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Abstract. In this paper, we show that two variants of Stern’s identification
scheme [IEEE Transaction on Information Theory '96] are provably secure
against concurrent attack under the assumptions on the worst-case hardness
of lattice problems. These assumptions are weaker than those for the previous
lattice-based identification schemes of Micciancio and Vadhan [CRYPTO 03]
and of Lyubashevsky [PKC ’08]. We also construct efficient ad hoc anonymous
identification schemes based on the lattice problems by modifying the variants.
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1 Introduction

Many researchers have so far developed cryptographic schemes based on combinato-
rial problems related to knapsacks, codes, and lattices, due to the intractability of the
underlying problems, the efficiency of primitive operations, and the threat of quantum
computers to number-theoretic schemes.

The cryptographic schemes based on combinatorial problems usually assume the
average-case hardness of the underlying problem because they have to deal with ran-
domly generated cryptographic instances such as keys, plaintexts, and ciphertexts. This
implies security risk in such schemes since it is generally hard to show their average-
case hardness. In fact, several attacks against such schemes, e.g., [25], were found in
practical settings. The cryptographic schemes based only on the average-case hardness
are more likely to be at risk of these kinds of attacks.

It is therefore significant to guarantee the security under the worst-case hardness.
Ajtai [1]] showed that the average-case hardness of some lattice problem is equivalent
to its worst-case hardness. His seminal result opened the way to cryptographic schemes
based on the worst-case hardness of lattice problems. Several lattice-based schemes
were proposed such as public-key encryption schemes, e.g., by Ajtai and Dwork [2],
and hash functions [[1/11/19].

Among varieties of lattice-based cryptographic schemes, there are very few results
on the identification (ID) schemes based on the worst-case hardness of lattice problems.
For example, Micciancio and Vadhan proposed ID schemes based on the worst-case
hardness of lattice problems, such as the gap versions of the Shortest Vector Problem.
These schemes are obtained from their statistical zero-knowledge protocol with efficient
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provers [20]]. Recently, Lyubashevsky also constructed lattice-based ID schemes secure
against active attack [14]]. Unfortunately, the approximation factors of the underlying
problems in their schemes are large for practical use as noted in [[14} Sec. 5] since secu-
rity parameters for ID schemes should be large in order to achieve the required hardness.
Therefore, it is necessary to construct the schemes based on weaker assumptions, i.e.,
the assumptions on lattice problems with smaller approximation factors.

1.1 Our Contributions

In this paper, we propose two variants, which we call S§; and S¢. > of Stern’s ID
scheme [26]]. These variants are secure against concurrent attackl] under the assump-
tions on the worst-case hardness of lattice problems, while Stern’s original scheme as-
sumes the average-case hardness of certain decoding problem in coding theory and the
existence of a collision-resistant hash function, and its security is only against passive
attack. The underlying problems of S and S{ 1L are the gap version of the Shortest

Vector Problem with approximation factor O(n) (GapSVPZO~ (n)) and the Shortest Vector

Problem for ideal lattices with approximation factor O(n) (A(f )-SVPZ?(”)), respectively,
where O(g(n)) = O(g(n) poly log g(n)) for a function g in n, The assumptions are weaker
than those for the previous lattice-based ID schemes [20114]. We stress that such weaker
assumptions will take a step for practical use of lattice-based ID schemes.

Moreover, we show that our variants yield efficient ad hoc anonymous identification
schemes (AID schemes). In an AID scheme, which introduced by Dodis, Kiayias, Ni-
colosi, and Shoup [7]], the protocol is done by two parties, a prover and verifier, but we
implicitly suppose an ad hoc group. Given public keys of all members of the group to
the verifier (and the prover), the goal is to convince the verifier that the prover belongs
to the group, without being specified who the prover is of the group, if and only if the
prover is an actual member of the group. We formally define a concurrent version of
the security notion, the security against impersonation under concurrent chosen-group
attack, and prove that our AID schemes satisfy this security notion. Our schemes are
based on the worst-case hardness of GapSVPé(n) and A( f)-SVPZf’(n). To authors’ best
knowledge, this is the first non-trivial construction under the assumption of the worst-
case hardness of lattice problems.

1.2 Main Ideas

In this section, we only discuss the ID scheme S¢;; based on GapSVP. We first construct
a string commitment scheme based on the lattice problem which will be used in ID
schemes. Then we will describe the idea of the proof on concurrent security of the
variant. Finally, we give a sketch of our construction method of an AID scheme.
Before giving the overview, we review the underlying problem GapSVP, and the
fundamental problem, the Small Integer Solution Problem (SIS, ), on which our

"In active attack, an adversary could interact with the prover prior to impersonation. In concur-
rent attack, an adversary could interact with many different prover “clones” concurrently prior
to impersonation. Each clone has the same secret key, but has independent random coins and
maintains its own state. After interacting with many clones, the adversary tries impersonation.
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variants are directly based. The informal definitions and the relationship of two prob-
lems are given as follows:

— SIS, np: Given a random n-by-m matrix A whose elements are in Z,, the problem
is finding an m-dimensional integral non-zero vector z such that Az = 0 (mod g)
and ||zll, < B.

- GapSVPi: Given an n-dimensional lattice L and a rational number d, the problem
is outputting YES if there exists a non-zero vector v € L such that ||v|, < d, or NO
if for any non-zero vector v € L |[v||, > yd.

— ([190) For suitable g and m, if there exists a probabilistic polynomial-time algorithm
which solves SIS, 3 on the average then there exists a probabilistic polynomial-

time algorithm which solves GapSVP%(Bn, r) in the worst case.

As in Lyubashevsky’s result [14], we use the above relationship for our security reduc-
tion. Hence we mainly deals with SIS instead of GapSVP.

