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Abstract. Modern background subtraction techniques can handle grad-
ual illumination changes but can easily be confused by rapid ones. We
propose a technique that overcomes this limitation by relying on a sta-
tistical model, not of the pixel intensities, but of the illumination effects.
Because they tend to affect whole areas of the image as opposed to in-
dividual pixels, low-dimensional models are appropriate for this purpose
and make our method extremely robust to illumination changes, whether
slow or fast.

We will demonstrate its performance by comparing it to two repre-
sentative implementations of state-of-the-art methods, and by showing
its effectiveness for occlusion handling in a real-time Augmented Reality
context.

1 Introduction

Background subtraction is a critical component of many applications, ranging
from video surveillance to augmented reality. State-of-the-art algorithms can
handle progressive illumination changes but, as shown in Fig. 1, remain vulner-
able to sudden changes. Shadows cast by moving objects can easily be misinter-
preted as additional objects.

This is especially true of approaches [2,3,4,1] that rely on statistical back-
ground models that are progressively updated as time goes by. They can handle
both illumination effects and moving background elements, such as tree leaves or
flowing water. This is an obvious strength, but can result in mistakenly integrat-
ing foreground elements into the background model. This is a potentially serious
problem in surveillance applications: A forgotten luggage could accidentally be-
come part of the background. Furthermore, the model update is usually relatively
slow, making it difficult to rapidly adjust to sudden illumination changes and to
shadows cast by moving objects.

Here, we propose an approach that overcomes this problem by replacing the
statistical background model by a statistical illumination model. More specifi-
cally, we model the ratio of intensities between a stored background image and
an input image in all three channels as a Gaussian Mixture Model (GMM) that
accounts for the fact that different parts of the scene can be affected in differ-
ent ways. We incorporate this GMM in an efficient probabilistic framework that

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part IV, LNCS 5305, pp. 567–580, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



568 J. Pilet, C. Strecha, and P. Fua

Fig. 1. Top row: Three very different input images and a model image of the same
scene. The changes are caused by lights being turned on one after the other and the
person moving about. Bottom row: Our algorithm successfully segments out the person
in all three input images. The rightmost image depicts the completely wrong output of
a state-of-the-art approach [1] applied on the third image.

accounts for texture, background illumination, and foreground colour clues. Its
parameters are computed by Expectation Maximization (EM) [5].

This approach reflects our key insight that, assuming that the background is
static, changes in intensity of non-occluded pixels are mainly caused by illumi-
nation effects that are relatively global: They are not the same in all parts of
the image but typically affect similarly whole portions of the image as opposed
to individual pixels. As a result, they can be modelled using GMMs with only
few components—2 in the experiments presented in this paper—which leads to
a very robust algorithm.

We will demonstrate that our algorithm outperforms state-of-the-art back-
ground subtraction techniques when illumination changes quickly. The key
difference between these techniques and ours is that they directly estimate dis-
tributions of pixel intensities as opposed to illumination effects as we do. We
will also show that our approach performs well in an Augmented Reality context
where a moving object is treated as the background from which occluders such
as the hands holding it must be segmented out.

2 Related Work

Many background subtraction algorithms try to update on-line a statistical back-
ground model. A pixel from a new image is then classified as background if it
fits the model. Wren et al. [2] represent the colour of each pixel by a three-
dimensional Gaussian, learned from colour observation of consecutive frames.
Since a single Gaussian is a poor approximation of the true probability density
function, GMMs were proposed instead [3,4]. These approaches have proved to
be effective at handling gradual illumination changes and repetitive dynamic
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backgrounds. Many improvements have been published since, such as a recent
method that dynamically selects the appropriate number of components for each
pixel [1]. We will use it as a benchmark against which we compare our approach
because it is representative of this whole class of techniques.

Introducing a GMM is not the only way to model a dynamic background.
Elgammal et al. proposed to model both background and foreground pixel in-
tensities by a nonparametric kernel density estimation [6]. In [7], Sheikh and
Shah proposed to model the full background with a single distribution, instead
of one distribution per pixel, and to include location into the model.

Because these methods do not decouple illumination from other causes of back-
ground changes, they are more sensitive to drastic light effects than our approach.

Shadows cast by moving objects cause illumination changes that follow them,
thereby hindering the integration of shadowed pixels into the background model.
This problem can be alleviated by explicitly detecting the shadows [8]. Most of
them consider them as binary [8], with the notable exception of [9] that also con-
siders penumbra by using the ratio between two images of a planar background.
Our approach also relies on image ratios, but treats shadows as a particular illu-
mination effect, a wider class that also include the possibility of switching lights
on.

