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Abstract. Satellite image sequences visualize important patterns of the
atmospheric and oceanographic circulation. Assessing motion from these
data thus has a strong potential for improving the performances of the
forecast models. Representing a vector field by a vector spline has been
proven efficient for fluid motion assessment: the vector spline formulation
makes it possible to initially select the locations where the conservation
equation has to be taken into account; it efficiently implements the 2nd
order div-curl regularity, advocated for turbulent fluids. The scientific
contribution of this article is to formulate vector splines in a multiscale
scheme, with the double objective of assessing motion even in the case of
large displacements and capturing the spectrum of spatial scales associ-
ated to turbulent flows. The proposed method only requires the inversion
of a band matrix, which is performed by an efficient numerical scheme
making the method tractable for large satellite image sequences.

1 Introduction

Meteorological and oceanographic forecasts are based on the numerical solving
of 3D circulation models that require an initial condition of their state variables,
among which velocity, i.e. winds and currents. The estimation of the initial
condition relies on real measurements ingested into models by means of data
assimilation [I]. Operational forecast models make use of in situ observations
for this purpose, provided by ground stations, balloons, drifting buoys, etc. One
challenge of environmental modelling is the ability to derive motion estimates
from dynamic satellite data in order to complement in situ data. Atmospheric
and oceanographic satellite images constitute a 2D visualization of a 3D fluid
flow. The link between the 2D motion and the 3D flow is non trivial: for instance,
on water vapor meteorological images, the pixel value results from contributions
of water particles in the vertical column, hence the 2D image motion is a com-
plex combination of real 3D motions. Correlation-based methods constitute the
current operational standard for assessing image motion from satellite imagery
(the so-called Atmospheric Motion Winds). Their applicability to environmen-
tal forecast is however limited owing to the lack of reliable tracers identifiable
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on images and to uncertainties affecting their height assignment. Despite these
limitations, image motion fields are considered to be an essential data source for
environmental forecast.

Assessing image motion requires defining an image processing model, consti-
tuted of a 2D conservation law and regularity properties. State-of-the-art models
for fluid flow estimation are characterized by the three following properties. (1)
The conservation equation applies either to the luminance [2] or to the mass [314].
(2) The regularity is modelled by the 2nd order div-curl constraint, which pro-
vides direct control of the Helmholtz decomposition of the motion field in terms
of divergence and vorticity [5]. A recent study [6] formulates the regularity with ef-
fective physical constraints: the retrieved flow is supposed steady and satifying the
incompressible Stokes equations. The applicability to non steady flows satisfying
the Navier-Stokes equations remains however open. (3) Multiscale coarse-to-fine
numerical schemes [78I9IT0] are implemented in the case of large displacements,
that prevent the linearization of the conservation equation. The multiscale scheme
is further needed in the case of highly turbulent flows in which motion patterns
co-exist at different spatial scales.

Solving the image processing model is usually addressed by a gradient-based
minimization of an energy functional made up of two components: the confidence
in data and the regularity of the result. The data confidence is often the integral
over the image domain of the residual of the conservation equation. Applying
such an approach to satellite atmospheric or oceanographic sequences faces two
main difficulties. First, the conservation equation can be locally incorrect -3D
motions such as upwelling or convection constitute typical examples in which the
2D conservation equation is not valid- or unworkable -missing data, occlusions by
clouds, absence of contrast, motion parallel to contours. Accounting for the con-
servation equation in the whole image domain therefore leads to erroneous flow
estimates. Second, the iterative minimization of the 2nd order div-curl regularity
constraint leads to 4th order PDESs, hence to complex iterative minimization not
guaranteeing the convergence to a minimum.

An elegant solution to these two problems is provided by spline-based meth-
ods. First, they make it possible to easily formulate models in which data confi-
dence applies only at selected locations: the so-called control points. Second, they
do not require an iterative energy minimization. Vector-valued thin-plate splines
minimize the 2nd order div-curl regularity constraint and have been proved ef-
ficient to interpolate or approximate wind measurements provided by ground
stations [IT]. The use of thin-plate vector splines for image motion estimation
has been further proposed by [12], who formulated a vector spline model in
which the 2D conservation law is satisfied at control points. Thin-plate splines
are, however, unsuitable for multiscale estimation: they are defined from a har-
monic radial basis function that increases with the distance to the control point
and hence does not provide a local information.