We simply obtain the lattice-based hash functions as in [11]]: Choose a random matrix
A e Z’;X’”. For any x € {0, 1}, a hash value is fo(x) := Ax mod g. A collision (x, x")
of the hash function fj implies a solution z = x — x” of SIS Thus, the security of
20( Vnm)®
String commitment schemes: We construct a string commitment scheme from lattice-
based hash functions. General constructions of string commitment schemes from
collision-resistant hash functions were shown by Damgard, Pedersen, and Pfizmann [4]
and Halevi and Micali [12]]. Stern also constructed a string commitment scheme from
collision-resistant hash functions in [26, Sec. III-A]: Let 4 be a hash function. Given a
string s and a random string p, a commitment is i(p o (p & s)), where o and @ denote
the concatenation and XOR operators, respectively. However, its hiding property was
not shown. We construct a string commitment scheme by a more direct and simpler
way than the general one and Stern’s one: Given s and p, a commitment is k(o o s),
where £ is a lattice-based hash function. The binding property simply follows from the
collision-resistance property of h. We derive its hiding property from e-regularity of A
for some negligible function € (see, e.g., [L6, Sec. 4.1]). As mentioned in the above, we
have collision-resistant lattice-based hash functions based on the worst-case hardness
of GapSVP, while Stern assumed the existence of collision-resistant hash functions.

gim,Nm-
the hash functions is based on the worst-case hardness of GapSVP

Our ID scheme and its concurrent security: In Stern’s scheme and our variant, a prover
has a binary vector x with fixed Hamming weight as his/her secret key. We also feed to
the prover and the verifier a matrix A as a system parameter and a vector y as the public
key corresponding to x. The task of the prover is to convince the verifier that he/she
knows a correct secret key x satisfying a relation Ax = y and x has a valid weight.

In Stern’s protocol [26], the prover computes three commitments and sends them to
the verifier. The verifier sends a random challenge to the prover. The prover reveals two
of three commitments corresponding to the challenge. He constructed the knowledge
extractor which computes a collision of a hash function in a string commitment scheme
or a secret key corresponding to the target public key if a passive adversary responds
correctly to any challenges after sending commitments.

One of standard strategies to achieve concurrent security is to prove that a public key
corresponds to multiple secret keys and that the protocol is witness indistinguishable
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(WI) [8] and proof-of-knowledge: The reduction algorithm generates sk and pk and runs
the adversary on pk by simulating the prover with sk. Using the knowledge extractor of
the protocol, the algorithm obtains another sk’ corresponding to pk with probability at
least 1/2 since the protocol is WI. The algorithm then solves the underlying problem
by using pk, sk, and sk’.

In our reduction, when the algorithm is given A, it generates a secret key x and a

public key y = Ax, and feeds A and y to the adversary. Note that the algorithm can
simulate the prover with A and x that the adversary concurrently accesses. Using the
knowledge extractor for the adversary in Stern’s proof, the algorithm obtains a collision
of a string commitment scheme or a secret key x” such that x” # x and Ax’ =y, differ-
ently from the general strategy. In the former case, the algorithm outputs the collision
(s, s") of a hash function A, in the string commitment scheme. Thus, the solution for
SIS is obtained by z = s — s’. In the latter case, the condition x # x’ will be satisfied
with probability at least 1/2 by witness indistinguishability of Stern’s protocol. Thus,
the algorithm has the solution z = x — x’ for SIS. The ¢, norm of both solutions is at
most ym = O(n'/?). From the relationship between SIS and GapSVP the assumption
is the worst-case hardness of GapSVPZO(n).
AID schemes: Our construction for AID schemes also has the following structure: Each
of  members in the ad hoc group has a vector x; (i = 1, ..., /). Then, the common inputs
of the scheme are a system parameter A and a set of public keys yy,. .., y; of the mem-
bers, which satisfy y; = Ax; (i = 1,...,1). We can show that, by Stern’s protocol, the
prover can anonymously convince the verifier that the prover knows x; corresponding
to one of yq,...,y;, since he/she knows a new vector x” such that [Ay; ... y;]x" = 0.
(This idea is due to Wu, Chen, Wang, and Wang [27], who presented an AID scheme
from certain combinatorial problem.) Additionally, we force the prover to prove that the
positions of +1 and —1 in x” are proper by modifying Stern’s protocol. We succeed to
give security proof for the scheme, while Wu et al. gave no formal proof on the security
of their scheme.

1.3 Comparison with Other Lattice-Based Schemes

ID schemes: In [20], Micciancio and Vadhan proposed a statistical zero-knowledge
and proof-of-knowledge protocol for GapSVP. Combining it with lattice-based hash
functions, we obtain an ID scheme which is secure against passive attack based on
SIS, ,.6(n)» Which can be reduced from GapSVPfj(n,_s).

In the scheme, the prover and the verifier are given a matrix A as a common input,
and the prover has a binary vector x as secret information. The task of the prover is to
convince the verifier that he/she knows x satisfying the relations that Ax = 0 and x is
relatively short. It seems difficult to directly simulate the prover since a simulator has
to prepare a dummy short vector x” satisfying Ax’ = 0, which is the task of SIS itself.
Thus, we cannot straightforwardly prove the concurrent security for their ID scheme.

By a simple modification, we can construct a concurrently secure ID scheme (MV{;.
for short) based on the worst-case hardness of lattice problems by Micciancio and Vad-
han’s ID scheme as noted in [20, Sec. 5]. In particular, applying techniques of De Santis,
Di Crescenzo, Persiano, and Yung [6] and of Feige and Shamir [§]], a modification of



376 A. Kawachi, K. Tanaka, and K. Xagawa

Table 1. Comparisons among ID schemes and AID schemes. A secret key sk is x € {0, 1}". The
factor n denotes the security parameter. We denote the Hamming weight of x by wy(x). Assume
that the protocols are repeated ¢ times in parallel for reducing errors. In the table for AID schemes,
[ denotes the number of the members in the group. Note that the parameters in ideal-lattice-based

versions are almost same as those in general-lattice-based versions.