Another way to handle illumination changes is by using illumination invariant
features, such as edges. Edge information alone is not sufficient, because some
part of the background might be uniform. Thus, Jabri et al. presented an ap-
proach to detect people fusing colour and edge information [10]. More recently,
Heikkilä and Pietikäinen modelled the background using histograms of local bi-
nary patterns [11]. The bilayer segmentation of live video presented in [12] fuses
colour and motion clues in a probabilistic framework. In particular, they observe
in a labeled training set the relation between the image features and their target
segmentation. We follow here a similar idea by training beforehand histograms
of correlation and amount of texture, allowing us to fuse illumination, colour
and texture clues.

3 Method

Our method can serve in two different contexts. For background subtraction,
where both the scene and the camera are static. For augmented reality applica-
tions, where an object is moving in the camera field and occlusions have to be
segmented for realistic augmentation.

Let us assume that we are given an unoccluded model image of a background
scene or an object. Our goal is to segment the pixels of an input image in two
parts, those that belong to the same object in both images and those that are
occluded. If we are dealing with a moving object, we first need to register the
input image and create an image that can be compared to the model image
pixelwise. In this work, we restrict ourselves to planar objects and use publicly
available software [13] for registration. If we are dealing with a static scene
and camera, that is, if we are performing standard background subtraction,
registration is not necessary. It is the only difference between both contexts, and
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the rest of the method is common. In both cases, the intensity and colour of
individual pixels are affected mostly by illumination changes and the presence
of occluding objects.

Changes due to illumination effects are highly correlated across large portions
of the image and can therefore be represented by a low dimensional model that
accounts for variations across the whole image. In this work, we achieve this by
representing the ratio of intensities between the stored background image and an
input image in all three channels as a Gaussian Mixture Model (GMM) that has
very few components—2 in all the experiments shown in this paper. This is in
stark contrast with more traditional background subtraction methods [2,3,4,1]
that introduce a model for each pixel and do not explicitly account for the fact
that inter-pixel variations are correlated.

Following standard practice [14], we model the pixel colours of occluding ob-
jects, such as people walking in front of the camera, as a mixture of Gaussian
and uniform distributions.

To fuse these clues, we model the whole image — background, foreground and
shadows — with a single mixture of distributions. In our model, each pixel is
drawn from one of five distributions: Two Gaussian kernels account for illumi-
nation effects, and two more Gaussians, completed by a uniform distribution,
represent the foreground. An Expectation Maximization algorithm assigns pix-
els to one of the five distributions (E-step) and then optimizes the distributions
parameters (M-step).

Since illumination changes preserve texture whereas occluding objects radi-
cally change it, the correlation between image patches in the model and input
images provides a hint as to whether pixels are occluded or not in the latter,
especially where there is enough texture.

In order to lower the computational burden, we assume pixel independence.
Since this abusive assumption entails the loss of the relation between a pixel
and its neighbors, it makes it impossible to model texture. However, to circum-
vent this issue, we characterize each pixel of the input image by a five dimen-
sional feature vector: The usual red, green, and blue values plus the normalized
cross-correlation and texturedness values. Feature vectors are then assumed in-
dependent, allowing an efficient maximization of a global image likelihood, by
optimizing the parameters of our mixture. In the remainder of this section, we
introduce in more details the different components of our model.

3.1 Illumination Likelihood Model

First, we consider the background model, which is responsible for all pixels that
have a counterpart in the model image m. If a pixel ui of the input image u
shows the occlusion free target object, the luminance measured by the camera
depends on the light reaching the surface (the irradiance ei) and on its albedo.
Irradiance ei is function of visible light sources and of the surface normal. Under
the lambertian assumption, the pixel value ui is: ui = eiai, where ai is the
albedo of the target object at the location pointed by ui. Similarly, we can
write: mi = emai ,with em assumed constant over the surface. This assumption
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is correct if the model image m has been taken under uniform illumination, or
if a textured model free of illumination effects is available. Combining the above
equations yields:

li =
ui

mi
=

ei

em
,

which does not depend on the surface albedo. It depends on the surface orienta-
tion and on the illumination environment. In the specific case of a planar surface
lit by distant light sources and without cast shadows, this ratio can be expected
to be constant for all i [9]. In the case of a 3 channel colour camera, we can write
the function li that computes a colour illumination ratio for each colour band:

li =
[

ui,r

mi,r

ui,g

mi,g

ui,b

mi,b

]T

,

where the additional indices r, g, b denotes the red, green and blue channel of
pixel ui, recpectively.

