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Abstract. This paper presents a probabilistic grammar approach to
the recognition of complex events in videos. Firstly, based on the origi-
nal motion features, a rule induction algorithm is adopted to learn the
event rules. Then, a multi-thread parsing (MTP) algorithm is adopted
to recognize the complex events involving parallel temporal relation in
sub-events, whereas the commonly used parser can only handle the se-
quential relation. Additionally, a Viterbi-like error recovery strategy is
embedded in the parsing process to correct the large time scale errors,
such as insertion and deletion errors. Extensive experiments including
indoor gymnastic exercises and outdoor traffic events are performed. As
supported by experimental results, the MTP algorithm can effectively
recognize the complex events due to the strong discriminative represen-
tation and the error recovery strategy.

1 Introduction

Recently, event recognition in videos has become one of the most active topics
in computer vision. A great deal of researchers have worked on it, which ranged
from the recognition of simple, short-term actions, such as running and walking
[1], to complex, long-term, multi-agent events, such as operating procedures or
multi-agent interactions [3], [5], [11].

In this paper, we focus on the recognition of complex events involving multiple
moving objects. Motivated by a natural cognitive experience that a complex
event can be treated as a combination of several sub-events, we propose the
solution based on some syntactic pattern recognition techniques.

The flowchart of our solution is shown in Fig. 1. The motion features of moving
objects are obtained by tracking. Then in the procedures of Primitive Modeling
and Event Rule Induction, we take advantage of the method developed by Zhang
et al. [14] to obtain a number of primitives as well as a set of event rules. The
learnt rules extend the Stochastic Context Free Grammar (SCFG) production
with Allen’s temporal logic [17] to represent the complex temporal relation in
sub-events. However, in recognition module, the commonly used parser cannot
handle the sub-events with parallel temporal relations. To solve this problem, re-
ferring to the idea in [18] where the linear ordered constraint in identifiers(ID) set
is relaxed to an unordered one, we extend the original Earley-Stolcke parser [20]
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Fig. 1. Flowchart of the solution to complex event recognition in this work

to a multi-thread parsing (MTP) algorithm. Additionally, a Viterbi-like error re-
covery strategy is also embedded to correct the large scale errors, e.g. insertion
and deletion errors in the input stream.

As examples, experiments including gymnastic exercises and traffic events are
performed. As supported by experimental results, the effectiveness and robust-
ness of the MTP algorithm has been validated.

2 Related Work

There has been much work on event recognition in videos. For simple actions such
as “walking” and “running”, some researchers developed a quantity of effective
feature descriptors from raw images [1] [2], etc.

For recognizing complex long-term events, most work is based on modeling the
moving object tracks. Generally two main kinds of approaches are used: Dynamic
Bayesian Network (DBN) based approaches and rule based approaches.

In DBN based approaches [3], [5], [4], [6], some trained stochastic state space
models are adopted to represent the inherent structure of complex event. These
approaches have the advantage of well studied parameter learning algorithms
and the capability to reason with uncertainty. However for the multi-agent in-
teractions involving complex temporal relation, the performance seriously relies
on the appropriate model topology that is difficult to be learnt from small train-
ing data. In most cases, the predefinition for model topology is needed.

In rule based approaches, some primitives (atomics) are first detected, then
complex events are recognized as the combination of several sub-events with cer-
tain rules [15], [16]. Due to the convenient representation and the efficient parsing
algorithm, SCFG has been adopted in applications, such as video surveillance
[10], indoor operating activities [9], [8], [12] and human interaction [11]. However
in their work, the event rules were all predefined manually, which is impossible
in real applications. Furthermore, only single thread event can be tackled, where
the temporal relation between sub-events is just sequential relation.

