

2.948 since 11 ≈ 24
2.182 . Our result demonstrates the

existence of such a construction for any fixed positive ε (in [5], we have the particular
case ε = 0.182). Since the scheme developed in [5] (exclusively valid for t < n

2.948 )
only requires O(n t2) elements to be exchanged, a direction to further investigate is the
existence of a (randomized) t-private protocol for any t ≤ �n

2 � − 1 having at most the
cost of Desmedt et al.’s scheme.

Second, we showed that it was possible to construct a deterministic t-private n-party
protocol to compute fG having a polynomial communication cost for any t = O(n1−ε).
For practical purpose, one may want to optimize the choice of parameters in our con-
struction. For example, we have proved that one could t-privately compute fG for any

(t, n) satisfying t ≤
⌈

nlog3 2

2

⌉

− 1.

Desmedt et al. argued that the reduction from a protocol computing the n-product
to a subroutine computing the shared 2-product extended to the more general function
˜fG(x1, . . . , xm) := x1 · x2 · . . . · xm where m ≥ n and each of the n parties holds one
or more input values. This ensured the validity of their protocol to securely compute ˜fG

as well. Since the constructions that we presented are particular admissible PDAGs, our
results are also valid to compute ˜fG.

Our work leads to the following two questions. First, is it possible to reduce the
communication cost when t = O(n1−ε)? Second, can we generalize this approach to
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design a deterministic polynomial communication cost algorithm for any t up to the
threshold �n

2 � − 1?
Apart from the previous points which constitute directions to improve the security

for the passive adversary model, a problem which requires attention is the possibility
of achieving secure computation of fG against malicious parties. Indeed, even if mul-
tiparty computation can be used with small groups (as in the case of the Millionaires’
problem [19]), the general purpose is to enable large communication groups to perform
common computations and the larger the number of parties is, the more likely (at least)
one of them will deviate from the given protocol.
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A Proof of Proposition 3

Let I be a (d − 1)-color subset of [2 d − 1]. In [5], Desmedt et al. demonstrated that
there were a I-avoiding top-bottom path and a I-avoiding right-left path in Gtri(�1, �1).
They also showed that those two paths were straight lines. Thus, one can remove the
diagonal edges of Gtri(�1, �1) while preserving those paths. This means that there exist
a I-avoiding top-bottom path and a I-avoiding right-left path in Grec(�1) which are
straight lines.

Since B is a-(Bd +1)× (Bd +1)-copy of Grec(�1) and, due to the vertical/horizontal
connections of these copies, we deduce that there are (Bd + 1) I-avoiding top-bottom
paths and (Bd + 1) I-avoiding right-left paths in B. Moreover, each of these paths is a
straight line.

B Connection of Color Avoiding Paths

It was shown in the proof of Theorem 3 that each block Bci had Bd horizontal and Bd

vertical Ici-avoiding paths. In this appendix, we show how to construct a I-avoiding
top-bottom path in Grec(�k+1). Our path will start at the top of Bv1 and ends at the
bottom of Bvm .

Every grid from the family (Grec(�λ))λ≥1 is a square grid. Thus, the sequence of
blocks Bv1 , . . . , Bvm in Grec(�k+1) is determined by the position of Bv1 as well as the
m-tuple of letters from {L, R, T, B} (Left, Right, Top, Bottom) indicating the output
side of the block Bvi for i ∈ [m]. Note that the last letter of the tuple is always B since
the I-avoiding top-bottom path ends at the bottom of Bvm .

This tuple has the property the two consecutive letters cannot be opposite to each
other (i.e, one cannot have (L, R), (R, L), (T, B) or (B, T)). This means that you leave
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a block on a different side that you entered it. The reader can check the correctness of
this claim by a simple recursive process on the parameter k. This property is trivially
true for k = 1 since Grec(�1) = Gtri(�1). The recursion follows from the path construc-
tion that we will design below.