ID schemes (A, A, A € ng”’)

Param. | Public key Relation vin GapSVPi Comm. cost | Errors
MV, [20] |- Ao A Apx=00rA;x=0 Oom') t-0(n) 1-sided
Lo [14] | (A) A,y Ax=y On?) t-O(n) 2-sided
St A y Ax =y and wy(x) = m/2 | O(n) t-O(n) 1-sided

AID schemes (Ao, A;1,A € Z;X'”)

Base Param. | Set of pks Relation yin GapSVPi Comm. cost | Errors
MV, [20] |- {Aig, Aii}i=1..0 | AigXx =00r A;jx =0 On') tl- O(n) 1-sided
Lo [14]  |A Yoo sVt Ax =y, on?) tl- O(n) 2-sided
S&L A Visees V1 Ax = y; and wy(x) = m/2 | O(n) t-O(l+n) |l-sided

the ID scheme can be proven to have concurrent security@ based on the same problem
as that in the original scheme.

Recently, Lyubashevsky proposed new concurrently secure ID schemes based on

lattice problems [14]]; we call it Lgy, for short. In his protocol, the prover proves, given
A and y, he/she has x € {0, 1} such that Ax = y. Using an active adversary, his
knowledge extractor obtains another vector x” such that Ax’ = y and the length of
x’ is at most O(m'®) = O(n'?). Thus, in the L scheme, the underlying problem is
SIS, ,.6(:15)> Which can be reduced from GapSVP%(nz).
As mentioned in the previous section, the assumption of SEL is the worst-case hard-
ness of GapSVP%(n), which is weaker than those of MV{;; and L. This improvement
is obtained by the condition that the knowledge extractor outputs another secret key x’
whose length is at most y/m = O(+/n). Our schemes has 1-sided error (perfect com-
pleteness and soundness error), while Lgp, has 2-sided error (completeness and sound-
ness errors). As a summary, see Table [T}

AID schemes: By taking OR of [ statements [6], we can straightforwardly obtain
MVEL—based and Lgp-based AID schemes, whose security are based on the worst-case
hardness of lattice problems. We feed only pk,,...,pk; as the common inputs to the
prover and the verifier. In this case, the prover convinces the verifier that he/she has a
secret key corresponding to one of public keys, pk;.

However, each of these simple modifications requires a large overhead cost involving
the size of the ad hoc group. Let [ be the number of the members of the group and n the
security parameter. The protocol is run in ¢ times in parallel to reduce the errors. The

2 Combining ORing technique by De Santis et al. [6] and discarding technique by Feige and
Shamir [8]], we derive a construction technique for ID schemes secure against active attack.
Moreover, we can construct concurrently secure ID schemes by the same technique as a folk-
lore says.
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communication costs of the MV, -based and L -based schemes are 71 - O(n). The size
of a set of the public keys is [ - O(n*) and O(n?) + I - O(n) in the modified versions of
MV{, and Lg, respectively.

On AID schemes, the L -based and our schemes require many vectors proportional
to the size of the group, while the MV, -based scheme requires many matrices propor-
tional to the size of the group (see Table[I)). Additionally, the communication cost of
our schemes is ¢ - O(n + ), while those in the MV{,, -based and L -based schemes are
t1 - O(n). This shows the advantage of our scheme on the efficiency.

1.4 Organization

The rest of this paper is organized as follows. In Section 2] we review basic notations
and notions, and the cryptographic schemes we consider. In Section[3] we review lattice-
based hash functions and give a commitment scheme based on the lattice-based hash
functions for our ID and AID schemes. In Section (4] we construct the ID scheme by
combining the framework of Stern’s scheme with our string commitment scheme. We
present the AID scheme in Section

In this paper, due to lack of space, we only describe the schemes based on GapSVP
since the construction on A(f)-SVP follows from a similar strategy to that on GapSVP.
We discuss the constructions on A(f)-SVP in the full paper.

2 Preliminaries

Basic notions and notations: We denote by n the security parameter of cryptographic
schemes throughout this paper, which corresponds to the rank of the underlying lattice
problems. We say that a problem is hard in the worst case if there exists no probabilistic
polynomial-time algorithm solves the problem in the worst case with non-negligible
probability. We sometimes use O(g(n)) for any function g in n as O(g(n)-polylog(g(n))).
We assume that all random variables are independent and uniform. For a positive integer
n, let [n] denote a set {1,2,...,n}.

For any p > 1, the £, norm of a vector x = "(x1,...,x,) € R", denoted by llxll,,, is
(Xiem xl.p)'/"’. For ease of notation, we define ||x|| := ||x||,. The {x norm is defined as
IXlloo = limpe [[X]], = maxe |xi|. Let wy(x) denote the Hamming weight of x, i.e.,
the number of non-zero elements in x. Let B(m, w) denote the set of binary vectors in
{0, 1} whose Hamming weights are exactly equal to w, i.e., B(m,w) := {x € {0, 1}"" |
wy(x) = w}. We denote the concatenation of two vectors or strings v and v, by v; o v;.

We omit the definitions of zero-knowledge arguments and witness-indistinguishable
protocols. For formal definitions, see textbooks, e.g., by Goldreich [[10].

Hash functions: We briefly review the definition of collision-resistant hash function
families. Let H,, = {hx : M, — D, | k € K,} be a family of hash functions, where
M,, D,, and K,, denote a space of messages, digests, and indices, respectively. Let H =
{Hy}ner. Roughly speaking, if H is collision resistant, any polynomial-time adversary
cannot, on input a random index k, output a collision of the hash function indexed by k.
For a formal definition, see, e.g., the textbook by Katz and Lindell [13| Sec. 4.6.1].
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String commitment schemes: We consider a string commitment scheme in the trusted
setup model. The trusted setup model is often required to construct practically effi-
cient cryptographic schemes such as non-interactive string commitment schemes. In
this model, we assume that a trusted party 7 honestly sets up a system parameter for
the sender and the receiver.