In fact, the problem on parallel relation has been noticed in some previous
work. In [11], based on context-free grammar, S.M.Ryoo et al. also used Allen’s
temporal logic [17] to represent the parallel relation in complex human interac-
tions. In recognition, the parsing problem was turned into a common constraint
satisfaction problem. In [18], a multidimensional parsing algorithm is proposed
to handle parallel relation in multimodal human computer interaction, where
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the linear ordered constraint for combining two constituents is relaxed to an
unordered one. However, the above two methods do not consider the large time
scale errors in primitive detection such as insertion errors and deletion errors.

In this study, we focus on developing a more effective parsing algorithm which
can handle the parallel relation problem and the uncertainties in primitive de-
tection simultaneously for recognizing complex visual event.

3 Multi-thread Parsing

As shown in Fig. 1, there are two inputs to the parser: one is a symbol (primitive)
stream, the other is a set of event rules. Here each primitive is represented as a
four-tuple {type, ts, tf , lik}, where type is the primitive type, ts and tf represent
start time point and finish time point respectively, lik is the likelihood proba-
bility. The primitives are arranged into a stream according to tf ascendingly.

Referring to [14], the SCFG production is extended by a relation matrix:

H → λ {R} [p] (1)

where R is the temporal relation matrix in which the element rij denotes the
temporal relation between the ith sub-event and the jth one, and p is the condi-
tional probability of the production being chosen, given the event H . Note in our
experiments, the size of event rule is two at most, so that the temporal relation
matrix can be represented as one element r12.

Then the parsing task is to find out the most possible derivation (parsing
tree) T to interpret a primitives stream S. In this work, for the root symbol A, a
set of rules GA is constructed. Therefore in terms of Maximum Likelihood (ML)
criterion, the event recognition problem can be described as follows:

< Ad, Td >= arg max
<A,T>

P (S, T |GA) (2)

where Ad is the final decision on the type of complex event, Td is the correspond-
ing parsing tree, and P (S, T |GA) is computed as the product of the probabilities
of the rules used in the parsing tree.

3.1 Parsing Algorithm

Referring to the idea in [18], we propose the multi-thread parsing algorithm
by extending the Earley-Stolcke parser [20], where three operations: scanning,
completion and prediction are performed iteratively.

Here, the parsing state in our algorithm is represented as follows:

I : X → λ · Y μ [υ] (3)

where I is ID set that indicates the constituents in the input primitives, the
dot marker is the current parsing position, which denotes the sub-events λ have
been observed and the next needed symbol is Y , μ is the unobserved string, υ
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is the Viterbi probability which corresponds the maximum possibility derivation
of the state. In addition, the temporal attributes are also recorded in the state.

Different from the state in the Earley-Stolcke parser where the ID set must
be a set of consecutive primitives, the current ID set may contain disconnected
identifiers. For example, I = {3, 5, 7} means the state is comprised of the 3rd,
5th and 7th primitives in the input string. The relaxed ID set enables multiple
parsing threads to exist simultaneously.

Given the current state set StateSet(i) and the primitive, the following three
steps are to be performed.

Scanning. For each primitive, say d, a pre-nonterminal rule D → d is added,
so that the role of Scanning is able to accept the current primitive with the
predicted state of the pre-nonterminal rule. And the likelihood of the detected
primitive will be multiplied by the Viterbi probability of the predicted state.

Completion. For a completed state in StateSet(i), suppose I ′′ : Y → ω · [υ′′]
that denotes event Y has been recognized, the state Sj in the last state set
StateSet(i − 1) will be examined with the following conditions:

– Y is one of the unobserved sub-events of Sj .
– I ′′ ∩ ISj = φ, where the ID set of the completed state I ′′ is not intersected

with that of Sj.
– The relations between Y and the observed sub-events of Sj is consistent with

the rule definition. The relation is computed by the fuzzy method in [21].

Then for the state satisfying the above conditions, do another judgment in
terms of the position where Y locates at in Sj . If Y is not the first unobserved
sub-event (the symbol following the dot), the unobserved sub-events that are
prior to Y are treated as deletion error candidates that are to be handled in
Section 3.2, else Sj can be assumed as I : X → λ·Y μ[υ], a new state is generated.

