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Summary. A multivariate public key cryptosystem (MPKCs for short) have a set of
(usually) quadratic polynomials over a finite field as its public map. Its main security
assumption is backed by the NP-hardness of the problem to solve nonlinear equations
over a finite field. This family is considered as one of the major families of PKCs that
could resist potentially even the powerful quantum computers of the future. There
has been fast and intensive development in Multivariate Public Key Cryptography
in the last two decades. Some constructions are not as secure as was claimed initially,
but others are still viable. The paper gives an overview of multivariate public key
cryptography and discusses the current status of the research in this area.
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1 Introduction

As envisioned by Diffie and Hellman, a public key cryptosystem (hereafter
PKC for short) depends on the existence of class of “trapdoor one-way func-
tions”. This class and the mathematical structure behind it will determine all
the essential characteristics of the PKC. So for example behind elliptic cryp-
tography is the elliptic curve group, and behind NTRU stands the structure
of an integral lattice.

Multivariate (Public-Key) Cryptography is the study of PKCs where the
trapdoor one-way function takes the form of a multivariate quadratic polyno-
mial map over a finite field. Namely the public key is in general given by a
set of quadratic polynomials:

P = (pl(wla"'vwn)v"'apm(wlv"'7wn))7

where each p; is a (usu. quadratic) nonlinear polynomial in w = (wy, ..., w,):

k= Pr(W) := ZPisz‘ + ZQikw? + ZRijkwiwj (1)

i>j
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with all coefficients and variables in K = Iy, the field with ¢ elements. The
evaluation of these polynomials at any given value corresponds to either the
encryption procedure or the verification procedure. Such PKCs are called
multivariate public key cryptosystems (hereafter MPKCs). Inverting a mul-
tivariate quadratic map is equivalent to solving a set of quadratic equations
over a finite field, or the following problem:

Problem MQ@: Solve the system p;(x) = p2(x) = -+ = pp(x) = 0, where
each p; is a quadratic in x = (z1,...,2,). All coefficients and variables
are in K = F,, the field with g elements.

MQ is in general an NP-hard problem. Such problems are believed to be
hard unless the class P is equal to N P. Of course, a random set of quadratic
equations would not have a trapdoor and hence not be usable in an MPKC.
The corresponding mathematical structure to a system of polynomial equa-
tions, not necessarily generic, is the ideal generated by those polynomials.
So, philosophically speaking, multivariate cryptography relate to mathemat-
ics that handles polynomial ideals, namely algebraic geometry.

In contrast, the security of RSA-type cryptosystems relies on the complex-
ity of integer factorization and is based on results in number theory developed
in the 17" and 18 centuries. Elliptic curve cryptosystems employ the use
of mathematics from the 19" century. This quote is actually from Whitfield
Diffie at the RSA FEurope conference in Paris in 2002. At least Algebraic Ge-
ometry, the mathematics that MPKCs use, is developed in the 20" century.

Since we are no longer dealing with “random” or “generic”’ systems, but
systems where specific trapdoors exist, the security of MPKCs is then not
guaranteed by the NP-hardness of M@, and effective attacks may exist for any
chosen trapdoor. The history of MPKCs therefore evolves as we understand
more and more about how to design secure multivariate trapdoors.

Sec. 2 is a sketch of how MPKCs work in general. Sec. 3 gives examples of
current MPKCs. Sec. 4 describes the known trapdoor constructions in some-
what more detail. Sec. 5 describes the most important mode of attacks. The
last section will be a short discussion about future development.

2 The Basics of Multivariate PKCs

After Diffie-Hellman [28], cryptographers proposed many trapdoor functions.
Most of these were forgotten and RSA became dominant. The earliest pub-
lished proposals of MPKCs scheme by Shigeo Tsujii and Hideki Imai, seemed
to have arisen around this time. They are independently known to have worked
on this topic in the early 1980s. Certainly lectures are given on this topic no
later than 1983. However, for several years, their work were not published in
anything other than Japanese, and remained largely unknown outside Japan.

As far as we know, the first article written in English describing a PKC
with more than one independent variable may be the one from Ong et al
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[78], and the first use of more than one equation is by Fell and Diffie [52].
The earliest attempt bearing some resemblance to today’s MPKCs (with 4
variables) seems to be [71]. In 1988, the first MPKC in the modern form
appears [70]. It seems as if basic construction described below (cf. Sec. 2.1)
has not changed for 20 years.

2.1 The Standard (Bipolar) Construction and Notations

Even if we restrict ourselves to cryptosystems for which the public key is a
set of polynomials P = (p1,..., pm) in variables w = (w1, ..., w,) where all
variables and coefficients are in K = F,, the way to hide the trapdoor is not
unique.

However, extant MPKCs almost always hide the private map Q via com-
position with two affine maps S,T. So, P =T o0 Qo S : K" — K™, or

P:w= (wl,...,wn)'iX:MsW—I—cS»%y»Lz:MTy—i—cT: (21, 2m)
(2)

In any given scheme, the central map Q belongs to a certain class of
quadratic maps whose inverse can be computed relatively easily. The maps
S, T are affine (sometimes linear) and full-rank. The z; are called the central
variables. The polynomials giving y; in x are called the central polynomials;
when necessary to distinguish between the variable and the value, we will
write y; = ¢;(x). The key of a MPKC is the design of the central map.

The public key consists of the polynomials in P. In practice, this is always
the collection of the coefficients of the p;’s, compiled in some order conducive
to easy computation. Since we are doing public-key cryptography, P(0) is
always taken to be zero, hence public polynomials do not have constant terms.

The secret key consists of the informations in S, T, and Q. That is, we
collect (Mg',cs), (M;',cr) and whatever parameters there exist in Q. In
theory one of cg and cr is extraneous but we keep it anyway.

To verify a signature or to encrypt a block, one simply computes z = P(w).
To sign or to decrypt a block, one computes y = T~ 1(z), x = Q !(y) and
w = S7!(x) in turn. Notice that these may be only one of the many pre-
images, not necessarily an inverse function in the strict sense of the word.

We summarize the notations used in Table 1 and will henceforth use it
consistently to make our exposition easier to understand. And we summarize
operating details below so that the reader will have some basic sense of about
how these schemes can be applied practically.

Cipher block or Message digest Size: m elements of F,

Plaintext block or Signature Size: n elements of F,

Public Key Size: mn(n + 3)/2 F,-elements, often stored in log-form

Secret Key Size: Usually (n? +m? + [# parameters in Q]) Fy-elements, of-
ten stored in log-form
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o the power in a C™* construction
a,b,c constant vectors
cs,Cr constant parts of linear maps S, T
C* = (ci, ¢3,..., i) the Matsumoto-Imai map Cjf,, o : x+—y =x7 "' in
Fyn
DF (symmetric) differential of the function/map F

D, Dyey, and Dx,
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degree in system-solving degree, operating degree of
F4/Fs and XL

finite (Galois) field of ¢ elements, any representation
of

sometimes, a generator of K =,

symmetric matrices for quadratic part of p; (or z;) in
w;

index variables, k often := [L : K], dimension of L over
K

denoting a kernel

kernel of the symmetric matrix denoting quadratic
part of f as function of v.

the base field, usually =,

[F x, a field that is larger than K

symmetric matrices for the quadratic part of y; in x;
matrices of linear maps S, 7.

number of equations

a multiplication, as a unit of time

number of variables

standard big-O, small-o, Omega notations

number of oil variables

Matsumoto-Imai notation for coefficient of w; in zx
public map

Matsumoto-Imai notation for coefficient of w? in z
central map

the size of the base field

Matsumoto-Imai notation for coefficient of w;w; in 2y
|R|, the number of relations (equations) in XL or Fy4
Set of equations in XL or Fu

usu. the minimum rank or # of removed (minus) equa-
tions

the initial linear map, S(w) = x = Mgw + cg

the final linear map, T'(y) = z = Mry+cr, or #terms
in XL (|7 below)

set of terms (monomials) in XL or Fyu

often the high rank parameter or # of Rainbow stages
number of vinegar variables
structure of Rainbow (v1, o1, ...
signature or plaintext block
elements in intermediate fields
central variables, input to central map Q
output of central map Q, central polynomials
digest or ciphertext block

,0u), 05 1= Vig1 — U;

Table 1. Notations and Terminology
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Secret Map Time Complexity: (n? + m?) F,-multiplications, plus whatever
time it is needed to invert Q

Public Map Time Complexity: About mn?/2 F -multiplications

Key Generation Time Complexity: n? times the invocation cost of P; be-
tween O(n*) and O(n®)

We immediately see the major disadvantage with MPKCs: Their keys are
very large compared to traditional systems like RSA or ECC. For example, the
public key size of RSA-2048 is not much more than 2048 bits, but a current
version of the Rainbow signature scheme has n = 42, m = 24, ¢ = 256, i.e.,
the size of the public key is 22680 bytes, above the 16kB of flash memory that
some small smartcards have. Private keys are smaller, but still formidable for
small embedded devices which has memory constraints. However operating
on units hundreds of bits long (for Elliptic Curve groups and especially RSA)
is prohibitively expensive for embedded devices without a co-processor. So
MPKCs have some compensating advantages and still has potential on those
devices.

2.2 Other Constructions

It should be noted that MPKCs are also sometimes called trapdoor M@
schemes for a reason, all the construction currently used do quadratic public
keys for speed reasons — with higher order terms, the explosion in number of
coefficients offset any possible gain in efficiency. Furthermore, in the bipolar
form, higher-order terms may in fact hurt the security.

Here we cover two alternatives in which multivariate polynomials can be
used for PKCs. These are called the Implicit Form and Isomorphisms of Poly-
nomials.

Implicit Form MPKCs
The public key is a system of [ equations

,P(W7Z) = P(w17" '7wn7zl7" '727”/) = (pl(w7 Z)""’pl(w7z)) = (07"' 50)7
(3)
where each p; is a polynomial in w = (wy,...,w,) and z = (21,..., 2, ). This
P is built from the secret Q
Q(X7Y) = Q(Ila oy Ty Y1y e 7ym,) = (Q1(Xa}")7- H 7QZ(X7Y)) = (07 .. 50)7

where ¢;(x,y) is polynomial in x = (z1,..., ),y = (y1,..., Ym) such that

e For any given specific element x’, we can easily solve the equation

Q(x',y) = (0,...,0); (4)
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e for any given specific element y’, we can easily solve the equation
Qx,y') =(0,...,0), ()
e (usu.) Eq. 4 is linear and Eq. 5 is nonlinear but specialized to be solvable.
Now, we can build
P =Loh(S(w), T (z)) =(0,...,0),

where S, T are invertible affine maps and L is linear. To verify a signature
w with the digest z, one checks that P(w,z) = 0. If we want to use P to
encrypt the plaintext w, we would solve P(w,z) = (0,...,0), and find the
ciphertext z. To invert (i.e., to decrypt or more likely to sign) z, one first
calculates y’ = T~1(z), then plugs y’ into the equation (5) and solve for x.
The result plaintext or signature is given by w = S71(x).

To recap, in an implicit-form MPKC, the public key consists of the
[ polynomial components of P and the field structure of k. The secret
key mainly consists of L, S and 7. Depending on the case the equation
Q(X,Y) = (0,...,0) is either known or has parameters that is a part of
the secret key. Again the basic idea is that S, T', L serve the purpose to “hide”
the equation Q(x,y) = 0, which otherwise could be easily solved for any y.
Mixed schemes are relatively rare, one example being Patarin’s Dragon [82].