In our background illumination model we suppose that the whole scene can be
described by K different illumination ratios, that correspond to areas in ui with
different orientations and/or possible cast shadows. Each area is modelled by a
Gaussian distribution around the illumination ratio μk and with full covariance
Σk. Furthermore we introduce a set of binary latent variables xi,k that take the
value 1 iff pixel i belongs to Gaussian k and 0 otherwise. Then, the probability
of the ratio li is given by:

p(li |xi, μ, Σ) =
K∏

k=1

π
xi,k

k N (li; μk, Σk)xi,k , (1)

where μ, Σ denote all parameters of the K Gaussians. πk weights the relative
importance of the different mixture components. Even though the ratios li are
not directly observed, this model has much in common with a generative model
for illumination ratios.

So far we described the background model. The foreground model is respon-
sible for all pixels that do not correspond to the model image m. These pixels
are assumed to be generated by sampling the foreground distribution, which we
model as a mixture of K̄ Gaussians and a uniform distribution. By this choice,
we implicitely assume that the foreground object is composed of K̄ colours μk,
handled by the normal distributions N (ui; μk, Σk), and some suspicious pixels
that occur with probability 1/2563. Again, as in the background model, the la-
tent variables are used to select a specific Gaussian or the uniform distribution.
The probability of observing a pixel value ui given the state of the latent variable
xi and the parameters μ, Σ is given by:

p(ui |xi, μ, Σ) =
(πK+K̄+1

2563

)xi,K+K̄+1
K+K̄∏

k=K+1

π
xi,k

k N (ui; μk, Σk)xi,k . (2)

The overall model consist of the background (Eq. 1) and the foreground (Eq. 2)
model. Our latent variables xi select the one distribution among the total K+K̄+1
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components which is active for pixel i. Consider figures 2(a) and 2(b) for example:
The background pixels could be explained by K = 2 illumination ratios, one
for the cast shadow and one for all other background pixels. The hand in the
foreground could be modelled by the skin colour and the black colour of the shirt
(K̄ =2). The example in Fig. 2 shows clearly that the importance of the latent
variable components is not equal. In practice, there is often one Gausssian which
models a global illimination change, ı.e. most pixels are assigned to this model
by the latent variable component xi,k. To account for the possibly changing
importance, we have introduced πk that globally weight the contribution of all
Gaussian mixtures k=1 . . . K̄ and the uniform distribution k=K̄ + 1.

A formal expression of our model requires combining the background pdf of
Eq. 1 and the foreground pdf of Eq. 2. However, one is defined over illumination,
whereas the other over pixel colour, making direct probabilities incompatible.
We therefore express the background model as a function of pixel colour instead
of illumination:

p(ui |xi, μ, Σ) =
1

| Ji |p(li |xi, μ, Σ) , (3)

where | Ji | is the determinant of the Jacobian of function li(ui). Multiplying
this equation with Eq. 2 composes the complete colour pdf.

Some formulations define an appropriate prior model on the latent variables
x. Such a prior model would incorporate the prior belief that the model se-
lection x shows spatial [14] and spatio-temporal [12] correlations. These priors
on the latent variable x have shown to improve the performance of many vi-
sion algorithms [15]. However, they increase the complexity and slow down the
computation substantially. To circumvent this, we propose in the next section
a spatial likelihood model, which can be seen as a model to capture the spatial
nature of pixels and which allows real-time performance.

3.2 Spatial Likelihood Model

In this section, we present an image feature and a way to learn off-line its rela-
tionship with our target segmentation. Consider an extended image patch around
pixel i for which we extract a low dimensional features vector fi = [f1

i , f2
i ]. The

basic idea behind our spatial likelihood model is to capture texture while keep-
ing a pixel independence assumption. To achieve real-time performance we use
two features that can be computed very fast and model their distribution in-
dependently for the background and for the foreground, by histograms of the
discretized feature values. We use the normalized cross-correlation (NCC) be-
tween input and model image as one feature and a measure of the amount of
texture as the other feature. f1

i is given by:

f1
i =

∑
j∈wi

(uj − ūi) (mj − m̄i)√∑
j∈wi

(uj − ūi)
2 ∑

j∈wi
(mj − m̄i)