First 7~ distributes the index k of a commitment function to the sender and the re-
ceiver. Both parties then share a common function Comy by a given k. The scheme runs
in two phase, called committing and revealing phases. In the committing phase, the
sender commits his/her decision, say a string s, to a commitment string ¢ = Comg(s; p)
with a random string p and sends c to the receiver. In the revealing phase, the sender
gives the receiver the decision s and the random string p. The receiver verifies the va-
lidity of ¢ by computing Comg(s; p).

We require two security notions of the string commitment schemes, statistically-
hiding and computationally-binding properties. Intuitively, we say that the commitment
scheme is statistically hiding, if any computationally unbounded adversarial receiver
cannot distinguish two commitment strings generated from two distinct strings. Also, it
is computationally binding, if any polynomial-time adversarial sender cannot change the
committed string after sending the commitment. See, e.g., [12] for the formal definition.

Canonical identification schemes: Let SI = (SetUp,KG,P, V) be an identification
scheme, where SetUp is the setup algorithm which on input 1”7 outputs param, KG is
the key-generation algorithm which on input param outputs (pk, sk), P is the prover
algorithm taking input sk, V is the verifier algorithm taking inputs param and pk. We
say ST is a canonical identification scheme if it is a public-coin 3-move protocol.

We are interested in concurrent attack, which is stronger than active and passive
attack. We employ the definition of concurrent security in [3]]. In concurrent attack, the
adversary will play the role of a cheating verifier prior to impersonation and can interact
many different prover clones concurrently. Each clone has the same secret key, but has
independent random coins and maintains its own state. We say S7 is secure against
impersonation under concurrent attack, if any polynomial-time adversary cannot, given
a random public key of a legitimate prover, impersonate the legitimate prover. For the
formal definition, see [3]].

Ad hoc anonymous identification schemes: An AID scheme allows a user to anony-
mously prove his/her membership in a group if and only if the user is an actual member
of the group, where the group is formed in an ad hoc fashion without help of the group
manager. We then assume that every user registers his/her public key to the public key
infrastructure.

We define the algorithms in AID schemes. An AID scheme is four tuple AZTD =
(SetUp, Reg, P, V), where SetUp is the setup algorithm which on input 1" outputs
param, Reg is the key generation and registration algorithm which on input param
outputs (pk, sk), P is the prover algorithm taking inputs param, a set of public keys
R = (pky,...,pk;), and one of the secret keys sk; such that pk; € R, and V is the verifier
algorithm taking inputs param and R. For more formal definition, see [[7].

There are two goals for security of AID schemes: security against impersonation and
anonymity. Dodis et al. formally defined security against impersonation under passive
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attack. They mentioned the definition of security against impersonation under concur-
rent attack. However, they did not give the formal definition (see [7, Sec. 3.2]). Thus,
we define the security notion with respect to concurrent attack. In the setting of chosen-
group attack, the adversary could force the prover to prove the membership in an ar-
bitrary group if the prover is indeed a member of the group. Additionally, concurrent
attack allows the cheating verifier to interact with the clones of any provers. Also, they
allow the cheating prover to interact with the clones of provers, but prohibit it from
interacting with the target provers. We say AZD is secure against impersonation under
concurrent chosen-group attack, if any polynomial-time adversary cannot impersonate
the legitimate prover in the above settings.

The security notion, anonymity against full key exposure, captures the property that
an adversary cannot distinguish two transcripts even if the adversary has the secret
keys of all the members. We say AZD is anonymous against full key exposure if any
polynomial-time adversary cannot distinguish two provers with a common set of public
keys even though the adversary generates all keys of the set. The formal definitions of
two notions are in the full paper.

3 Main Tools

In this section, we review main tools, lattices, lattice problems, and lattice-based hash
functions, and construct string commitment schemes.

Lattices and lattice problems: We first review fundamental notions of lattices, well-
known lattice problems, and a related problem.

An n-dimensional lattice in R™ is the set L(b1, ..., b,) = {X e @ibi | @; € Z} of all
integral combinations of n linearly independent vectors by,..., b, € R™. The sequence
of vectors by, ..., b, is called a basis of the lattice L and denoted by B. For more details
on lattices, see the textbook by Micciancio and Goldwasser [[18]].

We give the definitions of well-known lattice problems, the Shortest Vector Problem
(SVPP) and its approximation version (SVP): The problem SVP” is, given a basis B
of a lattice L, finding the shortest non-zero vector v in L in the £, norm. The problem
SVP§ is, given a basis B of a lattice L, finding a non-zero vector v in L such that for any
non-zero vector x in L, [v|l, <y [lx]],.

We next give the definition of the gap version of SVPZ, which is the underlying
problem of lattice-based hash functions.

Definition 3.1 (GapSVPi [18]). For a gap function vy, an instance of GapSVP$ is a
pair (B, d) where B is a basis of a lattice L and d is a rational number. In YES input
there exists a vectorv € L\{0} such that |||, < d. In NO input, for any vectorv € L\{0},
Iwll, > yd.

We also define the Small Integer Solution problem SIS (in the £, norm), which is of-
ten considered in the context of average-case/worst-case connections and a source of
lattice-based hash functions as we see later.

Definition 3.2 (SIS'q’ mp [19]). For a fixed integer q and a real B, given a matrix A €
Zy™, the problem is finding a non-zero integer vector z € Z" such that Az = 0 (mod gq)
and|lzll, < B.

The relation between SIS and GapSVP is reviewed in the next paragraph.
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Lattice-based hash functions: We review the lattice-based hash functions. For a prime
g = gn) = n°Y and an integer m = m(n) > nlogq(n), we define a family of hash
functions,

H(g,m) = {fa 0, 1)" > Zj | A € Zp™),

where fa(x) = Ax mod q.