Isomorphism of Polynomials

The IP problem originated by trying to attack MPKCs by finding the secret
keys. Let Fl, FQ with
Fi(xlauwxn):(fi17~"7fim)7 (6)
be two polynomial maps from K™ to K. The IP problem is to look for two
invertible affine linear transformations S on K™ and T over K™ (if they exist)
such that

Fi(z1,...,20) =T o FyoS(z1,...,2,). (7)
It is clear that this problem is closely related to the attack of finding private
keys for a MPKC, for example the Matsumoto-Imai cryptosystems, and was
first proposed by Patarin [83|, where the verification process is performed
through showing the equivalence (or isomorphism) of two different maps. A
simplified version is called the isomorphism of polynomials with one secret
(IP1s) problem, where we only need to find the map S (if it exists), while
the map T is known to be the identity map. More later in this direction
are [51,57,68,86,87].

3 Examples of Multivariate PKCs

In this section, we bring to you three current MPKCs; each with special prop-
erties, advantages and disadvantages. We don’t try to discuss their security
in this section — that will be left until the next section.
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Scheme result|SecrKey|PublKey|KeyGen|SecrMap|PublMap
RSA-1024 1024b| 128 B| 320 B| 2.7sec| 84 ms| 2.0 ms
ECDSA-Fy163 320b 48 B 24 Bl 1.6 ms| 1.9 ms| 5.1 ms

PMI+(136,6, 18, 8) 144b| 5.5 kB| 165 kB| 1.1 sec| 1.23 ms| 0.18 ms

Rainbow (2%, 18,12, 12)|| 336b[ 24.8 kB[ 22.5 kB| 0.3 sec| 0.43 ms| 0.40 ms

Rainbow (27,24, 20,20)|| 256b| 91.5 kB| 83 kB[ 1.6 sec| 0.93 ms| 0.74 ms

QUARTZ 128b| 71.0 kB| 3.9 kB| 3.1 sec| 11 sec| 0.24 ms

Table 2. Current Multivariate PKCs Compared on a Pentium III 500

3.1 The Rainbow (28,18,12,12) Signature Scheme

We characterize a Rainbow [39] type PKC with u stages:

The segment structure is given by a sequence 0 < v1 < vy < +++ < VUyq1 =
n.

Forl =1,...;u+1, set Sy := {1,2,...,u} so that |S;| = v; and Sy C
S; C -+ C Sys1 = S. Denote by o := vy — v, and O; := Sj4q \ ) for
l=1---u.

The central map Q has component polynomials ¥y, +1 = Gu,+1(X), Yo, 42 =
Qo +2(X)s oy Yn = qn(X) — notice unusual indexing — of the following
form

Uy

Yk = Qk(x) = ZZag)xsz + Z 55”1@ ifke O = {’Ul +1- "Ul+1}.

i=1 j=i i<viiq

In every qi, where k € Oy, there is no cross-term x;x; where both i and j
are in O at all. So given all the y; with v; <7 < w41, and all the z; with
J < vy, we can compute Ty, 41, ..., Ty, -

To expedite computations, some coefficients (agf)) may be fixed (e.g., set
to zero), chosen at random (and included in the private key), or be inter-
related in a predetermined manner.

To invert Q, determine (usu. at random) x1,...x,,, ie., all zx, k €
S1. From the components of y that corresponds to the polynomials
Py, t15 -+ - Dy, » We Obtain a set of 01 equations in the variables zy, (k € Oy).
We may repeat the process to find all remaining variables.

For historical reasons, a Rainbow type signature scheme is said to be a

TTS [107] scheme if the coefficients of Q are sparse. We suggest a reference
Rainbow design with the following concrete parameters: ¢ = 256, n = 42,

m
security

= 24, structure sequence (18,12,12) with no omitted central terms, expected
280 multiplications in Fos. The size of the public key is 22680 bytes,

the private key is 17748 bytes. It’s called Rainbow (28,18, 12,12) for obvious
reasons. A smaller version with Foa as the base field is also given in the table.
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3.2 PMI+(136, 6, 18, 8), a Perturbed Matsumoto-Imai Plus

We may always represent the field Fy» as an n-dimensional vector space over
F, via Fn =2 F,[X]/P(X), where P is any irreducible polynomial of degree
n. Once we select P, we will then hereafter identify Fyn with (F,)"”. The map
induced by x € Fyn — x7 is then a linear transformation. We thus know that
amap ¢ :x — y = x? 1 is homogeneously quadratic in x. Furthermore, if
and only if ged(¢® 4+ 1,¢™ — 1) = 1, then this map is invertible. In fact we can
find an h such that g~*(y) = (y)". This g will be termed C;, . where the
parameters may be omitted if context permits. We also write its components
as C* = (¢f, ¢b,..., c¢). That is the central map of C* or Matsumoto-Imai
itself.

For Perturbed Matsumoto-Imai Plus we both perturb and add polyno-
mials. That is, we set ¢ = 2 (to make guessing easier later) and choose
v = (v1,...,0), & collection of r linear forms in x, and f = (f1,..., fn), a
random n-tuple of quadratic functions in v. Further take g = (g1, ..., ga) be
an a-tuple of random quadratic functions of x. We define Q := (C* + f(v)) | g.
That is, @ is a map from Fon to Fynta whose components are given by

_Ja®+fivx),i=1-n;
Qi(X) = {gi—n(x)v ti=n+1---n+a.

How do invert Q7 That is, if y = Q(x), how would we then find x? First, we
toss out the last a components, and randomly guess at the perturbation term
v(x). That is, let h is the exponent that can be used to invert C*. If y’ is the
first n components of y, for all possible b € Fyr we compute x = (y' — b)h
and check to see whether v(x) = b. Since inverting C* is relatively slow, we
can say that the perturbation made it 2" times slower to decrypt than the
corresponding C*. The last a components can also ensure the correctness of
the ciphertext.

It remains to give the system some concrete parameters. At the moment,
our choices are as in [32]: (n, r, a, ) = (136, 6, 18, 8). The public key size
is n(n + 1)(n + a)/2 bits or 167688 bytes; the secret key is (n + a)? + n? +
nr(r+3)/2 + an(n + 1)/2 bits or 26524 bytes. Design security is 253

3.3 The Quartz or HFEv-(2,129,103, 3,4) Signature Scheme

An immediate extension of the C* concept is Hidden Field Equations, intro-
duced by Patarin [83]. In place of the C* polynomial, we would substitute this

Q:xe(F)'r—y= Z al-jxqi“]j + Z bixd + ¢,
0<i,j<n 0<i<n
Where the coefficients are chosen more or less at random. It is also quadratic
in the components of x. Computing P~!(y) by the Berlekamp Algorithm has
time complexity O(nd?logd + d*) where d is the maximum degree (= 129
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in Quartz). Quartz uses the vinegar modification suggested by Kipnis and
Patarin [64], with an auxiliary variable X which occupies a subspace of small
rank in Fj as follows:

Qx, %) = aggx? T3 byx =T+ x4 bt Y Bl e
" & irj i i
(8)

The public key of the Quartz signature scheme uses ¢ = 2, n = 103,
dimension 4 for the X subspace, and furthermore uses the minus variant by
removing three polynomials from the public key. So there are 107 variables
and 100 equations. The actual verification procedure in Quartz is even more
complex [21], involving using the public map four times to avoid birthday
attacks, since the design goal is a short signature (here 128 bits) and not
speed. Despite this detail, the ability to solve such system still enables one to
forge a signature.

The secret key of Quartz is 3kB, the public key size is (100 x 107 x 108/2)
bits = 71kB. Design security is 25°.

3.4 Some Computational Aspects of MPKCs

Many computations of MPKCs will be conducted in K = [F,. Often ¢ is a small
power of 2 so that each element in K can be stored in a byte and addition rep-
resented by bitwise exclusive-or. To multiply, normally one choose a generator
g in K such that all non-zero = can be written as x = ¢° (this i is also denoted
log, z). We build logarithm and exponential tables and evaluate multiplica-

tions between non-zero z and y as g% **1°8, %) Doing each multiplication
from scratch via this method takes three table lookups and two conditional
jumps and is comparatively time-consuming. This is why time-complexities
are often counted in K-multiplications. To save time, elements of For or Fos
that will only be used for multiplication are always stored as logarithms, for
example coefficients.

For today’s highly pipelined CPUs, accessing memory is particularly ex-
pensive, and buffer memory for the most often used data (known as L1 cache
memory) is limited to between 32kB and 256kB. Therefore complete multi-
plication tables of size ¢* are almost never used (except maybe when ¢ = 16).

Things change when working with small microcontrollers. For example,
the table exponentials is usually 2¢ K-elements long. But for 8-bit micro-
controllers, one can’t have indices larger than a byte and hence evaluate
(logg x + log, y)mod 255 using a single extra ADC (add with carry) instruc-
tion instead.

SIMD (single instruction, multiple data) is an important factor. It is very
important to pack data so that one can make use of the 64- and 128-bit-wide
XOR instructions, especially if ¢ = 2 or 4 (it’s called “bit-slicing”, cf. [7]).

Operations in an extension L. = Fy as vectors over K = Fy is frequent
(e.g., in big-field MPKCs). A product in 1L is like multiplying two degree < n
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polynomials over . Using schoolbook multiplication and then reducing the
terms with degree > n takes at most 2n® multiplications. A more advanced
method like Karatsuba takes less time. A division is a little slower than a
multiplication.

It is also not a trivial issue to build keys for an MPKC. The classical way
to compute the keys is interpolation [70]. In general, one select Mg, cg, Mr
plus whatever parameters in Q, if any. We can set

cr := MrQ(cs),

which makes all the constant terms zero. Now we can evaluate P(w) = T o
Qo S(w) for any w. Write the Matsumoto-Imai form public key (Eq. 1) as:

2 = Z w; | P 4+ Qipw; + Z Rijrw; | - ©)

j<i

In Fy, 2% = 2 for any z, so there is no Q;; term. One also note that to evaluate
the public key one need to do one F, multiplication per element of the public
key. Let b; € Fy be the unit vector in the i-th axis, and for ¢ > 2, we choose
any a # 0,1 and get

Qi = (a(a —1))"" (pr(ab;) — api(b;))
Pix, := pr(bi) — Qi (10)
Riji = pr(bi +b;) — Qi — Qjx — Pir. — P
For Fs, it becomes

Py = pr(by)
Rijk = pk(b1 + b]) - Pl — Pj

So key generation means invoke n? times the combination 70 Q o S. We can
see that both S and T takes about n? time. If we write Q coefficientwise, it
would take n?/2 multiplications. So we see that worst case key generations
takes about n°/2 multiplications in K = F,. In certain situations, it is closer
to O(n%).

Let’s demonstrate this for a C* based scheme where the rate-determining
mechanism is the evaluation of C* : x € L = Fpn — y = x4 1 There is a
linear map L in (IF,)"™ that maps x — x?". This we precompute. Evaluating
Lx takes n? multiplications in F,. Then the product in L is 2n2 multiplications
max.

Other big-field variants based on /IC and HFE have a similar property. For
single-field MPKCs where key generations takes close to O(n?), see Sec. 4.4.

4 Basic Constructions and Variations

MPKCs are built in many ways. We aim to give you the major types of
constructions, maybe accent some important associated algebraic characteristics
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(like this), and common variations thereof. A summary of variants is given in
Table 3.

4.1 Historical Constructions

The first attempt to construct a multivariate signature [78,79] is based on a
quadratic equation
y=1a?+ar2 (modn), (11)

where n = pgq is an RSA modulus, the product of two large primes. To sign
a message y, we need to find one of the many (about n) solutions (a1, zs)
to Eq. 11, which is easy if we know the factorization of n. The public key
is essentially the integer n and Eq. 11. Since the security relies on the fac-
torization of m, this system is really a derivative of RSA, though it indeed
initiated the idea of multivariate cryptosystems. This system was broken by
Pollard and Schnorr in [89], where they found a probabilistic algorithm to
solve Eq. 11 for any y without knowing the factors of n. Assuming the gen-
eralized Riemann hypothesis, a solution can be found with a time complexity
of O((logn)?loglog |k|) in O(logn)-bit integer operations.