2
,

where wi denotes a window around pixel i, and ūi = 1
|wi|

∑
j∈wi

uj is the average
over wi. The correlation is meaningful only in windows containing texture. Thus,
the texturedness of window i is quantified by:
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Elements of the approach. (a) Background image m. (b) Input image u. (c)
Textureness image f 2. (d) Correlation image f 1. (e) Probability of observing f on the
background, according to the histogram h(fi | vi) (f) Probability of observing f on the
foreground, according to the histogram h̄(fi | v̄i).

f2
i =

√ ∑
j∈wi

(uj − ūi)
2 +

√ ∑
j∈wi

(mj − m̄i)
2
.

We denote the background and foreground distributions by h(fi | vi) and
h̄(fi | v̄i), respectively. They are trained from a set of manually segmented image
pairs. Since joint correlation and amount of texture is modelled, the histograms
remain valid for new illumination conditions and for new backgrounds. There-
fore, the training is done only once, off-line. Once normalized, these histograms
model the probability of observing a feature fi on the backgound or on the fore-
ground. Fig. 3 depicts both distributions. One can see that both distributions
are dissociate, especially in highly textured areas.

Figure 2 shows a pair of model and input images, the corresponding texture
and correlation images f2

i and f1
i , and the results of applying the histograms

to f . It is obvious that the correlation measure is only meaningful in textured
areas. In uniform areas, because NCC is invariant to illumination, it can not
make the difference between a background with some uniform illumination or a
uniform foreground.

Both histograms are learnt in the two cases of background and foreground
which are related to the latent variable xi designing one of the distributions of
our model. Therefore, h can be used together with all background distributions
corresponding to {xi,1, ..., xi,K} and h̄ with all foreground ones, corresponding
to {xi,K+1, ..., xi,K+K̄+1}.
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Fig. 3. Joint correlation and texturedness distributions over background and fore-
ground pixels

3.3 Maximum Likelihood Estimation

Having defined the illumination and the spatial likelihood model we are now
in the position to describe the Maximum Likelihood (ML) estimation of the
combined model. Let θ={μ, Σ, π} denote the vector of all unknowns. The ML
estimate θ̃ is given by:

θ̃ = argmax
θ

{
log

∑
x

p(u, f , x |θ)
}

(4)

where p(u, f , x | θ) = p(u, x | θ)p(f , x | θ) represents the combined pdf of the
illumination and the spatial likelihood models given by the product of eqs. 3,
2 and the histrogram distributions h(fi | vi), h̄(fi | v̄). Since the histogram dis-
tributions are computed over an image patch, the pixel contributions are not
independent. However, in order to reach the real-time constraints, we assume
the factorisation over all pixels i in Eq. 4 to be approximately true. We see this
problem as a trade-off between (i) a prior model on x, that models spatial inter-
actions [12,15] with a higher computational complexity and (ii) a more simple,
real time model for which the independence assumption is violated, in the hope
that the spatially dependent feature description f account for pixel dependence.

The pixel independence assumption simplifies the ML estimate to:

θ̃ = arg max
θ

{
log

∏
i

∑
xi

p(ui, li, fi, xi |θ)
}

(5)

The expectation-maximization (EM) algorithm can maximize equation 5. It
alternates the computation between an expectation step (E-step), and a maxi-
mization step (M-step).
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E-Step. On the (t + 1)th iteration the conditional expectation bt+1 of the log-
likelihood w.r.t. the posterior p(x |u, θ) is computed in the E-step. By construc-
tion, i.e. by the pixel independence, this leads to a closed-form solution for the
latent variable expectations bi, which are often called beliefs. Note, that in other
formulations, where the spatial correlation is modelled explicitly, the E-step re-
quires graph-cut optimisation [14] or other iterative approximations like mean
field [15]. The update equations for the expected values bi,k of xi,k are given by:

bt+1
i,k=1...K =

1
N

πk
1

| Ji |N (li; μt
k, Σt

k)h(fi |vi) (6)

bt+1
i,k=K+1...K̄

=
1
N

πkN (ui; μt
k, Σt

k)h̄(fi | v̄i) (7)

bt+1
i,K̄+1

=
1
N

πK+K̄+1

1
2563

h̄(fi | v̄i) ,

where N =
∑

k bt+1
i,k normalises the beliefs bt+1

i,k to one. The first line in Eq. 6
corresponds to the beliefs that the kth normal distribution of the illumination
background model is active for pixel i. Similarly, the other two lines (Eq. 7)
correspond to the beliefs w.r.t. for the foreground illumination model.