This paper presents an innovative multiscale formulation of the vector spline
approach for motion estimation. It keeps the nice properties of vector splines (use
of control points, div-curl regularity) but makes use of a parametric spline model
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based on a compactly supported and rapidly decaying radial basis function, thus
adapted to multiscale representation. The solution is obtained by solving a sparse
and well-conditioned linear system. The motion is computed on a pyramidal
representation of images, as the sum of a coarse scale motion and increments from
one scale to the immediately finer one. Results are presented to demonstrate the
effectiveness of the characteristics of the multiscale vector spline: use of control
points, div-curl regularity and multiscale coarse-to-fine motion estimation.

This paper is organized as follows: the section [ recalls the vector spline
theory applied to fluid motion estimation; the proposed multiscale vector spline
is presented in section Bl Results are analyzed in section ] and conclusions and
prospects for future work are given in section [l

2 Apparent Motion Estimation Using Vector Splines

Vector splines have been initially introduced [T1] for the interpolation and ap-
proximation of vector observations. In this context, the vector spline model is
defined from: (1) a set of n control points x; in a spatial domain £2; (2) a vec-
tor observation w; at each control point. The vector spline is solution of the
following minimization problem:

mln/ Iwlla or: min{Z(w(xi) —wi)2+)\/9||w||3} (1)

=w; Vi i
Interpolatlon Approximation

In equation (), the parameter A of the approximating spline controls the com-
promise between regularity and confidence in data, ||w||s denotes the 2nd order
div-curl semi-norm, defined as:

Wi = ol Vdivwl|? + 8[| Veurl wl|? (2)

It is a semi-norm which zero-space is the set of affine vector fields. It has been
proven [II] that this minimization problem admits a unique solution: a thin-plate
spline based on the harmonic radial basis function ¢:

$(x) = (128m) " [|x||* log |1x| 3)

The spline is defined by:

{ p(x) + 2 ail,, %x(x Xi) + gbyy(x = %)) +bi}, — 5)bay(x — i)
v =q(x) + 2070 i, — 5)ay(x = Xi) + bi( [ dyy (X = X0) + §¢aa(x — xi))
(4)
with p and ¢ degree 1 polynomials. The coefficients of the spline (a;, b; and the
6 coefficients in p and ¢) are obtained by solving a linear system.

The use of vector splines for motion estimation from image data has been

proposed in [12] for the luminance conservation equation, and in [I3] for mass
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conservation. In contrast to the previous formulation, only an indirect obser-
vation is provided by the conservation equation. The latter is formulated as:
Lw + I; = 0, £ being a linear operator. If assuming luminance conservation,
we have Lw = VI.w, and for mass conservation: Lw = (VI + IV).w. For both
cases, at each control point x;, we have L;.w = —I;, £; denoting the observation
operator at control point x;.

The vector spline model is then rewritten as:

7

: 2
mm/g Iwlla o rin {Z(ﬁiw L)+ /\/ ||w||3} (5)
,CiW + It = 0 ) 2

for the interpolation and approximation cases. It has been proven [12] that the
solution of (B exists and is unique if the observation operators £; are linear and
non zero, and if the control points are non aligned. The solution is a thin-plate
spline, with the same basis function ¢ as in equation (&):

n 6
W= cLid(lx —x]) + Y dipi(x) (6)
=1 =1

p = (p:) being the canonical basis of degree 1 polynomials. The vectors of
coefficients ¢ = (¢;) and d = (d;) are solution of:

99

I; being the identity matrix. The general term of @ (size n x n) is £;L;¢(||x; —
x;||) and S (size n x 6) is defined as: S = L;p.

The vector spline model used for image motion estimation shares the same
interesting properties as the model used for interpolating or approximating vec-
tor data: its solution is obtained without iterative minimization and it has few
parameters (i.e. o, 8 and \). One will set o > (8 when processing images of
highly turbulent flows, thus favoring an estimation with large curl variability.
Reversely, 5 > « is appropriate for situations such as intense vertical activity
causing locally divergent 2D flows.