Proposition 4. Let i be any element of [m]. Assume that N is any node on a side of
Bvi belonging to a Ici-avoiding straight line path. For each other side Si of Bvi , we
can construct a Ici-avoiding path from N to any of the (Bd +1) nodes on Si belonging
to a Ici -avoiding straight line path.

Proof. We only provide a proof when N is on the top side of Bvi (the three other
cases are similar). The three possible output sides are B, L and R. The block Bvi is
a-(Bd + 1) × (Bd + 1)-copy of the original grid Grec(�1). Thus, Bvi can be treated as a
(Bd + 1) × (Bd + 1) array of grids Grec(�1). Based on this observation, we will use the
terminology grid-row (respectively grid-column) to denote a set of Bd + 1 horizontal
(respectively vertical) grids Grec(�1) in Bvi .

1. Si = B. The vertical Ici -avoiding path starting at node N intersects the hori-
zontal Ici-avoiding path located within the bottom grid-row of Bvi at node I. That
horizontal path intersects each of the Bd + 1 vertical Ici-avoiding paths (one within
each grid-column) at I1, . . . , IBd+1. Note that I = Iμ for some μ ∈ [Bd +1]. Once we
are at one of the Ij’s, we simply go vertically downwards to the node N ′

j located at the
bottom side of the block Bvi .

Thus, we can construct a path from N to each of the Bd + 1 output nodes on
the bottom side of Bvj belonging to the vertical Ici -avoiding paths. Those paths are
(N , I, Ij , N ′

j) for j ∈ [Bd + 1].
2. Si = R. The vertical Ici -avoiding path starting at node N intersects the horizon-

tal Ici -avoiding path located within the top grid-row of Bvi at node I. That horizontal
path intersects the vertical Ici-avoiding path located within the rightmost grid-column
of Bvi at node ˜I . This vertical path intersects each of the Bd+1 horizontal Ici -avoiding
paths (one within each grid-row) at ˜I1, . . . , ˜IBd+1. As before, we get: ˜I = ˜Iμ for some
μ ∈ [Bd +1]. Once we are at one of the ˜Ij’s, we horizontally go rightwards to the node
N ′

j located on the right hand side of the block Bvi .
Thus, we can construct a path from N to each of the Bd + 1 output nodes on the

right hand side of Bvj belonging to the horizontal Ici -avoiding paths. Those paths are

(N , I, ˜I, ˜Ij , N ′
j) for j ∈ [Bd + 1].

3. Si = L. This is analogous to the previous case. �


We can finally construct a I-avoiding top-bottom path in Grec(�k+1). We denote the
m-tuple of output sides as (S1, . . . , Sm). As previously said, we have: Sm = B.

We start at any node N1 located on the top side of Bv1 and on a vertical Ic1 -avoiding
path. Using Proposition 4, we can connect N1 to any of the Bd + 1 nodes on side S1
of Bv1 using a Ic1 -avoiding path. An important remark is that each block of the whole
grid Grec(�k+1) is a set of (Bd + 1) × (Bd + 1) identical copies of Grec(�1) (including
the coloring). As a consequence, these Bd + 1 nodes have the same location in their
respective copies of Grec(�1). Given the connection process between any pair of blocks
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within Grec(�k+1), one of these Bd + 1 nodes must be connected to a node N2 from
block Bv2 belonging to a Ic2 -avoiding straight line path. Similarly, N2 is connected via
a Ic2 -avoiding path in Bv2 to a node N3 from Bv3 belonging to a Ic3 -avoiding straight
line path. If we repeat this process for each of the remaining blocks, we obtain a set of
m − 1 nodes N1, . . . , Nm−1. The last node Nm−1 can be connected to a node Nm on
the bottom side of Bvm using a Icm -avoiding path. Thus, N1 (top side of Grec(�k+1)) is
connected to Nm (bottom side of Grec(�k+1)) using a I-avoiding path which achieves
the demonstration of our theorem.

Remark: As claimed above, this construction involves that the two consecutive side
letters of the m-tuple cannot be opposite to each other.
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