M-Step. Given the beliefs bt+1
i,k , the M-step maximises the log-likelihood by

replacing the binary latent variables xi,k by their expected value bt+1
i,k .

μt+1
k =

{
1

Nk

∑N
i=1 bt+1

i,k li if k ≤ K
1

Nk

∑N
i=1 bt+1

i,k ui otherwise
, (8)

where Nk =
∑N

i=1 bt+1
ik . Similarly, we obtain:

Σt+1
k =

{
1

Nk

∑N
i=1 bt+1

i,k (li − μk) (li − μk) T if k ≤ K
1

Nk

∑N
i=1 bt+1

i,k (ui − μk)(ui − μk)T otherwise
(9)

πt+1
k =

Nk∑
k Nk

(10)

Alternating E and M steps ensure convergence to a local minimum. After conver-
gence, we can compute the segmentation by summing the beliefs corresponding
to the foreground and the background model. The probability of a pixel beeing
described by the background model is therefore given by:

p(vi | θ̃, u) =
K∑

k=1

bi,k . (11)

In the next section, we discuss implementation and performance issues.

3.4 Implementation Details

Our algorithm can be used in two different manners. First, it can run on-line, with
a single E-M iteration at each frame, which allows fast computation. On very
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abrupt illumination changes, convergence is reached after a few frames (rarely
more than 6). Second, the algorithm can run offline, with only two images as
input instead of a video history. In this case, several iterations, typically 5 to 10,
are necessary before convergence.

Local NCC can be computed efficiently with integral images, with a complex-
ity linear with respect to the number of pixels and constant with respect to the
window size. Thus, the complexity of the complete algorithm is also linear with
the number of pixels, and the full process of acquiring, segmenting, and display-
ing images is achieved at a rate of about 2.3 × 106 pixels per second, using a
single core of a 2.0GHz CPU. This is about 18 fps for half PAL (360x288), 12
FPS for 512x384, and 5-6 FPS for 720x576 images.

Correlation and texturedness images, as presented in section 3.2, are computed
from single channel images. We use the green channel only, because it is more
represented on a Bayer pattern. The correlation window is a square of 25 × 25
pixels, cropped at image borders.

For all experiments presented in the paper, K = 2 and K̄ = 2. The histograms
h and h̄ have been computed only once, from 9 pairs of images (about 2 × 106

training pixels). Training images do not contain any pattern or background used
in test experiments.

The function li as presented in previous section is sensitive to limited dynamic
range and to limited precision in low intensity values. Both following functions
assume the same role with more robustness and give good result:

lai (ui) =
[
arctan

(
ui,r

mi,r

)
arctan

(
ui,g

mi,g

)
arctan

(
ui,b

mi,b

)]T

lci (ui) =
[

ui,r + c

mi,r + c

ui,g + c

mi,g + c

ui,b + c

mi,b + c

]T

where c is an arbitrary positive constant. In our experiments, we use c = 64.

4 Results

In this section, we show results on individual frames of video sequences that
feature both sudden illumination changes and shadows cast by occluding ob-
jects. We also compare those results to those produced by state-of-the-art tech-
niques [1,11].

4.1 Robustness of Illumination Changes and Shadows

We begin by the sequence of Fig. 5 in which an arm is waved in front of a
cluttered wall. The arm casts a shadow, which affects the scene’s radiosity and
causes the camera to automatically adapt its luminosity settings. With default
parameters, the algorithm of [1] reacts to this by slowly adapting its background
model. However, this adaptation cannot cope with the rapidly moving shadow
and produces the poor result of Fig. 5(a). This can be prevented by increasing
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Segmenting the light switch test images from [16]. (a) Background model.
(b) Test image. (c) Manually segmented ground truth. (d) The output of Zivkovic’s
method [1]. (e) Result published in [11], using an approach based on local binary pat-
terns. (f) Our result, obtained solely by comparing (a) and (b). Unlike the other two
methods, we used no additional video frames.

the rate at which the background adapts, but, as shown in Fig. 5(b), it results
in the sleeve being lost. By contrast, by explicitly reevaluating the illumination
parameters at every frame, our algorithm copes much better with this situation,
as shown in Fig. 5(c). To compare these two methods independently of specific
parameter choices, we computed the ROC curve of Fig. 5(d). We take precision
to be the number of pixels correctly tagged as foreground divided by the total
number of pixels marked as foreground and recall to be the number of pixels
tagged as foreground divided by the number of foreground pixels in the ground
truth. The curve is obtained by binarizing using different thresholds for the prob-
ability of Eq. 11. We also represent different runs of [1] by crosses corresponding
to different choices of its learning rate and the decision threshold. As expected,
our method exhibits much better robustness towards illumination effects.