{
I : X → λ · Y μ[υ]
I ′′ : Y → ω · [υ′′] ⇒ I ′ : X → λY · μ[υ′] (4)

whereI ′ = I
⋃

I ′′ and υ′ = υυ′′.
In the current state set, if another identical state with the new state has

existed, the Viterbi probability υc of the identical state will be modified as
υc = max{υc, υ

′}, else the new state will be added into the current state set.
Due to the relaxed ID set, there may be too many combinations of different

primitives. Therefore, a beam-width constraint is adopted to prune the redundant
states, where only the first ω states are saved according to the Viterbi probability
in an isomorphic state set. Here we define two states are isomorphic, if and only
if they share the same rule, the same dot position, but different ID set.

Prediction. As the next symbol may belong to other parsing thread, in predic-
tion all the uncompleted states in the last state set will be put into the current
state set. Note, all the non-terminals will be predicted in initialization step.
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3.2 Error Recovery Strategy

Commonly there are three kinds of errors: insertion, deletion, and substitution
errors. Insertion errors mean the spurious detection of primitives that do not ac-
tually happen. Deletion errors denote the missing detection of primitives actually
occurred. Substitution errors mean the misclassification between primitives.

In [10], insertion errors were accepted by the extended skip productions, nev-
ertheless the deletion errors cannot be handled by such skip productions. In
[9], three hypothetical parsing pathes corresponding to the three kinds of errors
(insertion, deletion, substitution) were generated as the parsing fails to accept
the current primitive. However an error may not lead to the failure in current
scanning but in the next iteration.

Here referring to the idea in common parsing [19], a number of error hy-
potheses will be generated along with the parsing process. Finally, a Viterbi-like
backtracking will determine the most possible error distribution. Since a substi-
tution error can be seen as a pair of one insertion error and one deletion error,
only insertion and deletion errors are considered in the following.

Insertion Error. Due to the relaxed ID set in which the identifiers may be
disconnected, the insertion errors are tackled naturally. At the end of parsing, for
each completed root state If : 0 → S · [υf ], the primitives that are not contained
in If are treated as insertion errors of this derivation. The penalties of insertion
errors will be added to the Viterbi probability as follows:

υ = υf

∏
i∈I′

f

ρi (5)

where ρi is the penalty factor of the ith insertion error with a low value, I ′f is
the complement set of If .

Deletion Error. As presented in Section 3.1, deletion error candidates may be
generated in completion operation. Suppose a sate I ′′ : X → λ ·Y1Y2...YnY μ[υ′′]
where Y1Y2...Yn are hypothesized as deletion errors, Alg.1 is performed to trans-
form the old state into a new one Ie : X → λY1Y2...Yn · Y μ[υe]. Here An s =
I ′′ : X → λ · Y1Y2...YnY μ[υ′′], I ′ = I ∪ I ′′, e position is the position where Y
locates at in An s, s set is the last state set.

Concretely, given Yi = An s.predict that is the symbol just behind the dot of
An s, if Yi can only be completed by pre-nonterminal rule Yi → z, the terminal
z is recovered and a completed state re s is generated by scanning operation.
The z is assigned to a low likelihood as the penalty factor of deletion error.

Else if Yi is a non-terminal, Max Ex is performed to find out the state
re s = Yi → λ′ · Zμ′ that is to complete Yi with maximum Viterbi proba-
bility in s set. Then Recovery and Max Ex are performed repeatly, until re s
becomes a completed state.