The idea of Diffie and Fell [52] was to build a cryptosystems using the
composition of invertible linear maps and simple tame maps of the form
T(x1, 22) = (x1 + g(x2), 22), where g is a polynomial.

Tame maps are easily invertible and hard to unscramble when composed
with each other, however [52] used only two variables and equations; not
surprisingly, the authors concluded that it appeared very difficult to build
such a cryptosystem with practical value that is both secure and has a public
key of practical size.

An attempt to build a true multivariate (with four variables) public key
cryptosystem were also made by Matsumoto, Imai, Harashima and Miyagawa
[71], where the public keys are given by quadratic polynomials. However it
was soon defeated [77]. People soon realized that more than 4 variables are
needed.

4.2 Triangular Constructions

Of course, the tame maps used in [52] are a special case of the “triangular”
or de Jonquiéres maps from algebraic geometry, which are more generally
defined by:

J(xla e amn) = (xl +gl(l'27 .. .,Z‘n), ceey Tp—1 +gn—1($n)7xn)> (12)

where the g; are arbitrary polynomial functions. We note that J can be easily
inverted assuming that the g; are known. The invertible affine linear maps over
k™ together with the de Jonquiéres maps belong to the family of so-called tame
transformations from algebraic geometry, including all transformations that
arise as a composition of elements of these two types of transformations. Tame
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transformations are elements of the group of automorphisms of the polynomial
ring k[z1,...,x,]. Elements in this automorphism group that are not tame
are call wild. Given a polynomial map, it is in general very difficult to decide
whether or not the map is tame, or even if there is indeed any wild map [75], a
question closely related to the Jacobian conjecture. This problem was possibly
solved in 2003 when [93] claims to prove that the Nagata map is wild.

The first attempt in the English literature with a clear triangular form is
the Birational Permutations construction by Shamir [92]. However, triangular
constructions were earlier pursued unsuccessfully in Japan under the name *
sequential solution type systems” [61,95,97]. Their construction is actually
even more general in the sense that they use rational functions instead of just
polynomial. These works are not so well-known, partially because they were
in Japanese.

Triangular maps are lightning fast to evaluate and to invert. However, they do
have another definitive characteristic, an algebraic one, that must be accounted
for. On the small end of a triangular system, so to speak, a variable is mapped to
some simple function of itself. On the bigger end, one variable appears in a single
equation only. The other equations involve successively more variables.

In other words, let us write the quadratic portion of the central polynomials
yi = q;(x) as bilinear forms, or take the symmetric matrix denoting the symmetric
differential of the central polynomials as in

then rank M; increases monotonically as i increases. In fact, if ¢ = 2F, the
equation dealing with z; always has rank zero. Furthermore, ker M; C ker My - - - .
This is the chain of kernels as pointed out by Coppersmith et al [18].

This rank and chain relation is invariant under invertible map S. That is,
consider y; as a function of w, the corresponding differential is b” (ML M;Mg) x.
For the most part, Mg is full-rank, hence rank (M%M;Mg) = rank M;.

This leads to what is known as rank attacks based on linear algebra [18,58].
Therefore triangular/tame constructions can’t be used alone. Some ways to
design around this problem are lock polynomials (Sec. 4.6), solvable segments
(Sec. 4.4) and plus-minus (Sec. 4.5).

4.3 Big-Field Families: Matsumoto-Imai (C*) and HFE

Triangular (and Oil-and-Vinegar, and variants thereof) systems are sometimes
called “single-field” or “small-field” approaches to MPKC design, in contrast
to the approach taken by Matsumoto and Imai in 1988 [70]. In such “big-
field” variants, the central map is really a map in a larger field L, a degree n
extension of a finite field K. To be quite precise, we have a map Q : L — L
that we can invert, and pick a K-linear bijection ¢ : . — K". Then we have
the following multivariate polynomial map, which is presumably quadratic
(for efficiency):
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Q=¢poQog¢ L (14)

then, one “hide” this map Q by composing from both sides by two invertible
affine linear maps S and 7" in K", as in Eq. 2.

Now we briefly recap how C* is defined earlier (cf. Sec. 3.2). Matsumoto
and Imai suggest that we pick a K of characteristic 2 and this map Q

Q:xr—y=x!T1", (15)

where x is an element in [, and such that ged(1 + g%, ¢™ — 1) = 1. The last
condition ensures that the map Q has an inverse, which is given by

——1

Q9 (x)=x", (16)

where h(1 + ¢*) = 1mod (¢" — 1). This ensures that we can decrypt any
secret message easily by this inverse. For the rest of this chapter, we will
simply identify a vector space KF with larger field L, and Q with Q, totally
omitting the isomorphism ¢ from formulas. When necessary to distinguish the
inner product in a vector space over K and the larger field L, the former will be
denoted by a dot () and the latter an asterisk (x). One more important thing
1s that the map Q is always quadratic due to the linearity of the Frobenius
map x — x7°.

A significant algebraic implication of C* and Eq. 15 is y?"—1 = x¢°*~1

or
xy? =x7 y. (17)

This enabled Jacques Patarin [81] to cryptanalyze the original C* with
his bilinear relations (see Sec. 5.1). Though the original idea of C* failed,
it has inspired many new designs, mostly from Patarin and his collaborators
(cf. Secs. 4.5 and 4.8).

The most significant of the C* derivatives is likely HFE (Hidden Field
Equations). As mentioned in Sec. 3.3, instead of using for Q the monomial
used by C*, we would substitute the extended Dembowski-Ostrom polynomial
map:

Q:xeL=Fr—y= Z aijxqiﬂj + Z bx? + c, (18)

0<i<j<r 0<i<r

This map is in general not one-to-one; some kind of checksum is required
to identify the inverse from one of a number of possible candidates. Inverting
Q is equivalent to solving a univariate equation of high degree in L. It is
fairly well-studied and straightforward to implement but not very fast, using
some version of the Berlekamp (or say Cantor-Zassenhaus) algorithm [8,14,56].
Typically, the cost of this solution is O(nd? log d+d?), where d is the maximum
degree of Q.

One might conclude, then, that we should have as low d as possible, or
since usually d = 2¢" or ¢" 4 1, as low r as possible. It turns out not to be like
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this. Just as Eq. 15 intrinsically meant that the C* map has a rank of 2 and
leads to Eq. 17 and all the known cryptanalysis of C* related systems, Eq. 18
fundamentally is responsible for all the algebraic properties of HFE.

A key fact is that the intrinsic rank of the map is bounded by r, and usually
achieves that value for randomly chosen parameters. This rank is very closely re-
lated to the complexity of current attacks [23,50]. For example, the HFE Challenge
1 solved by Faugere and Joux [50] has an intrinsic rank of 4.

HFE with a high d is unbroken, although it can be really slow to de-
crypt/invert. Quartz probably set a record for the slowest cryptographical
algorithm when submitted to NESSIE — on a Pentium IIT 500MHz, it took
half a minute to do a signature [since improved to 10s with better program-
ming].

Finally, C* and HFE each can be modified by techniques mentioned else-
where (Plus-Minus, vinegar variables, and internal perturbation). Also related
are the (IC system (Sec. 4.7) and probabilistic big-field based MPKCs [59].
One can safely say that all in all, C* really spawned a lot of useful research.

4.4 Unbalanced Oil and Vinegar and Derivatives

The Oil and Vinegar and later derived unbalance Oil and Vinegar schemes
[64,80] are suitable for signatures. This construction is inspired by the idea
of linearization equations (cf. Sec. 4.3). Suppose v < n is an integer and
m = o = n — v. The variables x1,...,x, are termed vinegar variables and
Tyt1,--., Ty 01l variables.

Take a map Q : K* — K" with form y = 9Q(x) = (q1(x),..., ¢.(X)),

where
v n
q(x) = ZZag)xixj, =10

i=1 j=i
and all coefficients are randomly chosen from the base field K. Here we notice
that there are no quadratic terms of oil variables, which means the oil variables
and vinegar variables are not fully mixed (like oil and vinegar in a salad
dressing) and this explains the name of this scheme.

The public map P is constructed as P = Q o S, where S is an invertible
linear map. Here the change of basis is a process to “mix” fully oil and vinegar,
so one can not see what is oil and what is vinegar. Note that with the pure
OV and UOV constructions, we need not use a 7T, and it is in fact usually
omitted.

The original Oil and Vinegar signature scheme has m = o = v = n/2.
When o < v, it becomes the unbalance Oil and Vinegar signature scheme.
The public key are P = (p1,...,D), the polynomial components of P. The
secret key consists of the linear map S and the map Q.

Given a message y = (y1,...,%), in order to sign it, one needs to try to
find a vector w = (wy, . .., wy) such that P(w) = y. With the secret key it can
be done easily. First, one guesses values for each vinegar variable x1, ..., x,,
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and obtains a set of o linear equations with the o oil variables 11, ..., Ty.
With high probability it has a solution. If it does not have a solution, one
guesses at the vinegar variables again until one finds a pre-image of a given
element in K°. Then one applies S~!. To check if w is indeed a legitimate
signature for y, one only needs to get the public map P and check if indeed
P(w) =y.

What algebraic property is most significant in an unbalanced Oil-and-Vinegar
system? No doubt the lack of pure oil cross-terms. Equivalently, if we have an
UQV structure, then the quadratic part of each component ¢; in the central map
from x to y, when expressed as a symmetric matrix (cf. Eq. 13), looks like

Y (@) (@) (4) 7

Gy o Qg (O g, Qg
o Le o
M; = (O;)“ 8_3”’ Qo041 Gon (or for short, [%]) . (19)
av-i—l,l, e aU-‘rl,’U} 0 0 *
LW Al 0 - 0 |

We should mention the fact that there are many equivalent keys [103].
Computing the essential part of secret keys is part of the attack of Sec. 5.5.

UOV as a Booster Stage

At some point one would be bound to ask: Suppose we have an MPKC with
m equations in n variables, which is a size too small for our needs. How could
we reasonably make it m + v equations in n + v variables? Or even m + v’
equations in n + v variables, where v/ > v? How can we build these “booster
stages” The answer today is: What you can do seems limited to:

e Do not add extra variables, that is “Plus” (Sec. 4.5), with limited use.
Solve linear equations for extra variables. That is a UOV stage, like rain-
bow.

Solve higher-degree equations. The cost is prohibitive.
Use brute-force guessing. Proposed [62, 63] and promptly broken [102].

By stacking several layers of Unbalanced Oil-Vinegar together for an easily
invertible central map, we arrive at the Rainbow-type constructions [39]. To
recap (Sec. 4.4), for a u-stage Rainbow 0 < vq < vy < -+ < Uyy1 = n and

U1 n
Yk = qk(X) = Z Zagf)wlxj + Z Bl(k)x“ lf (Y < k‘ S Vi+1- (20)
1=1 j=1¢ i<’U[+1

Starting from a random choice of initial vinegar variables xi,...,x,,, one
solve for more x;’s in sets of equations until we have all the z;’s. Note that
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the components of y in a Rainbow-type construction is typically written to
have indices v; + 1,..., n. In the pure Rainbow scheme, S and T and the
coefficients o and 8 are totally randomly chosen. The essential structure of
the Rainbow instance is determined by 0 < v; < v9 < -+ < Vyy1 = n
or more often the “Rainbow Structure Sequence” (vi,01, 09,..., 0,), where
0; 1= Vi41 — V5.

What is the main algebraic property of an UOV stage? First and foremost is
that it is of course, a special case of UOV; however, the form of

0,, equations of form [ﬂ%] following m — o,, equations of form {a%}

leads to a different attack of which the reader will be appraised later in Sec. 5.5.