Originally, Ajtai 1] showed that the worst-case hardness of GapSVPi for some poly-
nomial y(n) is reduced to the average-case hardness of SIS;,m,n for suitable g(n) and
m(n). It is known that H (g, m) is indeed collision resistant for suitably chosen ¢ and
m by Goldreich, Goldwasser, and Halevi [[11]. They observed that finding a collision
(x,x”) for fo € H(g,m) implies finding a short non-zero vector z = x — x’ such that
llzl < vm and Az = 0 (mod g), i.e., solving SISf]’m, ' Recently, Micciancio and

Regev showed that H (g, m) is collision resistant under the assumption that GapSVP% -
is hard in the worst case [[19]].

Theorem 3.1 ([19]). For any polynomially bounded functions 8 = B(n), m = m(n), g =
q(n), with q > 4 \Jmn’/?8 and y = 14 \InB, there exists a probabilistic polynomial-time
reduction from solving GapSVPi in the worst case to solving SISf]’mﬁ on the average
with non-negligible probability.

There were another reductions from the gap version of the covering radius problem
GapCRP,, the shortest independent vector problem SIVP,, and the guaranteed distance
decoding problem GDD,, by adjusting the parameters [19]. It is worth that we note the
results following the above results: Peikert [22] showed the reductions from the same
problems in any ¢, norms for p > 2. The recent paper [9, Sec. 9] by Gentry, Peikert,
and Vaikuntanathan showed that the modulus ¢ in SIS can be O(n).

A string commitment scheme: General constructions of statistically-hiding and
computationally-binding string commitment schemes are known from a family of
collision-resistant hash functions [4412]. Their constructions used universal hash func-
tions for the statistically-hiding property.

Here, we give a more direct and simpler construction from the lattice-based hash
functions without the universal hash functions. The input of the commitment function
is an m-bit vector x obtained by concatenating a random string p = (o1, ..., Om/2) and
a message string s = (81,..., Sp/2), 1.€., X = p o s. We then define the commitment
function on inputs s and p as

Coma(s;p) := Ax mod g = A'(01, ..., Omy2s S15 - - - » Smy2) Mod g.

Lemma 3.1. For m > 10nloggq, if SIS, ,, \,, is hard on the average, then Comy is
a statistically-hiding and computationally-binding string commitment scheme in the
trusted set up model. In particular, for any polynomially bounded functions m = m(n),
q = q(n), y = y(n), with ¢ > 4mn’'?, y = 14xJnm, and m > 10nlogg, Comy is
a statistically-hiding and computationally-binding string commitment scheme in the
trusted setup model if GapSVPi is hard in the worst case.

Before the proof, we review a definition of statistical distances: Given two probability
density functions ¢; and ¢, on a finite set S, we define the statistical distance between

them as A(¢1, 2) := 3 Xyes |61(x) = 2(x)].
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Proof. The computationally-binding property immediately follows from the collision-
resistant property. We now show the statistically-hiding property.

Let A = [a;---a,]. We then have Comy(s;p) = Z;';/fp,-a,- + Z;’Zf Si@irm/2- The
following claim in [24] says that a random subset sum of a; is statistically close to the
uniform distribution for almost all choices of a;.

Claim ([24)]). Let G be some finite Abelian group and let / be some integer. For any /
elements g1, ..., g € G, consider A(} ;) aigi, u), where u and a; is chosen uniformly at
random from G and {0, 1}, respectively. Then the expectation of this statistical distance
over a uniform choice of g1,..., g; € G is at most \/ |G| /2. In particular, the probability
that this statistical distance is more than (|G| /2/)!/* is at most (|G| /2/)!/*.

In our proof, we consider Z; as a finite Abelian group G. Since m > 10nloggq,
(IG| /2"%)!/* < g™, Thus, for all but an at most g " fraction of A = [ay, ..., an] € ZP™",
we have that A(u, Xjcpm2 pi@i) < g, where u € Zj is uniform random variable. As-
sume that we have such A. So, we have A(u, Coma (0"/%; p)) < g". By the definition of
Comy, for any s € {0, 1}/2, we have A(u, Comy(s; p)) < g~". By the triangle inequality,
we obtain

A(Coma(s1;01), Coma(s2; 02)) < A(w, Coma(si;02)) + A(u, Comy (523 02)) < 2g7",

for any message s; and s,. This shows that, for all but negligible fraction of choice of
A, the distributions of two commitments are statistically close. O

Using the Merkle-Damgérd technique, we obtain a string commitment scheme whose
commitment function is Comy : {0, 1}* x {0, 1}"/% — Z? rather than Comy : {0, 1}/ x
{0, 1}"/2 — Z7 as the following.

Assume that m = 2r. Let A = [BC], where B,C € Z*". For X € ZZX’, we define
x {01} — Zy as the hash function fx(s) = Xs mod g. Let [ be [nlogq] and let
t: Z2 — {0,1})' be some one-to-one function that we can compute ¢ and ! efficiently.
Letpad : {0, 1}* — {0, 1}* be a padding function for the Merkle-Damgérd construction.
Applying the Merkle-Damgérd construction to fc, we obtain a new hash function A¢ :
{0,1}* - ZZ. The precise definition of A is as follows:

Hash function /¢:

On input s, obtain a padded message S « pad(s).

Chop it into (S, . .., Sk), where §; € {0, 1y

Let Hy = 0 (more generally, some fixed Hy can be used).
Fori=1tok+ 1do H; « fc(t(Hi-1) o Si-1).

Output Hy .

Sk w e

Our new commitment scheme is defined as follows: for s € {0, 1}* and p € {0, 1},
Coma(s;p) := he(s) + fo(p) mod g.

Lemma 3.2. Ifthere exists a polynomial-time machine outputting a collision for Coma,
then there exists a polynomial-time machine outputting a collision for fa.
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Proof. Let us assume that we obtain a collision (s, p), (5, p) € {0, 1}* x {0, 1}" for Com,.
By the assumption, we have

he(s) + f(p) = he(3) + fo(p)  (mod ).

If p = p, we have s # § and hc(s) = hc(3). Using the reduction for the Merkle-
Damgard construction (see e.g., [13] Thm. 4.14]), we obtain u # & € {0, 1}" such that
fc(u) = fc(ii). Thus, we have a collision u o p, it o p € {0, 1}*" for fy.

