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Abstract. Given a set of images captured with a fixed camera while a
point light source moves around an object, we can estimate the shape,
reflectance property and texture of the object, as well as the positions of
the light source. Our formulation is a large-scale nonlinear optimization
that allows us to adjust the parameters so that the images synthesized
from all of the parameters optimally fit the input images. This type of
optimization, which is a variation of the bundle adjustment for structure
and motion reconstruction, is often employed to refine a carefully con-
structed initial estimation. However, the initialization task often requires
a great deal of labor, several special devices, or both. In the present pa-
per, we describe (i) an easy method of initialization that does not require
any special devices or a precise calibration and (ii) an efficient algorithm
for the optimization. The efficiency of the optimization method enables
us to use a simple initialization. For a set of synthesized images, the
proposed method decreases the residual to zero. In addition, we show
that various real objects, including toy models and human faces, can be
successfully recovered.

1 Introduction

In the present paper, we present a method for estimating the three-dimensional
shape and bidirectional reflectance distribution function (BRDF) of an object
from a set of images, based on the appearance changes that occur with respect to
the changing position of a point light source. The proposed method should fulfill
the following two criteria: (i) it should not require any special devices, except
for a camera, a darkened room, a light source, and a computer, and (ii) it should
not be too theoretically complicated. Although the method proposed herein and
that proposed in [1,2] are similar with respect to the formulation and the input
data set, we would like to solve the problem using a much simpler framework.
The theoretical simplicity requirement enables the method to be easily extended
to more complicated models, even though this task will not be examined in the
present paper. On the other hand, the minimal requirement of the proposed
method is important to be usable by non-professionals who wish to conveniently
create three-dimensional models.

Several methods for recovering the shape and BRDF of an object were pro-
posed in the literature [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. Some of these methods,
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as well as some earlier methods, proposed the recovery of an object shape by as-
suming that the lighting conditions are known in a computer-controlled lighting
system, or by using a mirror spherical probe. Without prior knowledge of the
lighting conditions, a typical method first estimates the shape of an object by
using the silhouette intersection method, or by using a range finder and then esti-
mating the reflectance properties. In the proposed method, the three-dimensional
positions of the light source, as well as the object shape and reflectance proper-
ties of the object are estimated. Note that, in the previous proposed methods,
a distant light source (which only has two degrees-of-freedom) is typically as-
sumed. However, multiple viewpoints and a complicated lighting environment
are beyond the scope of the present paper.

The proposed formulation and solution method is a variation of the bundle
adjustment [15] used for structure and motion reconstruction. In other words, it
is a large-scale nonlinear optimization that adjusts the parameters so that the
images synthesized from all parameters optimally fit the input images. In terms
of the given cost function, no other method attains a more accurate result.
However, one of the difficulties is that the optimization requires a reasonable
initial estimation. It is possible to use a sophisticated method, such as that
described in Refs. [4,6,8], to initialize the optimization process. However, the
required accuracy for the initialization is much lower. In fact, we use a flat plane
for our initial shape parameters.

Once the initialization is finished, an efficient algorithm is required to per-
form the optimization. Since we assume the typical number of parameters to be
approximately 105, a naive optimization method, such as the steepest descent
method, is insufficient, and the Levenberg-Marquardt method [16], which ex-
ploits the second-order derivative, or a Hessian matrix, is required. For solving a
large-scale linear equation system with a sparse coefficient matrix (Hessian ma-
trix) for each iteration, the preconditioned conjugate gradient method is more
suitable in that it allows us to solve the problem within a limited memory re-
quirement and at a reasonable computational cost. The algorithm can attain
an almost zero residual for an input set of synthesized images, which is not
possible using naive methods. However, since extra care should be taken to
avoid local minima, we gradually increase the number of parameters to be es-
timated and worked to detect abnormally estimated parameters that must be
corrected.

The methods proposed in [1,2] employ a cost function similar to the proposed
function and a very different approach for minimization in order to achieve
a feasible computational cost. These methods require that the parameters be
updated one by one, using several different algorithms (such as the steepest
descent method, Newton’s method, DCT, and SVD) based on several different
aspects of the reflectance model. However, with our proposed method, all of the
parameters are updated simultaneously.

Using our proposed method, we demonstrate that various real objects, includ-
ing a wooden figure, model toys and a human face, can be successfully recovered.
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2 Shape Recovery Method

2.1 Image Formation/Reconstruction Model

A set of input images can be described as a collection of the following measure-
ment vectors:

mfp := (rfp gfp bfp)T (1)

which is a three-vector containing red, green, and blue components of the image
intensity at the p-th pixel in the f -th image.