Aside from attacks peculiar to UOV and Rainbow, the Rainbow-type con-
structions also share enough characteristics of triangular schemes, that there
is the need to account for rank-based attacks (Sec. 5.4), such as the two im-
proved attacks in [9,44]. At the moment, none of these attacks are considered
essential.

Sparsity and Speed: TTS

We want the central map and its inverse be fast. However, if a booster stage
can only solve linear systems for x,, 11, ..., Ty, with coefficients determined
by z1,..., &y,, i.e., be like UOV (with 0; = v;41 — v;) in essence, then our
hands are tied. What can we do to speed this up?

1. Setting up the system to be solved takes o;v;v;41 K-multiplications. If we
make the central map sparse, one can make this a small multiple of 022.

2. Solving an o; x 0; system in K takes ~ 0? /3 K-multiplications via Gaussian
elimination. For small 0;, this does not get much faster. It might be faster
as an inversion in an extension field of K. A side effect is also to make a
segment sparse (with any reasonable representation of Fgo; = K%).

TTS (Tame Transformation Signatures) are categorically Rainbow schemes
with a sparse central map, even though the term TTS came first [107].

TTS instances differ widely. The earlier ones known by that name, such
as [16] are close to Triangular-minus. Later they became [107,108] much more
like Rainbow with few terms. The TRMS [100] of Wang et al are of course also
a TTS instance, although they use the larger field structure as above. Having
sparse terms helps a lot: We have less to store in the private key, the private
map becomes a lot quicker to execute, and even key generation is faster, since
when the central map is K" — K™ with sparse terms, then we can do [107]:
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m—1 [
P =Y |(Mr)kn ((Ms)ni + D> p (Ms)ai(es)s + (€5)a(Ms)s:)

h=0 | PTaZg in gn
m—1 [

Qi =) | (M) Y p(Mg)ai(Ms)g;
h=o | P ey in g
m—1 [

Rij ZZ (M1) i Z P (Ms)ai(Ms)gj + (Ms)a;(Ms)g:)
h=0 | P TaZp in qn

What are the drawbacks of TTS? Since TTS (TRMS) can also be viewed as
Rainbow type of signature schemes, they have all the vulnerabilities of Rainbow
structures. Due to their sparsity, there also exist certain extra possibilities of
linear algebra and related vulnerabilities, principally UOV-type vulnerabilities such
as [41].

4.5 Plus-Minus Variations

Minus and Plus are simple but useful ideas, earliest mentioned by Matsumoto,
Patarin and Shamir (probably found independently [85,92]).

Minus for Big-Field Schemes: SFLASH et al

Initially [85], several (r) equations are removed from the public keys in big-
field multivariates. When inverting the public map, the legitimate users take
random values for the missing variables. Minus is very suitable for signature
schemes without even a performance loss, because a document need not have a
unique signature.

However, for encryption this is a significant slowdown, since the missing
coordinates must be guessed. To clarify a little, in theory the public map of an
encryption method should injective or nearly so. If we have to guess r variables
in Fy, we effectively have ¢"*" results, only ¢™ of which should represent valid
ciphertexts, hence the expected number of guesses taken per decryption is ¢".
Hence, decryption is slowed by that same factor of ¢".

Minus or removing some public equations makes a C*-based system much
harder to solve. SFLASH [1,22,84], a C*~ instance with (¢, n,r) = (27,37, 11),
was accepted as an Furopean security standard for low-cost smart cards by
the New European Schemes for Signatures, Integrity and Encryption [76].

However, in 2007, a method was discovered to defeat the SFLASH family
of cryptosystems [46,47]. The key of the attack is to look at the symmetry and
the invariants of the differential of the public map P (Sec. 5.3). If C*-based
signature schemes, it will probably need the new variant called Projection
(Sec. 4.8).
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Plus-Minus for Single-Field Schemes

In the case of Minus as applied to triangular constructions, one need to remove
instead central equations — here, the lowest-ranked ones. Actually, removing
central equations in C* works too.

Just as Minus can remove the equations with smallest ranks from view
and remove the problem at one end of the triangle, Plus is the the obverse:
add random central equations to the original Q; this masks from view the
high-end of the triangle. For encryption methods, this again does not affect
performance much [except for a slightly larger key|; for digital signatures there
is a slowdown as the extra variables again needs to be guessed. Regardless,
Plus-Minus variations defend against attacks that are predicated on the rank
of equations.

As one might well guess, Plus-Minus alone does not make triangular con-
structions safe. Indeed, [58] discuss this in detail and concludes exactly the
opposite: Triangle-Plus-Minus constructions can be broken by very straight-
forward attacks using simple linear algebra. Some more elaborate possibili-
ties [9,44,107] are discussed in the following sections.

4.6 TTM and Related Schemes: “Lock” or Repeated Triangular

PKC’s based on just triangular constructions were not pursued again until
a much more complex defense against rank attacks was proposed, with the
tame transformation method (TTM) of Tsong-Tsieng Moh [72].

One can see that de Jonquiéres maps can be upper triangular as well as
lower triangular. In fact, you can arrange the indices any which way you want.
Moh [72] suggested a construction where the central map Q is given by

Q=JyoJiol(xy,...,xn). (21)

Here J, is a K™ upper triangular de Jonquiéres map and J; is a K" lower
triangular de Jonquiéres map and the linear map I is the embedding of k™ into
k™ Iz, ... x0) = (21,...,20,0,0,...,0). The main achievement of such a
construction is that any non-trivial linear combinations of the components of
Q is quadratic. Moh'’s real trick is actually in using map /. One can see that

Jl OI(xlw",zn) = ($1,$2 +91($1)7-~~,$n +gn—1($1;"'axn—l)a

gn(xlw"7x’n)a"'agm—l('xlw")xn))v

which gives us the freedom to choose any g;, i = n,...,m —1. When decrypt-
ing, one evaluates the de Jonquiéres maps backwards.

The multiplitude of central polynomials of low rank present in published TTM
instances [15,72,74] is the main source of known attacks. [74, Appendix II] gives
you an idea of the polynomials of a TTM instance can look like.

A few examples of such constructions were given and a family of challenges
with monetary award was set up by the US Data Security, Inc. (www.usdsi.
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com). Shortly afterwards Courtois and Goubin [58] used the MinRank method
(cf. Sec. 5.4) to attack this system. MinRank is to look for non-zero matries
with minimum rank in a space of matrices; it is NP-hard in general but can
be easy for special cases. Despite the inventor’s claim that TTM systems
are very secure from all standard attacks, Goubin-Courtois did decrypt a
www.usdsi.com TTM challenge. To maintain fairness in reporting, the author
claimed this to be non-conformant to his conditions of contest. He posted a
new implementation of his scheme [15] soon thereafter. As mentioned above,
other TTM instances had been published [73,74] since, more complex but
mostly resembling the earlier ones.

The idea of sequentially solvable equations (or stages) can also be used in
conjunction with other ideas. Some of the more notable attempts are from L.-
C. Wang, who had written about a series of schemes called “Tractable Rational
Map Cryptosystems” (TRMC) versions 1-4. Names not withstanding, the
versions of TRMC are actually quite distinct. We believe that TRMC v1
is essentially no different from early TTM [15] except for some “gratuitous
incompatibility” in the bijection x +— x2. The central map of TRMCv?2 [98] has
a small random overdetermined block on one end (something like 7 variables
and 11 equations) and the rest of the variables are determined in the triangular
(tame) style. Versions 3 and 4 [99,101] use a similar trick as 3IC (cf. Sec. 4.7).

Although the TTM construction is original and very intriguing, so far
existing constructions of the TTM cryptosystem and related schemes do not
work for public-key encryption. In fact, most of the schemes proposed are not
presented in any systematic way, and no explanation is given why and how
they work. We can tell you a little about why some of these fail, however, in
Secs. 5.1 and 5.4.

More sophistication is needed and we suspect that to create a successful
TTM-like scheme may require deep insight from algebraic geometry.

4.7 Intermediate Fields: MFE and ¢IC

In C* and HFE, we use a big field L. = K", or at least the number of com-
ponents in the big field is close to the number of variables. In Rainbow/TTS
or similar schemes, each component is as small as the base field. It stands to
reason that we can use something in between, as seen below in MFE (Medium
Field Encryption) and ¢/IC (¢-Invertible Cycles) we describe below. Both these
schemes also happen to share a characteristic: the use a standard Cremona
transform in algebraic geometry, where L* := L\{0} for some field L:

(X1, Xa, X3) € (L*)? — (11, Yz, Y3) := (X1 X5, X1 X35, X5 X3) € (L¥)?
(22)
This is a bijection for any field L, and inverts via X; := /Y1Y5/Y3, etc.
Medium Field Encryption

Let L = K* and define Q : L12 — LL'® ag follows:
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Y1 = X1 + X5X5 + X6 X7 + Q;

Yo = Xo + Xo X2 + X10X11 + Q2

Y3 = X3+ X1 Xy + XoX3 +Qs;

Yi = Xh X5+ XoX7; Y5 = X1 X6 + X2 Xs;

Vs = X3X5 + XaXr; Y7 = X3Xg + XuXs; (23)
Yg = Xng + X2X11; Y’Q = X1X10 + X2X12;

Yio = X3Xg + Xy X1 Y1 = X3 X0 + XuXqo;

leg = X5X7 + XQXH; 5/13 = X5X10 + X7X12;

Y4 = XeXg + XgX11; Yi5 = X6 X10 + XsXi2.

Here each Xi and }/l isinlL = Kk Usu. K = F256. Spht Xl, XQ, )(37 Ql, Qg, Q3
into components in K¥, such that ¢} =0, ¢5 = (z1)? and for i = 3--- 3k, ¢/ is

a more or less a random quadratic in variables (x1,...,2;-1).
T Tr+1 T2k+1
T2 Tr+2 L2k+2
Xl = . ) X2 - . s X3 = . 5
| Tk _ | T2k | T3k _
r /77 r ./ r ./ T
q/l Q1 dop11
! /
qs Q42 o412
Q=1 .|, Q=| . |,Q= .
/ / /
L 9k | L 9ok L 93k |

Decrypting MFE: Arrange X; 12 and Yy 15, into L2%2 matrices:

Ay = |:X1 Xz]’ Ay — [X5 X6:|’ Ay — [Xg X10:|;

X3 Xy X7 X3 X1 X2
(24)
Y, Y: Ys Ye Yo Y]
e R S R i B

The first step to inverting Q comes from Eq. 24 via simple linear algebra:
YiY7 — YsYs = det(A1Ag) = det Ay det Ag;
and similarly,
YsY11 — YoYio = det Ay det As; Y12Y15 — Yi3Y14 = det Ay det As.

Thus, knowing Yy, ..., Y75, we can find det A, det A5, and det A3, provided
that none of them is zero (we will need to take square roots in L). Furthermore,

Y = X1 +det Ay + Qq, Yo = X5 +det Ay + Q2, Y3 = X3 +det A3 + Q3.

Therefore, having found det Ay, det Ay, det A3, we reduce the components of
Y1,Y5, Y5 to a triangular form in the z;:
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Xi+Qi=Y1+ \/(Y4Y7 + Y5Y6)(YsY11 + YoYig)(Yi2Yi5 + YizYia) !
Xo+ Q2 = Yo+ /(YaY7 + Y5Y5) (YaY11 + YoYi0) L (YiaVis + Yi3Yia)
X3+ Q3 = Ys+/(YaY7 + Y5Y5) "1 (YsY11 + YoYi0)(YiaYis + Yi3Yia)

then we apply a second triangular step to compute X7, X5, and X3 component
by component. If X; # 0, from det A; we can also find X, and complete the
inversion. [101] has details on how to handle X; = 0. Of course, cases where
one of the det A; is 0 result in a decryption failure.