One main difference with vector data is that there are no predefined loca-
tions where observations are available. The control points selection process must
be defined prior to the estimation. The theoretical conditions guaranteeing the
existence and uniqueness of the solution can easily be met by selecting these
control points with a double thresholding: first on the magnitude of the spa-
tial gradient, discarding low contrast areas; second on the magnitude of the
motion index (ratio of temporal and spatial gradient), thus discarding visually
still areas. Depending on the applicative domain, further locations in specific
structures must be discarded. This is, for instance, the case of ejection filaments
in oceanography, as in these structures the motion is parallel to the contours
and the conservation equation is degenerated. The selection of control points
is therefore highly application-dependent; they should be as evenly distributed
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as possible, but there is, to our knowledge, no criterion for defining an optimal
distribution of control points.

3 Multiscale Vector Splines

3.1 Parametric Spline Model

Thin-plate vector splines minimize the 2nd order div-curl regularity, but are
inappropriate for multiscale estimation as they are defined from a harmonic
basis function. A multiscale scheme actually requires using a basis function that
provides a local representation, hence locally supported or rapidly decaying. The
contribution of this paper is to formulate a multiscale model, based on a spline
parameterized by the scale value and on a pyramidal representation of images
at different scales.

We consider the spline approximation problem with the 2nd order div-curl
norm and either the luminance or the mass conservation equation, through the
observation operators £; assessed on the n control points x;:

min J(w) = {Z(ﬁiw—wi)Q—i—)\/ a||Vdivw||2+ﬂ||chr1w||2} (8)

i=1 2

Rather than exactly solving equation (8)), which would lead to the thin-plate
spline, the minimum is searched for among a set of spline functions suitable for
the multiscale formalism and satisfying the two following properties. (1) The
spline is defined from a unique bell-shaped radial basis function of unit support.
The choice of this function is not critical as long as it is positive, decreasing
and at least three times continuously differentiable in order to compute the 2nd
order div-curl semi-norm. We make use of the basis function v proposed by [14]
and defined as ¥(r) = (1 — 7)%(35r2 4+ 18r + 3) for |r| < 1. (2) The spline is a
linear combination of translates of the basis function over a regular lattice of m
grid points, whose sampling defines the scale parameter h. These translates are
dilated by a factor v proportional to h. The parameters defining the spline are
the m weights q = (q;) (each weight q; being homogeneous to a motion vector
with uw and v components) applied to the translates of the basis function. The
parametric expression of the vector spline is thus:

X — hv; I
Y

wan(@)= > a(] ) 9)

Vv, €72 NAAS

where v; spans a regular lattice of unit spacing in the image domain 2.

A new expression of the functional J is defined by substituting, in equation (g]),
w by its parametric form wq ; (@). Let us first consider the first term of J. If
the observation operator is based on the luminance conservation equation, its
new expression becomes:

v + Iy wq” — Le||* = [ Aig — L |® (10)
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I being the n-dimensional vector of the temporal derivatives at the control
points; ¥ being the n x m matrix of general term o ((z; —k;) /7, (y: —1;)/7) with
i indexing the n control points and j the m grid points (k,1); Ix and I, are the
n x n diagonal matrices of the image spatial derivatives at the control points. In
the case of mass conservation, the first term of J becomes:

T q" + T, 0qY + IDV + IDy W — 1|2 = || Apg — Te|? (11)

where I is the n x n diagonal matrix formed by the image values at control
points, Dx¥ and Dy ¥ are the matrices of the spatial derivatives of ¥. Whatever
the conservation equation, the first term of J is then rewritten as a quadratic
function of q.

Let us now analyze the second term of J. By introducing the matrix of dif-
ferential operators Q(D):

_ (Va0us + B0y (Vo —V/B)0uy
Q(D) = < (\/Ol—\/ﬁ)awy \/aanyr\/ﬁwa) (12)

J then factorizes as:
cu/||Vdivw||2—|-ﬂ/||chrlw||2:/||Q(D)w||2 (13)

The second term of .J is finally rewritten as the quadratic expression ||Rq]|?,
with:

(Va0 W+ BOy Y (Vo — B)Dyy ¥
= ( (Va—VB)0uy¥  ady, + \/ﬂamg[/> : (14)

The substitution of w by the parametric expression wgq j allows J to be rewritten
as a quadratic function of q:

J(a) = [|[Aaq — L||* + X[ Rq® (15)

with A being either A; or A,, depending on the conservation equation chosen.
Finding the minimum of J with respect to q is now a linear optimization problem.