Since we assume that the object and the camera are fixed and that a point light
source will be moving, mfp is a function of the position of the light lf . It is also
a function of the object shape and its reflectance property. We approximate the
surface reflectance by use of the Simplified Torrance-Sparrow Model described
in Ref. [3] to describe the measurement as follows:

mfp = ηf

⎛
⎝

⎡
⎣

w1p

w2p

w3p

⎤
⎦ cosβfp + w4p

⎡
⎣

sR

sG

sB

⎤
⎦ exp

(
ρα2

fp

)

cos γp

⎞
⎠ (2)

where

cosβfp = nT
p N [lf − xp] , (3)

cos γp = nT
p N [v − xp] , (4)

cosαfp = nT
p N [N [lf − xp] + N [v − xp]] , (5)

ηf is the emittance of the light source for the f -th image, (w1p, w2p, w3p)T and
w4p are the intrinsic color and the reflectance of the specular reflection at the
p-th pixel. We refer to wmp as the weight. Then, lf is the position of the light
source for the f -th image, (sR, sG, sB)T is the color of the light source, v is the
camera position, N is the normalization operator such that N [x] := x/|x|, and
xp is the three-dimensional position of the object at the p-th point. Note that the
object shape is represented by its depth dp from the camera for each pixel, not
by triangular meshes. In addition, np is a unit normal, which is calculated from
the three-dimensional positions of neighboring pixels. Finally, ρ is the surface
roughness, which is shared by each pixel. However, this constraint does not mean
that the object consists of just one material, because the specular reflection of
w4p can change from pixel to pixel.

Although Eqs. (3)–(5) assume that the light source is near the object, Eq. (2)
does not take into account the attenuation with respect to the distance between
the object and the light source. However, this effect can be approximated by
considering that the light source emittance ηf decreases as the distance grows.
Strictly speaking, the attenuation varies from pixel to pixel, but when the object
is sufficiently small, compared to the distance, this effect is small and thus the
approximation is sufficient for our experimental setup.
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Using the image formation model, we can formulate the simultaneous recovery
as a nonlinear optimization problem:

argmin
u

E(u) , where E(u) =
∑
fp

rT
fprfp (6)

where rfp is the difference between the measured intensity mfp and the synthe-
sized intensity (i.e., the right-hand side of Eq. (2)), and u is a vector containing
all the parameters to be estimated, namely, depths dp’s and weights wmp’s for
all p and m, as well as emittances ηf ’s and positions lf ’s for all f , in addition
to specular parameters ρ and s. Let N denote the dimension of u; we typically
assume N ≈ 105.

The foreground and background are differentiated by thresholding the input
images. In other words, constantly dark pixels throughout the images are con-
sidered to be in the background, which are not used for the estimation, and each
foreground pixel has its own unique identifier p. Even if the p-th pixel is in the
foreground, we exclude the error term rfp from the cost function if the pixel is
considered to be saturated or the pixel is in a shadow in the f -th image, i.e.,
all components of the pixel must be more than 0 and less than 255 when the
intensity is 8 bits.

For each p-th pixel, the surface normal np is calculated by

np = N [(xRp − xLp) × (xTp − xBp)] (7)

where Rp, Lp, Tp, and Bp indicate the indices of the pixel to the left, right, top,
or bottom of the p-th pixel, respectively. However, when these pixels are outside
the boundary of the object foreground, Rp, Lp, Tp, or Bp indicate p.

2.2 Optimization Method

To achieve an efficient search for the optimal parameter, we first describe the
basic idea of the Levenberg-Marquardt (L-M) method, and then describe its
efficient implementation by use of the preconditioned conjugate gradient (PCG)
method. The selection of the initial parameter vector is discussed in the following
section.

Letting uk be the search vector at the k-th iteration, the L-M process is as
follows:

uk+1 = uk − (Hk + μkI)−1(∇E) (8)

where ∇E is the gradient of the cost function E, and Hk is the Hessian matrix
of E, that is, Hk := (∂2E/∂ui∂uj). These are evaluated at uk, and μk is a con-
stant for stabilization. For each iteration of the L-M process, we have to solve
the large-scale linear equation system (Hk + μkI)q = ∇E. Since the coefficient
matrix is sparse, the PCG method is suitable. In this method, solving q so as
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to satisfy Aq = b is equivalently transformed into the minimization of f(q) :=
(1/2)qT Aq − bT q, yielding the process 1:

qk =

{
initial guess (k = 0)
qk−1 − αk−1dk−1 (k > 0), where αk = arg min

α
f (qk − αdk) (9)

dk =

⎧⎨
⎩

C−1g0 (k = 0)

C−1gk + βkdk−1 (k > 0), where βk =
gT

k C−1gk

gT
k−1C

−1gk−1

(10)

and

gk = ∇f (evaluated at qk). (11)

Here, C is called a preconditioning matrix, which is an approximation of the
coefficient matrix A, such that C−1gk is easily obtainable.

The structure of the Hessian matrix, or the coefficient matrix, becomes as
follows:

Ck = (12)

when the parameters are ordered in such a manner that the former elements of
u are the parameters independent of position p, and the latter elements are the
shape and reflection parameters for each p. It is important that the bottom-right
part has a band structure and that there are numerous zero elements inside the
band. The reason for this will be described later. The topmost and the leftmost
parts of the matrix are dense, but their heights and widths are small. Thus,
although the size of the matrix is N ×N , the required memory size is O(N), as
is the computational complexity for approximating C−1

k ∇E, which is obtained
by a fixed number of iterations of the PCG process.