Next, we assume that p # 3. Let S and § be padded messages of s and §, respectively.
Assume that S and S are chopped into (S, ..., S) and (S, ..., Sk ), respectively. Let
H; and H;. be inner hash values for s and § in the algorithm, respectively. By the defi-
nition of Hy and Hj., we obtain

he(s) = fe(t(Hy) o Si),
he(3) = fe(t(Hy) o Sp).

Combining the above equations with the assumption, we obtain
Ja(t(Hy) o S0 p) = fa(t(Hy) 0 S o p).
So, we have a collision #(Hy) o S¢ o p and #(Hy) o Sy o p € {0, 1} for fa. O

We use this commitment scheme in the rest of the paper. We often abuse the notation
of Comj, . For example, Coma (vy, v2; p) denotes Coma (string(v)) o string(v,); p), where
string(v) is a binary representation of v.

4 An Identification Scheme

Our variant S§;, is obtained by replacing the string commitment scheme in Stern’s ID
scheme [26] with our lattice-based one. Stern’s protocol deals with the decoding prob-
lem on binary codewords called the Syndrome Decoding Problemfl. He also proposed
that an analogous scheme in Z,, where ¢ is extremely small (typically 3, 5, or 7) [26,
Sec. VI]. We adjust this parameter to connect his framework to our assumptions of the
lattice problems.

We now describe the protocol S, below. Obviously, it has perfect completeness, and
at most 2/3 soundness error. By parallelizing each step of this protocol in t = w(logn)
times, the soundness error becomes negligibly small. To simplify the notations, we write
Com instead of Comy and we do not write random strings in Com explicitly.

SetUp: The setup algorithm, on input 1”, outputs a random matrix A € Z7*".

KG: The key-generation algorithm, on input A, chooses a random vector x €
B(m,m/2) and computes y := Ax mod q. It outputs (pk, sk) = (y, x).

P, V: The common inputs are A and y. The prover’s auxiliary input is x. They interact
as follows:

3 The Syndrome Decoding Problem is defined as follows: Given A € Z™", y € Z, and w € N,
the problem is finding a vector x € B(m,w) such that Ax = y mod 2. We can consider this
problem as a restricted version of SIS, 4.
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Step P1: Choose a random permutation 7 over [m] and a random vector r € Z
and send commitments ¢y, ¢z, and ¢3 computed as
— ¢1 = Com(rm, Ar),
- ¢ = Com(7(r)),
— ¢3 = Com(n(x + r)).
Step V1 Send a random challenge Ch € {1,2,3} to P.
Step P2
— If Ch = 1, reveal ¢, and c3. So, send s = n(x) and ¢ = n(r).
— If Ch=2,revealcy and c3. Send ¢ =mrandu = x +r.
— If Ch =3, reveal ¢y and ¢p. Send y = randv =r.
Step V2
— If Ch = 1, check that ¢, = Com(?), c3 = Com(s + ), and s € B(m, m/2).
— If Ch = 2, check that ¢; = Com(¢, Au — y) and c3 = Com(¢(w)).
— If Ch = 3, check that ¢; = Com(y, Av) and ¢; = Com(y/(v)).
Output Dec = 1 if all checks are passed, otherwise output Dec = 0.

4.1 Statistical Zero-Knowledge Property

The proof of the zero-knowledge property of the original protocol is in [26, Thm. 4].
Stern left completion of the proof as the problem for reader. Thus, we give the whole
proof that Stern’s protocol is statistically zero knowledge when Com is a statistically-
hiding and computationally-binding string commitment scheme.

Theorem 4.1. The protocol is statistically zero knowledge when Com is a statistically-
hiding and computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulator S which on input A and y
and given oracle access to a cheating verifier CV, outputs a simulated transcript. A real
transcript between P and CV on input A and y is denoted by (P, CV)(A, y).

First, S chooses a random value ¢ from {1, 2, 3} which is a prediction what value the
cheating verifier CV will not choose. Next, it chooses a random tape of CV, denoted
by . We remark that, by the assumption on the commitment, the distributions of a
challenge from CV in the real interaction and in the simulation are statistically close.

Case ¢ = 1: S computes x” € Z such that Ax” = y by using linear algebra. Next,
it chooses a random permutation n’ over [m], a random vector r' € Z', and random
strings p’l, p’z, and p;. So, it computes

- ¢} := Com(n’, Ar’; p}),
- ¢} = Com(n'(r); p5),
- ¢} = Com(n'(x" +1'); 0%).

It sends them to CV. Since the commitment scheme is statistically hiding, the distribu-
tion of a challenge from CV is statistically close to the real distribution. Receiving a
challenge Ch from CV, the simulator S computes a transcript as follows:

— If Ch = 1, S outputs L and halts.
- If Ch = 2, it outputs (v'; (¢}, ¢}, ¢5), 2, (', X" + 1, p, p})).
- If Ch = 3, it outputs (+"; (¢}, ¢y, ¢3), 3, (W', ¥, p1, P5))-
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We analyze the case Ch = 2. In this case, we obtain that

(P,CV)A,y) = (r;(c1,¢2,¢3),2,(m, x + 1,01, p3),
SA,y) = (7;(c}, 5, ¢4, 2, (', X" + 1, p}, p3)).

Assume that (7', r,p1,p3) = (m,7r + x — x’,p1,p3). By this equation, we have that
¢} = c1, ¢ = c3, and the responses from the simulator equal to the responses from the
prover. Since the commitment is statistically hiding, we have the distributions of ¢, and
c; are statistically close. Thus, we conclude that the both distributions of the simulated
transcript and the real transcript are statistically close.

It is straightforward to show it in the case Ch = 3 by using the equation (7', ") =
(7, r). Thus, we omit this part from the proof.