The matrices A and R, in ([[3)), have a band structure since 1 has a compact
support of size v. The width of the band depends on the ratio of v to the scale
parameter h. If v is smaller than h, the matrices A and R are diagonal and the
vector spline is zero everywhere except in the vicinity of the grid points. If ~
is large compared to h, the resulting vector spline can accurately approximate
the thin-plate spline, but the A and R matrices are dense and require a heavy
computational load. v = 3h has been empirically chosen as a good compromise
between the computational speed and the accuracy of the spline. The band
structure allows an efficient numerical solving to be implemented.

3.2 Hierarchical Motion Estimation

A multiscale scheme is required for two main reasons. (1) The parametric spline
allows the image motion to be assessed, given a spatial scale parameter h, and
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provided that the conservation equation can be computed. On satellite image
sequences, a too strong motion and/or a too coarse time sampling cause large
displacements between successive frames, preventing the linearization of the con-
servation equation. (2) Turbulent flows are associated with a large spectrum of
spatial and temporal scales. We therefore make use of a pyramidal scheme, in
which motion is hierachically computed from the coarsest to the finest scale.

Let Iy and I; be two successive images of the sequence. Both are represented
using a pyramid, from the full resolution Iy(0) and I;(0) to the coarsest scale
Io(pmax) and Iy (pmaz ). To each index p corresponds a scale parameter h(p). The
motion is initially computed at the coarsest scale with the parametric spline at
scale h(pmaz ), yielding the motion field W(pimaz ). This initial coarse motion field
is then progresively refined at each scale h(p) by first compensating the image
Iy(p) with w(p + 1) and computing the motion increment dw(p) between the
compensated image and I (p). The finest scale motion (p = 0) is thus expressed
as the sum of the coarse scale motion W(psaz) and of the increments describing
the finer resolutions:

0

w(0) = W(pmas) + D Ow(p) (16)

P=Pmax—1

The link between the scale parameter h(p) and the real spatial scale of the evolv-
ing image structures is not obvious: at one level of the pyramid, the motion is
computed using a scale parameter h(p) corresponding to a basis function of sup-
port v = 3h(p). The basis function is thus able to represent motion patterns with
spatial size less than 3h(p); but there is no guarantee that all motion patterns of
that size will be represented: this will occur only if enough control points have
been selected in the existing patterns.

4 Results

The first result intends to demonstrate the efficiency of accounting for the con-
servation only at control points. For this purpose, the motion is computed using

Fig. 1. Extract of the test sequences: left, OPA; right: Meteosat
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the multiscale vector spline and compared to the result of Corpetti’s method [15].
Both methods minimize the second order div-curl regularity constraint, make use
of either luminance or mass conservation and are solved in a multiscale scheme.
The two methods differ in the data confidence term of the minimized energy
(computed on control points selected by double thresholding for the multiscale
spline, on the whole image domain for Corpetti’s method) and in the numerical
minimization scheme (multiscale vector spline vs variational minimization). Two
comparisons are displayed. First, the motion is computed using the luminance
conservation equation on the synthetic 'OPA’ sequence (on the left in figure [I),
obtained by numerical simulation with the OPA ocean circulation modell]. The
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Fig. 2. Motion fields estimated on the OPA sequence using luminance conservation.
Left to right: reference motion, multiscale spline, Corpetti and Mémin. Top to bottom:
motion field, streamlines, vorticity.

! Thanks to Marina Levy, LOCEAN, IPSL, France.
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Fig. 3. Motion fields estimated on the Meteosat sequence using mass conservation. Left:
multiscale spline, right: Corpetti and Mémin. Top to bottom: motion field, streamlines.