The main algebraic property of MFE is the central round of three matrix
products. Today, everyone knows to defend against linearization relations, and
MFE did in fact achieve this when they put A2 A3 instead of A5Aj3 in the center.
But it does not avoid all the problems, as you can see in Sec. 5.1.

The ¢-invertible cycle

The /(-invertible cycle also uses an intermediate field L = K* and extends C*
by using the following central map from (L*)¢ to itself:
Q:(Xy,...,Xy) — (Y1,...,Y)) (25)
= (X1 Xs, XoXs, ..., Xe1Xe, X XT).

For “standard 3IC”, £ = 3, a = 0. Invertion in (L*)3 is then easy.

Q7 (N1, Yo, ¥3) € (L) o (VY1Y3/ Y2, Y12/ Vs, \/YaY3/Y1,).  (26)

This is 10x faster computationally than the inverse of C*. Aside from that,

analysis of the properties of the 3IC map can be found in [42] — the 3IC and

C* maps has so much in common that the former can almost be viewed as a

turbocharged version of the latter especially when looking at signature schemes.
For encryption schemes, “2IC” or ¢ = 2, ¢ = 2, a = 1 is suggested.

Q: (X1, Xo) — (X1 X2, X1X3), Q7':(V1,Ya) = (Y1/YS,Ya/Y1). (27)

Again, these has so much in common with C* that we need the same vari-
ations. In other words, we need to do 3IC™p (with minus and projection)
and 2ICTi (with internal perturbation and plus), paralleling C*~p and C*Ti
(a.k.a. PMI+).

4.8 More on Variations and a Summary
Internally Perturbed

Matsumoto-Imai can produce this variation [29]: Take v = (v1,...,v,) to be
an r-tuple of random affine forms in the variables x. Let f = (f1,..., f) be
a random 7-tuple of quadratic functions in v. Let our new Q be defined by
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Var. Meaning Slows

Plus 4| extra polynomials in the central map [Slows Signatures
Minus -| remove central or public polynomials [Slows Encryption
Perturb i internal perturbation Slows All
Project p Fix a central variable to be 0 Slows Signatures
Vinegar v |extra variables that can be set arbitrarily |Slows Encryption
Sparse s| make single-field central map sparse |General Speedup

Table 3. A Summary of Major Modifications in MPKCs, cf. [104]

x iy = ()T f(v(x)

where the power operation assumes the vector space to represent a field. The
number of Patarin relations decrease quickly down to 0 as r increases. For
every y, we may find Q~!(y) by guessing at v(x) = b, finding a candidate
x = (y + b)" and checking the initial assumption that v(x) = b. Since we
repeat the high going-to-the-h-th-power procedure ¢" times, we are almost
forced to let ¢ = 2 and make r as low as possible.

We observe that there are extraneous solutions just as in HFE. There-
fore, we must manufacture some redundancy in the form of a hash segment
or checksum. PMI (or MIAI as classified by [104]) looked very promising, es-
pecially since there are no unbroken M@-encryption-schemes with any speed
at that time. However, this was broken [54] via a surprising differential crypt-
analysis (cf. Sec. 5.3). Thus, internal perturbation is usually coupled with the
plus variation (Sec. 3.2).

Vinegar and Projection

The idea of Vinegar variables had been introduced earlier with UOV, and used
as a defense in Quartz. The idea is to use an auxilliary variable that occupies
only a small subspace of the input space (cf. Sec. 3.3). It was pointed out [38]
that Internal Perturbation is almost exactly equal to both Vinegar variables
and Projection, or fixing the input to an affine subspace. We basically set one,
two or more variables of the public key to be zero to create the new public
key. However, in the case of signature schemes, each projected dimension will
slow down the signing process by a factor of gq.

We need to tell the reader why is Projection useful for us. Since (Sec. 5.3)
a structural attack is always by looking for an invariant or a symmetry, we
should break both. Restricting to a subspace of the original w-space breaks
a symmetry. Something like the Minus variant destroys an invariant. Hence
the use of projection by itself prevents some attacks, such as [46,47,55]. The
differential attack against C* (and ¢IC) derivatives uses the structure of the
big field L. Hence projection is expected to prevent such an attack [45].
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5 Standard Attacks

Solving an MPKC directly as an MQ problem instance is usually futile; the
cryptanalyst usually try to attack it as an extended IP problem, or to exploit
the algebraic structures to find extra relations to make the solution easier. We
hope to present enough on every approach but avoid too much detail.

5.1 Linearization Equations

A Linearization Equation is a relation between the components w and z that
always holds for a given set of public keys, such that when substituted with
the actual values of z we get an affine (linear) relation between the w;’s. Each
one effectively eliminates one variable from the system.

The prime example is the direct attack against C* found by Jacques
Patarin. As mentioned in Sec. 4.3, a principal algebraic property of the C*
central map (cf. Eq. 15) is Eq. 17. Given Eq. 17. and that we know

1. L:x—x%" and L' : y — y?" are linear maps in K", and
2. xxy in L = K" is bilinear, i.e., there are n matrices My, ..., M,, satisfying

X*Ly = (XT-I\_/Iyy7 xT-l\_/Ig-y,...7xT-Mn-y).
We find the following bilinear relations
xT-M;-y::xT-(LTl\_/[i—l\_/[iL/)-y:O,W:l---n. (28)

After we substitute w = Mg'(x — cg) and z = Mry + cr we get (as found
by Patarin [81]) for this family of cryptosystem, due to the properties of the
map Q, the cipher satisfies n equations of the following form:

Z A5 2; W5 + Z blzl + Z Cjw; + d= 0, (29)

which are called Patarin relations or bilinear relations. For any C* public key,
we can compute z from w, and substitute enough (w,z) pairs and solve for
aij, bi, cj, and d. A basis for the solution space gives us all the linearization
relations. If we given the ciphertext, i.e., the values of z;, these n bilinear
relations will produce linear equations satisfied by components of the the
plaintext w.

In similar systems like 3IC (Sec. 4.8), for example, Linearization Equations are
also present in large numbers as in X1Ys = XoY3 = X3Y7.

In most cases including 3IC and C*, either there are not enough lineariza-
tion relations or some relations will become redundant after the substitution
of the z;, linearizations equations does not actually find all the w;, but it
narrows down the search space by enough that we are able to find w; easily.
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Unlocking via Bilinear Relations and Others

Normally, the number of linearization equations has to be high enough such
that the remaining variables can be guessed by brute force. It is shown in
[36,37] that even when the number of linearization equations is not so large,
their existence can lead to defeat.

Ding and Schmidt noted that the low-rank central polynomials — often
rank 2 — in currently existing implementation schemes for the TTM cryp-
tosystem makes it possible to extend the linearization method by Patarin [81]
to attack all current TTM implementation schemes (cf. Sec. 5.1). For the
Ding-Schmidt attack, the number of linearization equations is not that high,
but the “lock polynomial” that defends a TTM instance against a simple rank
attack is eliminated.

HOLEs (Higher-Order Linearization Equations)

The discerning reader can figure out immediately that the linearization re-
lation does not actually need to be linear in z, only in w. A Higher-Order
Linearization Equation (HOLE) is a linearization relation that is higher de-
gree in the components of z. In particular, a SOLE (second order linearization
equation) would look like

Zai]’k ZiZj Wy +Zb” ZiZj —&-Zcij Ziw; —|—Zdl 2 +Zej wj —|—f =0

1<J 1<j

It is natural for the reader to think that this shouldn’t happen very often, and
it doesn’t. However, the possibility that we can use such relations restricts our
options when designing systems, as witness the trap that befell MFE.

Let the associated matrix of a square matrix M (replace each entry
with the cofactor of that position) be M*. Hence (det M)M~' = M*,
MM* = (det M)1,, where 1, is the identity matrix. With the same nota-
tions as Sec. 4.7, we set

Y, Ys

Ys Yo

b=y = { Yio Y11

},BQZAlAz;::{Y‘S Y9:|

Hence (det BoB3) By = AglAg, or A3B3B; = (det By)As, or (cf. [35])

X9 X10 ( Yiu —Yy (Y4 Y5 X5 X
= (YsY11 — YoV, . 30
(Xu X)Ly v ) v yy) = 8Yu=Yoho) {5 ) (830)
There are many ways to write down other equations that are homogeneous of

degree two in the Y;’s and linear in the X;’s, but [101] showed some will lead
to redundant equations. A set sure to lead to independent linear relations is

X5 X¢ Yis =Y\ (Ys Yio X1 Xo
= (Y12Y15 — Y13Y; 31
(X7 XS> <—Y13 Y12 ) (Yg Y11> (Yi2¥is = Yig¥ie) (X?, X4> (31)



Multivariate Public Key Cryptography 217

That’s at least 8k linear dependencies out of 12k variables. A cryptana-
lyst’s task has gotten much easier. [101] used another trick — the fact that
squaring s linear in a char-2 field — to get it down to 2k remaining variables
at most and concluded that solving for the remainder is easy. The existence
of linearization relations at a higher degree when the designers certainly were
trying their best to avoid such shows multivariate encryption schemes design
in the triangular style to be full of potholes and very difficult without a higher
algebraic breakthrough.

5.2 Lazard-Faugére System Solvers

To mount a direct attack, we try to solve the m equations P(w) = z in the
n variables wy, ... w,. If m > n, we are (over-)determined, which is good. If
m < n, we are underdetermined. For most cases we can’t do much more than
to guess at m — n variables randomly and continue with m = n [20].

Today, the difficulty of solving “generic” or randomly chosen systems of
nonlinear equations is generally conceded. However, it is hard to quantify
exactly how non-generic a system is. Furthermore, many techniques of alge-
braic cryptanalysis requires system-solving methods at the end for more or
less generic systems. So we must handle many instances of the M@ problem,
where we want to solve the system p; = py = -+ = p,,, = 0, where each p; is
a quadratic polynomial in x = (x1,...,,). Coefficients and variables are in
the field K = IF,.

At the moment, the best known methods to solve equations are the descen-
dants of Buchberger’s algorithm [12] to compute a Grobner basis, first investi-
gated by Daniel Lazard’s group [67]. Macaulay generalized Sylvester’s matrix
to multivariate polynomials [69]. The idea is to construct a matrix whose lines
contain the multiples of the polynomials in the original system, the columns
representing a basis of monomials up to a given degree. It was observed by
D. Lazard [67] that for a large enough degree, ordering the columns according
to a monomial ordering and performing row reduction without column piv-
oting on the matrix is equivalent to Buchberger’s algorithm. Reductions to 0
correspond to lines that are linearly dependent upon the previous ones and
the leading term of a polynomial is given by the leftmost nonzero entry in the
corresponding line.

Lazard’s idea was rediscovered in 1999 by Courtois, Klimov, Patarin, and
Shamir [24] as XL. Courtois et al proposed several adjuncts [19,25,26] to XL.
One tweak called XL2 merits a mention as an easy to understand precursor
to Fy4. Another of these proved to be a real improvement for F4/F5 as well
as XL. This is FXL, where F means “fixing” (guessing at) variables.

Some time prior to this, J. -C. Faugére had proposed a much improved
Grobner bases algorithm called Fy [48]. A later version, Fg [49], made head-
lines [50] when it was used to solve HFE Challenge 1 in 2002. Commercially,
F4 is only implemented in the computer algebra system MAGMA [17].
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How to solve likely non-generic systems better is an important topic that
we come back to in the last section. For the rest of this paper, we will denote
the monomial 22 2% - - - 2= by xP, and its total degree [b| = by +- - -+b,,. The
set of degree-D-or-lower monomials is denoted 7 = 7(P) = {xP : |b| < D}.

|T| is the number of degree < D monomials and denoted TP) =T

XL

Multiply each equation p;, i = 1---m by all monomials x? € T(P=2), Reduce
as a linear system of the equations R(”?) = {xPp,(x) =0:1 < j <m, |b| <
D — 2}, with the monomials x? € 7(”) as independent variables. Repeat with
higher D until we have a solution, a contradiction, or reduce the system to a
univariate equation in some variable. The number of equations and indepen-
dent equations are denoted R(P) = R = |R| and I(P) = [ = dim(spanR).