Then An s is combined with re s to form a new state new s with comple-
tion operator. Finally we examine whether the dot position of new s reaches to
e position, if true the recovery of Ans is over, else recover the next sub-event.
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Algorithm 1. Recovery(An s,I ′,e postion,s set)
1. if An s.predict is pre-nonterminal then
2. z = Error Hypothesize(An s.predict);
3. re s = scanning(An s, z);
4. else
5. re s = Max Ex(An s.predict, I ′, s set);
6. while re s.dot < size(re s.rule) do
7. Recovery(re s, I ′ ∪ Ire s, re s.dot + 1, s set);
8. re s = Max Ex(An s.predict, I ′, s set);
9. end while

10. end if
11. new s = completion(An s, re s);
12. if new s.dot < e position then
13. Recovery(new s, I ′ ∪ Inew s, e position, s set);
14. else
15. Return;
16. end if

Here considering the computing cost, we assume that deletion errors just take
a small proportion in a state. Thus a maximum error constraint is proposed to
prune the states with too many error hypotheses. An exponential distribution is
used to model the number of deletion errors. It is written as e−θn

1
2 , where θ is

a control parameter, n is the size of ID set of the state. For a given state with
m deletion errors, if m

n > e−θn
1
2 , the state will be pruned.

4 Experimental Results

4.1 Gymnastic Exercises

First, a recognizing process for a person doing gymnastic exercises is presented.
Three exercises called E1, E2 and E3 are selected from a set of broadcast gym-
nastics. Twenty nine sequences are collected. The numbers of sequences are 9,
10, and 10 respectively. Fig. 2 illustrates the routine of exercise E 3.

Here the motion trajectories of hands and feet are extracted as the original
feature. Referring to [7], we use the optical flow magnitude to capture the domi-
nate motion regions. Then hands and feet are located with prior color and spatial
information. Note, the tracking technique is not the focus of this paper.

Fig. 2. Illustration on the gymnastic exercises E 3
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(a) lf 1 2 (b) lh 1 2 (c) lh 1 3 (d) rf 2 1 (e) rh 2 3

Fig. 3. Some of the primitives in the gymnastic exercises. Each primitive describes
the movement between different semantic points. For instance, lh 1 2 means move left
hand from semantic point #1 to #2.

Fig. 4. The learnt rules of the gymnastic exercise E 3

For primitive modeling, some semantic points can be firstly learnt by cluster-
ing the stop points, since the finish of a basic movement is commonly indicated
by the stop motion of hand or foot.

Then the primitives can be considered as the movements between different
semantic points. Here, eighteen primitives are obtained. Fig. 3 illustrates some
examples. Finally, the trajectory segments belonging to the same primitive are
modeled by HMM which is for computing the likelihood of the detected primitive.
After primitive detection, each exercise includes around 23 primitives.

For each exercise, a set of rules is learnt by the rule induction algorithm [14].
Fig. 4 describes an example of the learnt rule corresponding to the exercise E3,
where E3 is denoted by non-terminal P40. More details of the rule induction
algorithm can be found in [14].
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To validate the performance of event recognition, HMM and Coupled Hidden
Markov Model (CHMM) are chosen for comparison, because they can be trained
with little human interference. While other DBN based methods usually require
manual construction of model topology. For HMM, the input is a 8-D vector
sequence formed by the four trajectories of hands and feet. In CHMM, the four
trajectories are divided as two parts for the input of each chain. Here, we take
the first 5 sequences for learning rules or parameters and all sequences for test.
And the control parameter ω in the beam-width constraint is 3. The experimental
results are shown in Table 1.

Table 1. Correct classification rate (CCR) on the gymnastic exercises recognition

Event Truth MTP HMM CHMM
θ = 0.7 θ = 0.5 θ = 0.2

E 1 9 9 9 9 9 9

E 2 10 4 10 10 10 10

E 3 10 10 10 10 8 9

Total 29 23 29 29 27 28

CCR 79.3% 100% 100% 93.1% 96.6%

As shown in Table 1, as θ is less than 0.5, the multi-thread parsing (MTP) can
recognize all the sequences correctly, whereas HMM misclassifies two sequences
and CHMM misclassifies one.