Case ¢ = 2: S chooses a random permutation 7’ over [m], two random vectors r’ € Z",
x" € B(m, m/2), and random strings p}, p5, and p}. S computes commitments

- c’l = Com(;r’,Ar’;p’l),
- ¢, := Com(n'(r'); pj),
- ¢} = Com(n'(x" +1'); 0%).

It sends them to CV. Receiving a challenge Ch, the simulator computes a transcript as
follows:

— If Ch = 1, then S outputs (+'; (¢}, ¢5 ¢y, L, (@' (x"), ' ('), P, P5)).
— If Ch = 2, then it outputs L and halts.
- If Ch = 3, then it outputs (+'; (|, ¢}, ¢3), 3, (', ¥, p1, P5)).

We analyze the case Ch = 1. In this case, we have that

(P,CVYA,y) = (r;(c1, 2, ¢3), 1, (m(x), x(r), p2, P3),
SA,y) = (r';(c}, ¢5, ¢4, 1, (' (X)), 7' (r'), p3, P3)).

Let y be a permutation over [m] such that y(x’) = x. In this case, we set (7', ¥/, p}, p}) =
(mox ', x(r), p2, p3). By this equation, we have that 7(x) = 7/ (x"), n(r) = 7'(r’), ¢y = c2,
and ¢} = c3, that is, the responses from the simulator equal to the responses from the
prover. Since the commitment scheme is statistically hiding, the distributions of the real
transcript and the output of the simulator are statistically close.

We omit the proof of the case Ch = 3, since it is trivial.

Case ¢ = 3: S chooses a random permutation 7 over [m], two random vectors r € Z!,
x’ € B(m,m/2), and random strings p;, p2, and p3. S computes

- ¢1 := Com(m, A(x" + 1) - y; p1),
- ¢3 := Com(n(r); p2),
— c3 := Com(n(x’ + r); p3).
It sends them to CV.
— If Ch = 1, then S outputs (+’; (¢, ¢2, ¢3), 1, (m(x"), 7(r), p2, P3)-

— If Ch = 2, then it outputs (r'; (cy, ¢2, ¢3), 2, (7, X" + F')).
— If Ch = 3, it outputs L and halts.
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In the case Ch = 1, we consider the equation (', ', 0}, 05) = (7 o x ' x(), p2, p3),
where y denotes a permutation over [m] such that y(x’) = x. The remaining part of
proof is the same as that in the case ¢ = 2 and Ch = 1. In the case Ch = 2, we let
(', ¥, p},p5) = (m,r +x — X, p1, p3). The remaining part of proof is the same as that in
the case ¢ = 1 and Ch = 2.

The probability that the simulator S outputs L is at most 1/3 + e(n) < 1/2 where € is
some negligible function. Additionally, by the above arguments, the distribution of the
output of S conditioned on it is not _L is statistically close to the distribution of the real
transcript. Therefore, we have constructed the simulator and completed the proof. O

Since the protocol is statistically zero knowledge for + = 1, it has a witness-
indistinguishable property. Witness-indistinguishable property is closed under the par-
allel composition [8]. Thus, the above protocol is witness indistinguishable for ¢ =
w(logn) if a statistically-hiding string commitment scheme is used.

4.2 Security of the Protocol

We show the theorem of the security on our ID protocol, which concerns impersonation
under concurrent attack.

Theorem 4.2. For any m(n) = @(nlogn), there exist g(n) = O(n*> logn) and y(n) =
O(n \/log n) such thatm > 10nlog q and q" | |B(m, m/2)| is negligible in n and the above
ID scheme is secure against impersonation under concurrent attack if GapSVPi is hard
in the worst case.

Before the proof of security, we need to mention the following trivial lemma.

Lemma 4.1. For any fixed A, let Y = {y € Zj | [{x € B(m,m/2) | Ax =y}| = 1},
i.e., a set of vectors y such that the preimage x of y is uniquely determined for A. If
q"/ \B(m, m/2)| is negligible in n, then the probability that, if we obtain (y, x) < KG(A),
theny € Y is negligible in n.

We now prove Theorem[4.2] The part of the proof is similar to that in [26].

Proof (Proof of Theorem [42)). Since there exists average-case/worst-case reduction
from GapSVPi to SISZ’m’ i (Theorem [3.1)), we only construct A solving SISZ’m’ i
on the average from an impersonator 7 = (CV,C%) which succeeds impersonation
under concurrent attack with non-negligible probability e.

For the clarity, we write the transcript of interaction by (Cmt, Ch, Rsp, Dec). Since
the protocol is parallelized, each Cmt, Ch, and Rsp is an ordered list which contains ¢
elements. For example, Cmt = (Cmty, ..., Cmt,).

Given A, A chooses a random secret key x € B(m,m/2) and computes y = Ax.
Using the secret key, it can simulate the prover oracle perfectly. A runs CV on input
(A, y) and obtains a state for CP. A feeds the state to CP and acts as a legitimate
verifier. Receiving commitments Cmt, A chooses three challenges chY, ch®, and
Ch® from {1,2,3})" uniformly at random. Rewinding with three challenges, A obtains
three transcripts (Cmt, Ch®, Rsp(i), Dec) fori = 1,2, 3 as the results of the interactions.
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By the Heavy Row Lemma [21]], the probability that all Dec® are 1 is at least (e/2)’.
Meanwhile, we have

Pr[3je (1 {Ch", CH?, Chy = (1,2,3}] = 1 - (7/9)'

by a simple calculation. Thus the probability that A has three transcripts
(Cmit, Ch(i),Rsp(i), Dec) for i = 1,2,3 such that Dec® = 1 for all i, and
{Chy), Ch?, Ch3.3)} = {1,2,3} for some j € [f] is at least (¢/2)° — (7/9)', which is
non-negligible since € is non-negligible and ¢t = w(log n).