OPA sequence consists of simulated images of sea surface temperature, used for
computing motion. Additionaly the corresponding surface currents are available
and used as the reference field for validation purposes. The results are displayed
on figure 2l The mean angular error between the estimated and reference mo-
tion fields is 28 degrees for the multiscale spline and 42 degrees for Corpetti’s
method. The qualitative inspection of the motion field’s streamlines and vorticity
suggest that the motion of vortices is better assessed by the multiscale spline.
A similar comparison on a Meteosat-5 sequencd] acquired in the water vapor
band is displayed on figure[3l The mass conservation equation is used as the 2D
atmospheric flow can be considered as compressible to accomodate the effects
of vertical motion. For this sequence, a sole qualitative assessment of results is
possible. The multiscale spline is more accurate with respect to the location of
the central vortex. It furthermore succeeds in capturing a rotating motion in the
lower left part of the image, whereas Corpetti’s method incorrectly computes a
smooth laminar field.

The second comparison is intended to demonstrate that the 2nd order div-curl
regularity must be preferred to L? regularity for fluid motion assessment. The lu-
minance conservation equation is considered and the motion is computed on the
OPA sequence by the multiscale spline and the Horn and Schunck method [2].
The results are displayed on figuredl Three different results are presented corre-
sponding to different values of the A coefficient assigned to the regularity compo-
nent, so that both methods are tested with low, medium and high regularization.
The angular errors for the multiscale spline are 30, 29 and 28 degrees (respec-
tively for low, medium and high regularity), for the Horn and Schunk method
43, 47 and 49 degrees. The spline method is much more efficient as far as the
detected location of eddies is concerned: only one vortex is detected by H&S

2 Copyright Eumetsat.
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Fig. 4. Comparison of motion estimates on the OPA sequence, luminance conservation.

Top: multiscale spline with low, medium and high regularity; bottom: Horn and Schunk
with low, medium and high regularity.

method with low regularity, and none with medium and high regularity. This is
onsequence of the L? regularization which favours laminar fields.

Figure [ displays the motion fields estimated on the OPA sequence at three
different scales. At the coarsest scale, the main vortices appear in the upper part
of the image, and the large vortex in the bottom part is not detected at all. At
the intermediate scale, more vortices appear. At finest resolution the location
of vortices is improved and the large vortex in the bottom part of the image is
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even detected. This illustrates that the multiscale scheme actually links the size
of the spatial structure with the spatial scale of the spline, although this link is
not easy to interpret.

5 Conclusion and Future Work

This paper proposes an innovative approach for assessing motion on atmospheric
and oceanographic satellite image sequences of fluid flows. Its characteristics are
the following. (1) The data confidence is only taken into account at specific
locations, the control points, where the conservation equation is workable, i.e.
valid in 2D, or not degenerated to 0=0. The comparison made with a method
using the same conservation equation and the same regularity constraint, but
computing the conservation equation over the whole image domain, proves that
using control points is essential for assessing the confidence in data. (2) The
regularity of the motion field is controlled by the 2nd order div-curl constraint.
This is especially adapted to fluid and turbulent flows, as it allows the variations
of divergence and vorticity of the retrieved motion field to be controlled. This
is highlighted by comparisons with methods based on L? regularization, which
are unable to correctly assess the motion field in eddies. (3) A multiscale scheme
is used to to allow estimation even in the case of large displacements and to
provide a hierarchical representation of the motion field, distinguishing between
large and fine scale structures such as vortices.

Being based on control points and on the 2nd order div curl constraint, the
motion field should theoretically be expressed by a thin-plate spline. The theo-
retical contribution of this paper is to formulate a vector spline in a multiscale
scheme, using a parametric spline model. This approach has two main advan-
tages: (1) the minimum of the energy is obtained by solving a linear system; (2)
the matrix to invert has a band structure, allowing an efficient implementation
that makes the method affordable even for large sequences.

The approach requires further investigation on two issues. First, what is the
link between the spatial scale of basis functions and the extent of image struc-
tures such as vortices? There is no obvious link according to the results and
we believe that the control points must also be hierarchically organized for that
purpose. Second, it is well known that spatial and temporal scales of turbulent
flows are strongly linked, large vortices being stabler than smaller ones. It is thus
necessary to consider motion estimation not only from a pair of successive im-
ages, but from a longer sequence in order to establish a multiscale representation
both in space and time.
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