To further validate the robustness of our algorithm, three kinds of synthetic
errors are randomly added into the testing trajectories as follows:

– A deletion error is added by replacing a motion trajectory segment that
corresponds to a primitive with a still trajectory that does not correspond
to any primitive.

– An insertion error is added by replacing a still trajectory segment with a
motion trajectory segment that corresponds to a random primitive.

– A substitution error is added by replacing a motion trajectory segment with
another segment that corresponds to a different primitive.

After various amounts of large time scale errors are added, we compare our
MTP parser and HMM as well as CHMM classifiers again. The performance is
shown in Table 2. As six additional errors are added (one substitution error is
equivalent to a pair of one insertion error and one deletion error, so there are
over 25% errors in the primitive stream), as θ is 0.2 the multi-thread parsing
can still acquire a satisfying result 96.6% due to the strong discriminative rule
representation and the effective error recovery method. While the performance
of HMM and CHMM decreases obviously as the number of errors increases. As θ
is 0.5, in terms of the maximum errors constraint in Section 3.2, the maximum
tolerant number of the deleted errors is 23 ∗ exp(−1 ∗ 0.5 ∗ √

23) ≈ 2. So the
performance will decrease rapidly when the number of errors exceeds 2.
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Table 2. CCRs on event recognition with synthetic errors

Number of MTP HMM CHMM
Errors θ = 0.5 θ = 0.2

1 93.1% 100% 86.2% 89.7%

2 82.8% 100% 82.8% 89.7%

3 72.4% 100% 75.9% 86.2%

4 62.1% 100% 69% 79.3%

5 55.2% 100% 55.2% 75.9%

6 41.4% 96.6% 51.7% 75.9%

(a) primitive detection (b) parsing tree

Fig. 5. An example on the recognition process with our methods. The exercise “E
3” is recognized correctly. Here the leaf nodes are primitives. The number under the
primitive indicates the corresponding ID in primitive stream.

From the above comparison, the effectiveness and robustness of our methods
are validated. Moveover, along with the parsing, a parsing tree can be obtained to
express the hierarchical structure explicitly in each primitive stream. An example
on whole parsing process is shown in Fig. 5.

In terms of the parsing tree, each input primitive has two possible afflictions.
One is that it is accepted by the parsing tree. The other is the identification as
an insertion error. Thereafter, the metric overall correct rate (OCR) is adopted
to measure the parsing accuracy, which can be defined as NA+NI

NP , where NA
is the number of correct acceptance of primitives in the parsing tree and NI is
the number of correct detection of insertion errors, NP is the total number of
primitives in input stream.

Table 3 presents the parsing accuracy with original data as well as various
additional errors, where ω is 3 and θ is 0.2. As shown in the table, most correct

Table 3. Parsing accuracy in recognizing the gymnastic exercises. Here, #e=0 means
the ordinal data, #e=1 is the data with one synthetic errors, and so on.

Errors number #e = 0 #e = 1 #e = 2 #e = 3 #e = 4 #e = 5 #e = 6

OCR 87.6% 86.1% 85.9% 83.3% 81.3% 81.2% 76.8%
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Fig. 6. Illustration on the traffic events in the crossroad. The trajectory stream in the
scene can be represented by an iteration of three kinds of passing event.

primitives are accepted by the parsing tree, while the parsing accuracy decreases
with the increase of the added errors. The failure to accept the primitive is
mainly due to two reasons. One is the uncertainty in computing the temporal
relation between sub-events where the fuzzy method [21] relies on an appropriate
threshold. The other reason is that in the deletion error recovery, only the state
with the maximum Viterbi probability is handled, which may lead to the local
optimization, instead of the global optimization.