We next show how (A obtains a secret key or finds a collision of the hash functions in
the string commitment scheme by using three good transcripts. Assume that A has three
transcripts (CmtD, Ch®, Rsp®, Dec) fori = 1,2, 3 such that CmtV = Cmi® = Cnt®,
Dec™ = 1 for all i, and {Chy), Chf), Ch?)} = {1,2, 3} for some j € []. Without loss of
generality, we assume that Chi.i) = i. We parse Rspi.i)
equations (We omit j for simplification):

as in Step V2. We have following

c1 = Coma(, Au — y; p\’) = Coma (i, Av; o),

c2 = Comy (£ 5) 1 = ComA(tﬂ(V);p%?),
c3 = Comu(s + t;p§ ) = Comy (p(u); 5 ),

s € B(m,m/2).

If there exists a distinct pair of arguments of Comy, A obtains a collision for A and
solves SIS, -

Next, we suppose that there exist no distinct pairs of the arguments of Comy. Let
7 denote the inverse permutation of ¢. From the first equation, we have 77! = ¢ = y.
Thus, we obtain u = 7m(s + ¢) from the third equation. Combining it with the first
equation, we have Av = A(x(s) + n(t)) — y. Since v = ¢~'(¢) = n(¢) from the second
equation, we obtain y = A - n(s). Since s € B(m,m/2), so n(s) also is in B(m, m/2).
Therefore, A sets x” := n(s).

We now have to show that x’ # x with probability at least 1/2. By Lemma [&.1]
there must be another secret key x’ corresponding to y with overwhelming probability.
Recall that the protocol is statistically witness indistinguishable. Hence, I”’s view is
independent of A’s choice of x with overwhelming probability. Thus we have x” # x

with probability at least 1/2. In this case A outputs z = x —x” and solves SIS, ;,. D

We note that the above proof is extended into multi-user settings as in the proof of
Lyubashevsky [14].

5 An Ad Hoc Anonymous Identification Scheme

We next construct our AID scheme based on GapSVP. First, we sketch a basic idea for
our construction: Let A be a system parameter. Each user has a secret key x; € B(m, w)
and a public key y; = Ax;. In the AID scheme, a group is specified by a set of public keys
(1, - - -, y1) of the members. Let e; ; denote an [-dimensional vector (0, ..., 0, 1,0, ..., 0)
whose i-th element is 1. The prover in the group, who has a secret key x;, wants con-
vinces the verifier that he/she knows that x” := x; o —e;; such that [Ay; ... y/]x' =0
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and x; € B(m,m/2). Changing the parameters and using Stern’s protocol, the prover
can convinces the verifier that he/she has x” such that [Ay; ... y;,]Jx’ = 0, the numbers
of +1 in x’ is m/2, and the numbers of —1 in x’ is 1. Additionally, we force the prover
to prove that x’ is in the form x” = x; o —e;;. To do so, we divide a permutation 7 in
Step P1 into two permutations.

Let 7, be a permutation over [m] and 7, be a permutation over [/]. For a permutation
mover [m+ [], we denote © = 7, © 7r; if

(1 2 - m m+1 m+2 -+ m+l
"\ m2) -+ m(m)) \m+ (D) m+ w1 (2) - m+w (D)

For any 7, and 7, we have (1, @ 1,)™' = n,' @7, '. For any x;, € Z" and x, € Z', if
7 = 1, O m; then m(xy, o x;) = mu(xp) o m(x,).

We here construct an AID scheme based on GapSVP. Similarly to the ID scheme in
Section[] the protocol is repeated r = w(log ) times in parallel to achieve exponentially
small soundness error. As in the previous section, we hide randomness in Com, .

SetUp: Same as SetUp of the protocol in Sectiond]

Reg: Same as KG of the protocol in Sectiond]

P, V: The common inputs are A and (yi, .. .,Y;). The prover’s auxiliary input is x; for
some i € [[]. Let A’ :=[Ay; ...y/]and x := x; o —e;;. We write Com instead of
Com, for ease of notation. They interact as follows:

Step P1: Choose random permutations 7, over [m] and &, over [/]. Let 7 = m, O 7,.
Choose a random vector r € Zfl”” . Send commitments ¢y, ¢», and c3 as
- ¢1 = Com(my, 7, A'r),
- ¢z = Com(n(r)),
— ¢3 = Com(n(x + r)).
Step V1 Send a random challenge Ch € {1,2,3} to P.
Step P2
— If Ch = 1, reveal ¢; and c¢3. Send s = n(x) and ¢ = n(r).
— If Ch =2, reveal ¢y and ¢,. Send ¢, = 1y, ¢y = 1, andu = x + r.
— If Ch = 3, reveal ¢y and c¢3. Send ¥y, = 7y, Yy = 7, and v = r.
Step V2
— If Ch = 1, check that ¢; = Com(#), ¢c3 = Com(s + ), and s is in the form
s, o —e;; for some j and s, € B(m,m/2).
— If Ch = 2, check that ¢; = Com(¢p, ¢, A’'u) and c3 = Com((¢y, © ¢;)(u)).
— If Ch = 3, check that ¢; = Com(yy, ¥, A”) and c; = Com((¥;, © ¥,)(v)).
Output Dec = 1 if all checks are passed, otherwise output Dec = 0.

The security of the above protocol is stated as follows. We omit the proof, since it is
similar to the proof of Theorem 4.2

Theorem 5.1. Let m = m(n) and q = q(n) be polynomially bounded functions satisfy-
ing the conditions that m > 10nlogq and q"/ |B(m,m/2)| is negligible in n. Assume
that there exists an impersonator I that succeeds impersonation under concurrent
chosen-group attack with non-negligible probability. Then there exists a probabilistic
polynomial-time algorithm A that solves SIS;M '

Combining Theorem[3. ] with Theorem[3.1] we obtain the following theorem.
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Theorem 5.2. For any m(n) = O(nlogn), there exist g(n) = on?? logn) and y(n) =
O(n \/log n) such that q" [ |B(m, m/2)| is negligible in n and the above scheme is secure
against impersonation under concurrent chosen-group attack if GapSVPi is hard in the
worst case.

The statistical anonymity of the above scheme follows from witness indistinguishability
of the protocol.
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