If we accept solutions in arbitrary extensions of K = I, then T' = ("JBD )
regardless of g. However, most crypto applications require solutions in I, only.
The above expression for T' then only holds for large ¢, since we may identify
x! with z;; and cut substantially the number of monomials we need to manage.
This “Reduced XL” (cf. C. Diem [27]) can lead to extreme savings compared

to “Original XL,” e.g., if ¢ = 2, then T' = Zf:o (;’)

(1 —tn"

(1 _ t)7L+1
which reduces to (”ED) when q is large. We can then find R = R(P) =
mT(P=2),

Proposition 1 ( [5,106]). The number of monomials is T = [t7]

We note that the XL of [24,25] terminates more or less reliably when
T — I <min(D, g — 1), but sparse matrix computation is only possible when
T — I <1 [105]. Further, Lazard-Faugére methods work for equations of any
degree [6,106]. If deg(p;) = d, we will only multiply the equation p; with
monomials up to degree D — d in generating R(”). The principal result is:

Proposition 2 ( [L06, Theorem 7]). If the equations p;, with degp; := d;,
and (*) relations RP) has no dependencies except the obvious ones gener-
ated by p;p; = p;p; and p} = p;, then

_ 4q\n m _4d;
T—1=[tP)G(t) = [t] ((ll—tl;”)“ 11 (f_;d> 3

There is always a certain degree Dy above which Eq. 32 and hence the
underlined condition (*) above cannot continue to hold if the system has
a solution, because the right hand side of Eq. 32 goes nonpositive. This is
Dxy, :=min{D : [tP] G(t) < 0}, called the degree of regularity for XL. If (*)
holds for as long as possible (which means for degrees up to Dx ), we say
that the system is K-semi-regular or ¢g-semi-regular (cf. [5,106]).
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Diem proves [27] for char 0 fields, and conjectures for all K that (i) a
generic system (no algebraic relationship betweem the coefficients) is K-semi-
regular and (ii) if (p;)i=1....m, are not K-semi-regular, I can only decrease from
the Eq. 32 prediction. Most experts seem to believe the conjecture [27] that
a random system behaves like a generic system with probability close to 1.

Corollary 1. T—1 = [tP] ((1 -t T, (- tdi)) for generic equations
if D < min(q, DY}), where D} is the degree of the lowest term with a non-
positive coefficient in G(t) = ((1 -0 I (- tdi)>.

We would note that (F)XL can only be a solver and not a true Grobner
basis method as are F4/F5. However, the analysis much parallels that of
F4/F5 by Dr. Faugére et al, hence our categorical name “Lazard-Faugere”
solvers.

Proposition 3 (XL with Wiedemann). With a sparse matriz solver like
the Wiedemann algorithm to solve the final matriz equation, XL has running
time

Cxr 2 3t T? multiplications, (33)

where t is the average number of terms in an equation.

Grobner Bases and Fy/Fy

XL2 [25] is a tweak of XL as follows: Tag each equation with its maximal
degree. Run an elimination on the system with monomials in degree-lex. In
the remaining (row echelon form) system, multiply by each variable x1, x5 - - -
all remaining equations with the maximum tagged degree and eliminate again.
When we cannot eliminate all remaining monomials of the maximum degree,
increment the operating degree and reallocate more memory.

XL+XL2 can be considered a primitive or inferior matrix form of F4 or
F5 [3]. Fy inserts elimination between expansion stages, which compresses
the number of rows that needs to be handled. F5 is a further refinement of
F4. The set of equations is actually generated one by one (or the matrix row
by row). In the process, an algebraic criterion is used to determine, ahead
of an elimination process, whether a row will be reduced to zero or not and
only the meaningful rows are retained. A complication resulting from the
tagging is that the elimination must be done in a strictly ordered way. This
corresponds in the matrix form to no row exchanges in a Gaussian. There are
two separate degrees in F4/F5, an apparent “operating degree” Dpy and a
higher intrinsic degree equal to that of the equivalent XL system. For the full
power of Fy or Fy, auxillary algorithms such as FGLM are needed. See [48,49]
for complete details.

Proposition 4 ( [5]). If the eqs. p; are g-semi-regular, at the operating degree
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. L—t)" v (1 —t%
Dyeg = mln{D :[tP] ((lt))" H (1tqdi) <O}

i=1

both F4-F5 will terminate. Note that by specializing to a large field, we find

reg

i=1

DX = min{D P (-t 1 (1—t%) <0}. (34)

If we compare this formula with Cor. 1, we see that the only difference is
a substitution of n for n+ 1. In other words, we are effectively running with
one fewer variable in the large field case. This explains why F4-F5 can be
much faster than XL. However, the savings is smaller over small fields like
F5, and even for large fields, removing one variable may not be enough of
a savings, because the systems that we aim to solve will spawn millions of
monomials (variables). Eliminating in the usual way means that we will run
out of memory before time.

Proposition 5. Fy /F5 runs in (w:= the “order of matriz multiplications”)
Cxr1, o ¢, T multiplications. (35)

According to the description we received from the MAGMA project and
Dr. Faugeére, even though memory management is very critical, elimination is
still relatively straightforward in current implementations of F4-F5, and in the
process we see reasonably dense matrices, not extremely sparse ones. All said,
F4-F5 are still the most sophisticated general system-solving algorithms today.
The famous complete solution of HFE challenge 1 is a run of Fs, specialized
and optimized for Fo, which took 4 days on a 4-CPU Alpha workstation. While
the HFE challenge 1 was an instance with a particularly low rank (4), it was
usually argued that it should always break HFE for practical r [60]. Recently,
it is disputed [40] for odd char K. We await more developments.

5.3 Differential Attacks

Structural attack on MPKC are of two related types:

Invariants: invariants (mostly, subspaces) that can be guessed.
Symmetries: transformations that leave certain quantities unchanged and
hence can be computed by a system of equations.

Of course, these two are related, given that invariants are defined according
to symmetry. Previous designers sometimes neglected the importance of sym-
metry. In this section we present the symmetry or invariants used in the new
differential attacks on the C* family of cryptosystems as exemplified by the
Differential Attacks, from the school of Stern at the Ecole Normale Supérieure.
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Attacking Internal Perturbations

The cryptanalysis of PMI was a novelty for a technique usually associated
with symmetric key cryptography, since PMI was a PKC. We use the idea
that for a randomly chosen b, the probability is ¢~ that it lies in the kernel
KC of the linear part of v. When that happens, v(x + b) = v(x) for any x.
Since ¢~ is not too small, if we can distinguish between a vector b € T71KC
(back-mapped into x-space) and b ¢ T~1K, we can bypass the protection of
the perturbation, find our bilinear relations and accomplish the cryptanalysis.

In [54], Fouque, Granboulan and Stern built a one-sided distinguisher using
a test on the kernel of the polar form or symmetric difference DP(w,b) =
P + w) — P(b) — P(w). We say that ¢(b) = 1 if dimkery, DP(b,w) =
28cd(m2) 1 and t(b) = 0 otherwise. If b € K, then #(b) = 1 with probability
one, otherwise it is less than one. In fact if ged(n,«) > 1, it is is an almost
perfect distinguisher. If not, we can employ two other tricks. In the more
important of the two, we observe K is a vector space, so Pr(t(b + b’) =
0]t(b’) = 0) will be relatively high if b € K and relatively low otherwise. We
omit the gory details and refer the reader to [54] for the complete differential
cryptanalysis.

This brilliantly executes a powerful attack. But there is apparently a sur-
prisingly simple defense dating back to [85] (which introduced SFLASH). By
using the “plus” (+) variant, i.e., appending a random quadratics to P, enough
false positives are generated to overwhelm the distinguishing test of [54]. The
extra equations also serve as a distinguisher when there are extraneous solu-
tions.

Again, we do not include all the details. Basically, the more “plus” equa-
tions, the less discriminating power of the abovementioned test. Based on
empirical results of Ding and Gower [32], when r = 6, a = 12 should be suffi-
cient, and a = 14 would be a rather conservative estimate for the amount of
“plus” needed to mask the PMI structure.

The Skew Symmetric Transformation

The symmetry found by Stern etc. can be explained by considering the case of
C* cryptosystem. We recollect that the symmetric differential of any function
G, defined formally just like in Eq. 36:

DG(a,x) :=G(x+a) — G(x) — G(a) + G(0).

is bilinear and symmetric in its variables a and x. In the first version of this
attack [47], we look at the the differential of the public map P, and look for
so-called skew-symmetric maps with respect to this bilinear function, namely,
the linear maps M such that

DP(c,M(w))+ DP(M(c),w) =0
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The reason that this works is that the central map Q and the public key,
which encapsulates the vital information in the central map, unfortunately has
very strong symmetry in the sense that all the differentials from these maps
share some common nontrivial skew-symmetric map M. Since Q(x) = x!+a”,
its differential is

DQ(a,x) = a? x + ax?".

As pointed out in [47], the maps M skew-symmetric with respect to this
DQ(a,x) are precisely those induced from the multiplication by some element
(¢ satistfying the condition

¢ +¢=0.

Clearly this skew-symmetry will hold if we translate it into w-space. Fur-
ther it can be seen that the skew-symmetry continues to hold even when we
discard some components of P. In terms of the public key, this means that if
we write

DP(c,w) := (c" Hyw, c" Hyw,..., ' H,w)

and try to solve MTH; + H;M = 0 for all i = 1---m simultaneously, we
should find just k-multiples of the identity if n and a are coprime, and a
d-dimensional subspace in the space of linear maps if d = ged(n, o) > 1.

For a randomly chosen map G, it should be expected that only trivial
solutions M = ul,,, where u € K, will satisfy this condition. This means that
there is a very strong condition on C*~ cryptosystems. This symmetry can
be utilized to break C*~ systems for which d = ged(n, ) > 1.

The Multiplicative Symmetry

We call the second symmetry the multiplicative symmetry, which again comes
from the differential DP(c, w). Let ¢ be an element in the big field L. Then
we have

DQ(¢ - a,) + DQ(a,¢ - x) = (¢ +¢)DQ(a, x).
This is also a very strong symmetry, namely it implies that if
M¢ = Mg' o (X + ¢X)oMg
is the linear map in K" corresponding to multiplication by ¢, then
span{M?H,- +HM;:i=1---n} =span{H; :i=1---n}.

Le., the space spanned by the quadratic polynomials from the central map is
invariant under the skew-symmetric action as defined above.

Clearly the public key of C*~ inherits some of that symmetry. Now not
every skew-symmetric action by a matrix M¢ that corresponds to an L-
multiplication that result in MgHi +H;M¢ being in the span of the public-key
differential matrices, because S := span{H; : i = 1---n —r} as compared to
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span{H; : i = 1---n} is missing r of the basis matrices. However, as the au-
thors of [46] argued heuristically and backed up with empirical evidence, if we
just pick the first three MgHZ + H;M¢ matrices, or any three random linear

combinations of the form Y 7" " bz(MCTHl + H;M¢) and demand that they fall
in S, then

1. there is a good chance to find a nontrivial M satisfying that requirement;

2. this matrix really correspond to a multiplication by ¢ in L;

3. applying the skew-symmetric action of this M. to the public-key matrices
leads to other matrices in span{H, : i = 1---n} that is not in S.