4.2 Traffic Events in Crossroads

To further validate the effectiveness of our method, we would like to test it in a
realistic surveillance scene which is shown in Figure 6. In this scene, a traffic cycle
composes of three sub-events “Go straight over the crossroad in the main road”,
“Turn left from the main road to the side road” and “Turn left from the side road
to the main road”, which happen alternately. Furthermore, “Go straight over the
crossroad in the main road” can be decomposed into two parallel sub-events “Go
straight over the crossroad in the left side of the main road” and “Go straight
over the crossroad in the right side of the main road”. Eventually, each traffic
event is comprised of a number of primitives which are represented as vehicle
trajectories in different lanes.

We obtain the trajectory data from the previous work by Zhang et al. [14] that
focuses on learning the rules from trajectory stream. In this study, we validate
the effectiveness of the MTP parser to recognize the events in trajectory stream.

Here, the single vehicle passing through the scene is considered as primitive.
By clustering, seventeen primitives are acquired, which describe the main motion
patterns between different entries and exits in the scene. The entries and exits
can be learnt by some work on semantic scene modeling such as [13]. Some of
the primitives are presented in Fig. 7. In terms of these clusters, the trajectories
that do not belong to any of the clusters are deleted. Furthermore as reported
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(a) v 1 6 (b) v 2 5 (c) v 5 2 (d) v 7 5 (e) v 8 1

Fig. 7. The basic motion patterns in the crossroad scene. The white arrow denotes the
motion direction of moving object.

Fig. 8. The learnt rules in traffic event experiment. v i j is the primitive which indicates
the basic motion pattern of “moving from the ith entry to the jth exit in the scene”.

in [14], some irrelevant trajectories which are unrelated to the traffic rules will
distort the rule induction process. Therefore we manually delete these unrelated
trajectories, such as v 8 1 in Fig. 7.

The learnt rules are shown in Fig. 8. We find that four main traffic events
“P46”, “P47”, “P49” and “P50” (the meanings can refer to Fig. 8) in the
crossroad have been learnt. And the whole traffic cycle is denoted by “P57”.
With the learnt rules, the MTP parser is adopted to recognize the interesting
events in a given primitive stream.

Twenty traffic cycles are used for testing. Among these cycles, five of them
are lack of main sub-event “P46” or “P47”, since there is no vehicles passing in
the corresponding ways. Twenty traffic cycles are all recognized correctly, as the
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Fig. 9. An example of the parsing result in one traffic cycle. Four main sub-events are
all recovered correctly.

Table 4. Parsing accuracy on recognizing traffic events

Event P46 P47 P49 P50 P57

OCR 100% 100% 96.9% 99.2% 98.9%

root “P57” can be recovered in each parsing tree. And the absent sub-events are
recovered as deletion errors. An example of the parsing tree is shown in Fig. 9.

Different from the previous gymnastic exercises, we do not use the DBN based
method for comparison. That is because the number of moving objects in one
frame or an uniform time interval is not a fixed value so that the feature dimen-
sionality cannot be determined.

Moreover, in each parsing tree, we examine the parsing accuracies of the whole
traffic cycle “P57” as well as four main sub-events “P46”, “P47”, “P49” and
“P50”. OCR presented in Section 4.1 is used to measure the parsing accuracy.
Table 4 presents the experimental results. The high OCR validates the event
rules’ capability to fit the primitive stream as well as the accuracy of our parsing
algorithm.

5 Conclusion and Future Work

We have present a probabilistic grammar approach to the recognition of complex
events in videos. Compared with previous grammar based work, our work has
three main advantages:

– In this work, the event rules are learnt by an rule induction algorithm, while
in other work the rules are predefined manually.

– The complex event containing parallel sub-events can be recognized by the
MTP parser, while others can only handle the single thread event.
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– An effective error recovery strategy is proposed to enhance the robustness
of the parsing algorithm.

Extensive experiments including indoor gymnastic exercises and outdoor traf-
fic events have been performed to validate the proposed method.

In the future, we will adopt some probabilistic methods to compute the tem-
poral relation. Furthermore, a more efficient parsing strategy is also needed to
reduce the time cost.
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