Fig. 1 depicts a sequence with even more drastic illumination changes that
occur when the subject turns on one light after the other. The GMM based-
method [1] immediately reacts by classifying most of the image as foreground. By
contrast, our algorithm correctly compares the new images with the background
image, taken to be the average of the first 25 frames of the sequence.

Fig. 4 shows the light switch benchmark of [16]. We again built the background
representation by averaging 25 consecutive frames showing the room with the
light switched off. We obtain good results when comparing it to an image where
the light is turned on even though, unlike the other algorithms [1,11], we use a
single frame instead of looking at the whole video. To foreground recall of 82%
that appears in [11] entails a precision of only 25%, whereas our method achieves
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Fig. 5. Segmenting the hand of Fig. 2(b). (a) Result of [1] when the background model
adjusts too slowly to handle a quick illumination change. (b) When the background
model adjusts faster. (d) ROC curve for our method obtained by varying a threshold
on the probability of Eq. 11. The crosses represent results obtained by [1] for different
choices of learning rate and decision threshold.

49% for the same recall. With default parameters, the algorithm of [1] cannot
handle this abrupt light change and yields a precision of 13% for a recall of 70%.

Finally, as shown in Fig. 6, we ran our algorithm on one of the PETS 2006
video sequences that features an abandoned luggage to demonstrate that our
technique is indeed appropriate for surveillance applications because it does not
lose objects by unduly merging them in the background.

4.2 Augmented Reality

Because our approach is very robust to abrupt illumination changes, it is a
perfect candidate for occlusion segmentation in augmented reality. The task is

(a) (b) (c) (d)

Fig. 6. PETS 2006 Dataset. (a) Initial frame of the video, used as background model.
(b) Frame number 2800. (c) The background subtraction of [1]: The abandoned bag in
the middle of the scene has mistakenly been integrated into the background. (d) Our
method correctly segment the bag, the person who left after sitting on the bottom left
corner, and the chair that has been removed on the right.
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(a) (b) (c) (d)

Fig. 7. Occlusion segmentation on a moving object. (a) Input frame in which the card
is tracked. (b) Traditional background subtraction provide unsatisfying results because
of the shadow cast by the hand, and because it learned the fingers hiding the bottom
left corner as part of the background. (c): Our method is far more robust and produces
a better segmentation. (d) We use its output as an alpha channel to convincingly draw
the virtual text and account for the occluding hand.

the following: A user holds an object that is detected and augmented. If the
detected pattern is occluded by a real object, the virtual object should also be
occluded. In order to augment only the pixels actually showing the pattern, a
visibility mask is required. Technically, any background subtraction technique
could produce it, by unwarping the input images in a reference frame, and by
rewarping the resulting segmentation back to the input frame.

The drastic illumination changes produced by quick rotation of the pattern
might hinder a background subtraction algorithm that has not been designed for
such conditions. That is why the Gaussian mixture based background subtraction
method of [1] has difficulties to handle our test sequence illustrated by figure 7.
On the other hand, the illumination modeling of our approach is able to handle
this situation well and, unsurprisingly, shows superior results. The quality of the
resulting segmentation we obtain allows convincing occluded augmented reality,
as illustrated by figure 7(d).

5 Conclusion

We presented a fast background subtraction algorithm that handles heavy illumi-
nation changes by relying on a statistical model, not of the pixel intensities, but
of the illumination effects. The optimized likelihood also fuses texture correlation
clues by exploiting histograms trained off-line.

We demonstrated the performance of our approach under drastic light changes
that state-of-the-art technique have trouble to handle.

Moreover, our technique can be used to segment the occluded parts of a mov-
ing planar object and therefore allows occlusion handling for augmented reality
applications.

Although we do not explicitely model spatial consistency, the learnt his-
tograms of correlation captures texture. Similarly, we could easily extend our
method by integrating temporal dependence using temporal features.
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