Why three? There are n(n — 1)/2 degrees of freedom in the H;, so to
form a span of n — r matrices takes n(n — 3)/2 + r linear relations among its
components (n —r and not n because if we are attacking C*~, we are missing
r components of the public key). There are n? degrees of freedom in an n x n

matrix U. So, if we take a random public key, it is always possible to find a
U such that

UTH, + Hi\U, UTHy + HyU € S =span{H; :i=1---n —r},
provided that 3n > 2r. However, if we ask that
UTH, + HU, UTHy + HyU, UTHs + H3U € S,

there are many more conditions than degrees of freedom, hence it is unlikely to
find a nontrivial solution for truly random H;. Conversely, for a set of public
keys from C*, tests [46] shows that it almost surely eventually recovers the
missing r equations and break the scheme. The only known attempted defense
is [45].

5.4 Rank Attacks

We can consider Rank attacks to cover the UOV attacks (next section). But
here we only cover attacks that specifically targets high or low rank. Let H; be
the symmetric matrix corresponding to the quadratic part of z;(w). Without
loss of generality, we may let the fewest number of appearances of all variables
in the cross-terms of the central equations be the last variable z,, appearing
s times.

High Rank Attacks

Since rank attack often meant attacking low rank, some also call the High
Rank attack the Dual Rank Attack. The High Rank Attack first appeared
with [18] where Coppersmith et al defeated a Triangular construction.

Algorithm 1 High Rank Attack of Goubin-Courtois and Yang-Chen [58,
107]:
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1. Compute the differential P(w + c) — P(w) — P(c) and take its j-th com-
ponent (which is bilinear in w and c) as ¢ Hyw. Hy, is representing the
quadratic crossterms in the k-th polynomial of the public key. Note that
the H; are symmetric, so if charK = 2, xT H;x = 0. This was not made
clear in [58].

2. Form an arbitrary linear combination H = ZZ oa; H;. FindV = ker H.

3. When dimV > 1, set (32; A\;H;)V = {0} and check if the solution set 14
of the (\;) form a subspace dimension m — s. Note: a matriz in K"*"
have at most n different eigenvalues, so at least 1 — (n/q) of the time it
does.

4. With probability q—° we have found a small subspace representing x,.
For an UOV construction, we have found V' corresponding to constant
Ty Ty,

As each trial run consists of running an elimination and some testing, we
can realistically do this with ~ (sn2 + %) q° field multiplications, by taking
linear combinations from only (s + 1) of the matrices H; and hope not to get

too unlucky. An upper bound is [mn2 + %3 + g(m?’/?) + an)] q°.

The above formulation of the high rank attack works for “plus”-modified Trian-
gular systems; it is also easier to understand than the [18] formulation. Against
UOV, we might possibly do even better on this attack with differentials [44].

MinRank Attack

We first describe the Goubin-Courtois version.

Algorithm 2 [58] Let r be the smallest rank in linear combinations of central
equations, which without loss of generality we take to be the first central equa-
tion itself. Goubin and Courtois outline how to find the smallest ranked combi-
nation (and hence break Triangle-Plus-Minus) in expected time O(ql % 1"m?):

1. Take P = Z:’;l NiH;, an undetermined linear combination of the sym-
metric matrices representing the homogeneous quadratic portions of the
public keys.

A quadratic Coprexy + Ceqerg + -+ with all indices distinct will have
a corresponding symmetric matriz with kernel {x : 0 = x, = x, =
Te =g = -+ }. We will call this the kernel of the quadratic and use the
shorthand kery; (orkery y; to specify what space). With p cross-terms with
distinct indices, the rank of the matriz is 2p. For example, in the scheme
TTS/2, the first equation is ys = xs+agToty + b1+ cgxots+dgx3xy.

Hence kerxys = {x: x¢g =+ =ax7 =0} for TTS/2'.
2. Guess at a random k-tuple (w1, ..., wy) of vectors in K", where k = [*].
Set Pw, = --- = Pwy = 0 and solve for \; via Gaussian elimination.

If uniquely solvable P is likely the quadratic part of y1, the first central
equation.
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3. Assume the matriz corresponding to yy has the minrank of r, then its
kernel (the inverse image Hy *(0)) has dimension n — r, hence when we
guess at (w1, ..., wy) randomly, they have a probability of at least ¢~*" to
be all in Hl_l(O), This P is the quadratic portion of y1 and the coefficients
Ai the row of M;l (up to a factor).

Yang and Chen have extended the effectiveness of this attack [107]. Such that
if ¢ mostly distinct kernels have the same r, we can accomplish our task in 1/¢
the time. In an exaggerated example, against UOV [9,44], we can substitute
r with vy + 1 if the latter is smaller.

MinRank Attacks on Big-Field Schemes

The break of HFE challenge 1 by Faugére and Joux [50], a direct solution of
the 80 equations in 80 variables, is not the first serious attempt on HFE.

That honor belongs rather to a rank-based attack. Kipnis and Shamir
suggested [66] the idea first. The attack proceeds by moving the problem back
to the extension field, where all the underlying structure can be seen. This is
a very natural approach if we intend to exploit the design structure of HFE
in the attack. To put it simply: the minimum rank of linear combinations of
the H; should be exactly r (as in Sec. 4.3). This is the MinRank problem [13]
and is in general exponential, but can be easier if r is small.

Kipnis and Shamir later suggested to take an linear combination of the
H; and take all (r + 1) x (r 4+ 1) submatrices to have determinant zero. This
clearly leads to a huge assortment of equations. To solve this system, they
introduce an idea which they call relinearization, which led to the well-known
XL paper [24]. It has been argued that using a Lazard-Faugere solver on this
system of equations is effective [23] and equally effective as the direct attack.
Sec. 5.2 has more on equation-solving.

5.5 Distilling Oil from Vinegar and Other Attacks on UOV

To a forge a signature for a UOV scheme as in Sec. 4.4, one needs to solve the
equation P(w) = y. When o = v as with the original Oil-and-Vinegar, this
turned out to be fairly easy due to the attack by Kipnis and Shamir [65].

The basic idea here is that one treats each component y; = p;(w) of the
public key P as a bilinear form. Equivalently, take their associated symmetric
matrices via the symmetric differential as follows:

Dp;(w,c):=p;(w+c)—p;(w) = pi(c) + p;(0) := c'Hyw, (36)

A basic fact of OV: each matriz M; (cf. Eq. 13) is in the rough form form of
* ok
* 0

problem of finding a basis change for a set of bilinear forms into a common

form.

but not the matrices H;. This reduces a cryptanalysis to the algebraic
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The problem is interesting enough that we will sketch you one solution.
Recall that v = 0 = n/2 = m. We will call the vectors x that have all vinegar
coordinates z1, ..., =, equal to zero, to be the Oil Space O, i.e. the collection

of x-vectors looking like {2} , and similarly a x-vector in the Vinegar Space V

has all oil coordinates x,41,..., &, equal to zero and looks like B] . Clearly,

if each M; is nonsingular, we have

1)) [ io-

Hence, we have(Mj_lMi) O = O. It then follows that
(H;'H;) (S7'0) = (S7'0),

which in English states that any H j_lHi has the common invariant subspace
(finding which is a known problem) of S~*O, or the oil subspace expressed
in w coordinate form. Knowing S~10O is sufficient to find an equivalent form
for S. Later it was shown by Kipnis et al [64] that the same argument works
if v < 0; even if v > o it can be done in time directly proportional to ¢*~°,
and hence v — o cannot be too small. When there are two or three times more
vinegar variables than oil variables the method appears to be secure, despite

the claims of [11].

Reconciliation

There is more than the Kipnis-Shamir attack to transform the public maps of
an UOV scheme to the Eq. 13 Common form. We could instead [44] attempts
to find a sequence of change of basis that let us invert the public map, as in
an improved brute force attack.

First, no matter what My is, it won’t change the basic shape, so we let T'
be the identity map for the moment. What can S be like? Suppose we pick
Mg as totally random, most often (see below) it decompose to

MS’ = |:*’U><’U *’UXO} — {11})(’0 *’UXO} {*’UX’U O’UXO:| (37)

*oxv *oxo Ooxv loxo| [*oxv *oxo

where 1 means identity matrix, 0 means just zeros and * means random or
anything. In fact, this decomposition always hold unless the lower-right o x o
*uxv Duxo

oXv oXo

submatrix is singular. It should be clear that the [ } portion of Mg,

as a coordinate change leaves the M;’s with the same shape. lLe., if we can
1 . . .
find the correct [ uxv *”XO] portion and perform the basis change in reverse,

OOXU 1O><O
we will again make the resulting public map into the same form (all zeroes
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on the lower right) and be easily inverted. Hence, no more security at all.
More about this phenomenon (“equivalent keys”) in MPKCs can be found in,
say, [103].

Let this essential part of Mg to be recreated be P. IL.e., the linear transfor-
mation w — X = Pw create all zeroes on the lower right. We can decompose
this P into a product of P := P, 1P, 42 -- P,, where each matrix look like

[0 -+ Ola; | [0 -+ 0[a;[07]
0--- 0las 0--- 0lay|0
Po=1,4 [0 0la, |; Pooy=1,+ |0 0lalo];
0---0[0 0---0[0]0
0---0[0 0---0010

Indeed, the multiplication is actually commutative among the various P;’s. Let
us then start with the differential matrices H; and simultaneously transform
them to make their lower-right corner a square of 0’s using exactly such P;’s.

Algorithm 3 (UOV Reconciliation Attack) The following is an attack
on a UOV scheme with o oil and v = n — o vinegar variables (which has the
smaller indices):

1. Perform basis change w; = w;, — Aw,, fori = 1---v, w; = w} fori =
v+1---n. Bvaluate z in w'.

2. Let all coefficients of (wl,)? be zero and solve for the \;. We may use any
method such as Fy/F5 or FXL. There will be m equations in v unknowns.

3. Repeat the process to find P,_1. Now we set w) = w) — \wj_, for
i=1---v, and set every (w!_,)? and w!w!_, term to zero (i.e., more

equations in the system) after making the substitution. This time it should

be faster since we solve 2m equations in v unknowns.

4. Continue in this fashion for P,_o, ..., P,y (easier, even more equations).

In the state-of-the-art system-solving today, we can expect the complexity
to be determined in solving the initial system. Hence, if v < m, solving m
equations in v variables will be easier than m equations in n equations.

Proposition 6. The Reconciliation Attack fails with probability ~ ﬁ.

Proof (Sketch). Provided that lower-right o x o submatrix of Mg is non-
singular, we can see that the construction of P, will eliminate the quadratic
term in the last variable. P,,_; will eliminate all quadratic terms in the last
two variables, and so on, and each sequential construction will not disturb
the structure built by the prior transformations. The number of nonsingular
k x k matrices over F, is (¢* —1)(¢* — ¢)(¢* — ¢®) - -+ (¢ — ¢*~1), because the
first row has 1 possibility to be zero, the second row ¢ possibilities to be a
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multiple of the first, the third row ¢ possibilities to be dependent on the first
two, etc., so the chance that the above attack works is roughly

(11)0 1) Q 1>>1(1+1+ +1)>1 !
q ¢ q* ¢ ¢ q* g—1

Attacking Rainbow and TTS

Alg. 3 is just a unbalanced oil and vinegar attack. Rainbow systems have
multiple layers (cf. 4.4). So the symmetric matrix M; for the quadratic part
of a Rainbow central polynomial ¢; looks more like

[0l o a0 0]
0 .0
M; = Qyj - g0 -+ 0 ifi <m—o; (38)
0 --- 010---0
| 0 010 0]
04111) O‘%;) ﬁlﬂ 0452
(i) @ | 0 L0
av+1,1, : av+1,v, 0 0
i ozgl) all) 0 0 |

Le., the last o equations looks like Eq. 19, but the initial m — o equations only
have non-zero entries in the upperleft submatrix. The attack below exploits
this. Actually it applies to all final schemes with a final UOV booster stage,
since we do not use in the attack the property that the first m — o usually are
UOV matrices themselves, i.e., has a block of zeros on the lower right.

At this point, we should no longer consider T as the identity. Let us think
about what the matrix Mt does in Rainbow. At the moment that we distill
the P, portion out, m — o of the new M;’s should show a zero last column.
However we don’t; My mixes the M;’s together so that they in fact don’t — we
will see most of the time only the lower right entry as zero. But if we take any
o+ 1 of those last columns, there will be a non-trivial linear dependency. We
can verify that by setting one of those columns as the linear combination as
the other o, the resulting equations are still quadratic!

[This idea was first mentioned by Y.-H. Hu in a private discussion.]

Algorithm 4 (Rainbow Band Separation) The Reconciliation attack
may be extended for a Rainbow scheme where the final stage has o oil and
v =n — o vinegar variables (which has the smaller indices):
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1. Perform basis change w; := w;, — N\wl, fori=1---v, w; = w, fori =
v+ 1---n. Evaluate z in w'.

2. Find m equations by setting all coefficients of (w!,)? to be zero; there are
v variables in the \;’s.

3. Set all cross-terms involving w!, in zl—agl)zvﬂ —aél)varg—- . -—Ugl)zm to
be zero and find n— 1 more equations. Note that (w),)? terms are assumed
gone already, so we can no longer get a useful equation.

4. Solve m 4+ n — 1 quadratic equations in o +v = n unknowns. We may use
any method (e.g., Fq or XL).

5. Repeat the process to find P,_1. Now set w) := wi — Nwll_y for i =

1---v, and set every (w!!_1)? and w!'w!'_, term to zero after making the

(2) (2) (2)

substitution. Also set zy — 07 Zyy1 — Oy Zyyo — -+ — 05 Zpy, to have a
zero second-to-last column. This time there are 2m +n — 2 equations in n
unknowns.

6. Continue similarly to find Py_o, ..., Pyy1 (now easier with more equa-
tions).

To repeat, the Alg. 4 attack works for all constructions with a
UOV final stage, including all Rainbow and T'TS constructions. That
explains why the current proposed parameters of Rainbow [44] looks like those
in Sec. 3.1.

6 The Future

In the last ten years, MPKCs have seen very active and fast developments,
producing many interesting new ideas, tools and constructions in both theory
and its applications. Due to the consideration of quantum computer threat and
the potential of its applications in ubiquitous computing devices, we foresee
that the research in MPKCs will move on to the next level in the next decade.
Here, we would like present some of our thoughts on the future of the research
in multivariate public key cryptography.

6.1 Construction of MPKCs

The real breakthrough of MPKCs should be attributed to the work by Mat-
sumoto and Imai in 1988 [70], a fundamental catalyst. The new idea of Mat-
sumoto and Imai should be called the “Big Field” construction, where we build
first a map in a degree n extension field (Big Field) L over a small finite field
K, then move it down to a vector space over the small finite field with the
identification map ¢ : L — K", the standard K-linear isomorphism between
L and K".

Great efforts are still being devoted to developing MPKCs using this idea
[101], [42], [35] and [55]. This is also the idea behind the new Zhuang-Zi
algorithm [33], where we lift the problem of solving a set of multivariate
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Q

L———L

for el

K —2 K"

Fig. 1. Identifying maps on a K-vector space with those on extension fields /K.

polynomial equations over a small finite field to solving a set of single variable
equations over an extension field. Recently, a new idea of reviving HFE using
field of odd characteristics was proposed [40].

What we have seen is that what really drives the development of the
designs in MPKCs are indeed new mathematical ideas that bring new mathe-
matical structures and insights in the construction of MPKCs. We believe the
mathematical idea we have used are just some of the very basic ideas devel-
oped in mathematics and there is great potential in pushing this idea further
using some of the more sophisticated mathematical constructions in algebraic
geometry. Therefore, there is great potential to study and search for further
mathematical ideas and structures that could be used to construct MPKCs.
One particularly interesting problem would be to make the TTM cryptosys-
tems work where a systematic approach should be established. This definitely
demands some deep insights and the usage of some intrinsic combinatorial
structures from algebraic geometry.

From the point of view of practical applications, there are two critical
problems that deserve more attention in designing new MPKCs. The first
one is the problem of the public key size. For a MPKC with m polynomials
and n variables, the public key size normally has m(n + 2)(n + 1)/2 terms,
where m is at least 25 and n is at least 30. Compared with all other public key
cryptosystems, for example RSA, one disadvantage is that in general a MPKC
has a relatively large public key (tens of Kbytes). This is not a problem from
the point view of modern computers, such as the PCs we use, but it could be a
problem if we want to use it for small devices with limited memory resources.
This would also be a problem if a device with limited communication abilities
needs to send the public key for each transaction, for example in the case of
authentication.

One idea is to do something like in [96], where a cryptosystem is built
with a very small number of variables (5) but with a higher degree (4) over
a much bigger base field (32 bits). In other words, we can try high degree
constructions with fewer variables but over a much bigger field. In general,
any new idea for how to reduce the public key size or in how to manage it in
practical applications would be really appreciated.

A second idea is that of using sparse polynomials constructions. The first
explicit usage of such constructions should be attributed to the works of Yang
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and Chen [16]. But some of the early such constructions were broken exactly
because of the usage of sparse polynomials [41], which brought unexpected
weakness to the system. However, we believe that the idea of using sparse
polynomials is an excellent idea, especially from the point view of practical
applications. From the theoretical point of view, one critical question that
needs to be addressed carefully is that of whether or not the use of specific
sparse polynomials has any substantial impact on the security of the given
cryptosystem. The answer to this problem will help us to establish the prin-
ciples for how we should choose sparse polynomials that do not affect the
security of the given cryptosystem. An unexpected consequence of answering
this problem is that it might also shed some light on the problem mentioned
above about reducing the size of the public key.

6.2 Attack on MPKCs and Provable Security

Several major methods have been developed to attack the MPKCs. They can
be roughly grouped into the following two categories.

e Structure-based — These attacks rely solely on the specific structures of
the corresponding MPKC. Here, we may use several methods, for example,
the rank attack, the invariant subspace attack, the differential attack, the
extension field structure attack, the low degree inverse, and others.

e General Attack — This attack uses the general method of solving a set
of multivariate polynomial equations, for example using the Grébner basis
method, including the Buchberger algorithm, its improvements (such as
F4 and F5), the XL algorithm, and the new Zhuang-Zi algorithm.

Of course, we may also combine both methods to attack a specific MPKC.

It is clear that for a given multivariate cryptosystem, we should first try the
general attack and then we may then look for methods that use the weaknesses
of the underlying structure.

Though a lot of work has been done in analyzing the efficiency of different
attacks, we still do not fully understand the full potential or the limitations
of some of the attack algorithms, such as the MinRank algorithm, Grébner
basis algorithms, the XL algorithm, and the new Zhuang-Zi algorithm. For
example, we still know very little about how these general attacks will work
on the internal perturbation type systems such as PMI+ [32,34], though we
do have some experimental data to give us some ideas about how things work.
Another interesting question is to find out exactly why and how the improved
Grobner basis algorithms like Fy and F5 work on HFE and its simple variants
with low parameter D [49,50]. The question is why the hidden structure of
HFE can be discovered by these algorithms.

Much work is still needed to understand both the theory and practice of
how efficiently general attack algorithms work and how to implement them
efficiently. From the theoretical point of view, to answer these problems, the
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foundation again lies in modern algebraic geometry as in [27]. One critical
step would be to prove the maximum rank conjecture pointed out in [27],
which is currently the theoretical basis used to estimate the complexity of the
XL algorithm and the F; and Fy algorithms for example. Another interesting
problem is to mathematically prove some of the commonly used complexity
estimate formulas in [105].

One more important problem we would like to emphasize is the efficient
implementation of general algorithms. Even for the same algorithm, the effi-
ciency of various implementations can be substantially different. For example,
one critical problem in implementing F4 or F5, or the XL type algorithms, is
that the programs tend to use a large amount of memory for any nontrivial
problem. Often the computation fails not because of time constraints but be-
cause the program runs out of memory. Therefore, efficient implementations
of these algorithms with good memory management should be studied and
tested carefully.

Chen, Yang, and Chen [109] developed a new XL implementation with
a Wiedemann solver that is probably as close to optimal as might be pos-
sible. They showed that in a few cases the simple FXL algorithm can even
outperform the more sophisticated Fy and F5 algorithms. More new ideas of
improving the algorithms, such as using the concept of mutant [30, 31|, are
also being developed. In general, any new idea or technique in implementing
these algorithms efficiently could have very serious practical implications.

In order to convince industry to actually use MPKCs in practical appli-
cations, the first and the most important problem is the concern of security.
Industry must be convinced that MPKCs are indeed secure. A good answer
to this problem is to prove that a given MPKC is indeed secure with some
reasonable theoretical assumptions; that is, we need to solve the problem of
provable security of MPKCs. From this point of view, the different approaches
taken in attacking MPKCs present a very serious problem in terms of prov-
able security. Many people have spent a considerable amount of time thinking
about this problem, but there are still no substantial results in this area. One
possible approach should be from the point view of algebraic geometry; that
is, we need to study further all the different attacks and somehow put them
into one theoretical framework using some (maybe new) abstract notion. This
would allow us to formulate some reasonable theoretical assumptions, which
is the foundation of any type of provable security. This is likely a very hard
problem.

6.3 Practical Applications

Currently, a very popular notion in the computing world is the phrase “ubig-
uitous computing.” This phrase describes a world where computing in some
form is virtually everywhere, usually in the form of some small computing
device such as RFID, wireless sensors, PDA, and others. Some of these de-
vices often have very limited computing power, batteries, memory capacity,
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and communication capacity. Still, because of its ever growing importance in
our daily lives, the security of such a system will become an increasingly im-
portant concern. It is clear that public key cryptosystems like RSA cannot be
used in these settings due to the complexity of the computations.

In some way, MPKCs may provide an alternative in this area. In particular,
there are many alternative multivariate signature schemes such as Rainbow,
TTS and TRMC. Recently [4,110] it is shown that systems like TTS and
Rainbow have great potential for application in small computing devices. Due
to its high efficiency, a very important direction in application of MPKCs is to
seek new applications where the classical public key cryptosystems like RSA
cannot work satisfactorily. This will also likely be the area where MPKCs will
find a real impact in practical applications.

6.4 Broad Connections

As MPKCs develops, it starts to interact more and more with other topics,
one example is the algebraic attacks. Algebraic attacks are a very popular
research topic in attacking symmetric block ciphers like AES [26] and stream
ciphers [2] and analyzing hash functions [94]. We would like to point out that
the origin of such an idea is actually from MPKCs, and in particular Patarin’s
linearization equation attack method. From recent developments we see that
there is a trend that the research of MPKCs will interact very closely with that
in symmetric ciphers and stream ciphers. We believe some of the new ideas
we have seen in MPKCs will have much more broad applications in the area
of algebraic attacks. The idea of multivariate construction was also applied
to the symmetric constructions. Recently, new methods had been proposed
to build secure hash functions using random quadratic maps [43] [10]. These
constructions are very simple and therefore easy to study. They may also
have very good property in terms of provable security. Similar ideas may
have further applications in designing stream ciphers and block ciphers. We
foresee that the theory of functions on a space over a finite field (multivariate
functions) will play an increasingly important role in the unification of the
research in all these related areas.

It is evident that the research in MPKCs has already presented new math-
ematical challenges that demand new mathematical tools and ideas. In the
future, we expect to see a mutually beneficial interaction between MPKCs
and algebraic geometry to grow rapidly. We further believe that MPKCs will
provide excellent motivation and critical problems in the development of the
theory of functions over finite fields. There is no doubt that the area of MPKC
will welcome the new mathematical tools and insights that will be critical for
its future development.
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