Note that, a naive method requires O(N2) memory and O(N3) computation
and is hardly applicable for large N .

Implementation. The matrix Ck is calculated as follows, based on the ap-
proximation of the Hessian matrix used in the Gauss-Newton algorithm:

Ck =
∑
fp

JT
fpJfp + μkI (13)

where

Jfp =
(

∂rfp

∂u1
· · · ∂rfp

∂uN

)
. (14)

1 The symbols αk, βk, dk in the following algorithm are not the same as those in the
reflection model.
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Fig. 1. Initial shape

Most elements in this Jacobian matrix are zero, because the residual vector
rfp is affected only by the three-dimensional positions and the weights of the
p-th pixel and its direct neighbors, the lighting parameters of the f -th image,
and several global parameters. Using this definition, it is easy to show that the
Hessian matrix has the structure shown in Eq. (12).

To avoid the search for μk required for each iteration, as proposed in the origi-
nal L-M algorithm [16], we again use the PCG algorithm. Note that, if αk in Eq.
(9) is 1, and βk in Eq. (10) is 0, then the PCG method is exactly the same as the
L-M method. Instead, we fix μk and search for αk and calculate βk for each itera-
tion. In other words, we use a two-layered PCG algorithm, where the upper layer
minimizes E in Eq. (6), and the lower layer calculates C−1

k ∇E for each (k-th) it-
eration of the upper layer. The preconditioning matrix C used for the upper layer
is Ck, and, for the lower layer, we use the block diagonalized version of Ck, which
is constructed by simply omitting the off-diagonal blocks of Ck.

2.3 Initial Parameters

It is normally necessary to prepare an initial parameter carefully to ensure that
the nonlinear optimization converges successfully. Special devices or sophisti-
cated algorithms might be used to obtain the initial parameters. However, since
the optimization method described in Section 2.2 is fast and powerful, it can re-
cover the parameters from a relatively crude initial estimation. The initialization
method used herein is described below.

We use a plane perpendicular to the optical axis of the camera as an initial
shape (see Fig.1). Even using such crude initial parameters, the shape quickly
converges into an appropriate shape if the light positions are reasonable. In order
to prepare the light positions, we use the Lambertian reflection property based
on Ref. [17]. If a Lambertian surface is lit by a distant light source, it is observed
as a three-vector mT , which is described by the product of the intensity η and
the direction l of the light, and the normal n and the albedo d (RGB 3-vector)
of the surface as mT = ηlT ndT . By collecting measurements mfp at the p-th
pixel in the f -th image, this becomes a matrix relation

⎡
⎢⎣

mT
11 · · · mT

1P
...

. . .
...

mT
F1 · · · mT

FP

⎤
⎥⎦ =

⎡
⎢⎣

η1l
T
1

...
ηF lTF

⎤
⎥⎦ [

n1d
T
1 · · · nP dT

P

]
, (15)



418 T. Migita, S. Ogino, and T. Shakunaga

or M = LN . Ideally, the measurement matrix M is easily constructed and
decomposed into the product of two rank-3 matrices, which contain the light
directions and the shape. Unfortunately, we could not retrieve correct infor-
mation directly from this decomposition because the decomposition is not cor-
rect when the measurements contain specular reflections and/or shadows. Nor
could we determine the distance between the light and the object. Moreover,
M = (LX)(X−1N) is also correct for an arbitrary nonsingular 3 × 3 matrix
X , that contains the bas-relief ambiguity [12]. Even so, we can use this de-
composition to prepare the initial light positions, which will lead to a correct
solution. The decomposition is performed via singular value decomposition, even
if specular pixels or pixels in the shadow are included. Let the singular value de-
composition be M = LN , where L = (u1u2u3), N = diag(σ1, σ2, σ3)(v1v2v3)T ,
and σ1 ≥ σ2 ≥ σ3 ≥ 0. If the light source moves in front of the object, and the
mean of the light positions is near the camera, the most significant singular vec-
tor v1 tends to be the mean of all of the input images, and thus u1 approaches
a scalar multiple of (1, 1, · · · , 1)T because all of the images are approximated by
the summation of the mean (v1) and the relatively small deviations (v2 and v3).
The structure of u1 implies that the ideal X has the form

X =

⎡
⎣

±1
a b
c d

⎤
⎦ , (16)

if the object is at the origin of the coordinate system and the camera is on the
z-axis. The sign of ±1 should be selected so that the light is always positioned
between the object and the camera. Assuming the sign is positive, we examine
the following candidates for X :

⎡
⎣

1
±1

±1

⎤
⎦ ,

⎡
⎣

1
±1

±1

⎤
⎦ . (17)

From the decomposition, only the direction of the light is obtained. Therefore,
the positions are determined by projecting them onto a sphere or a flat plane.

We then conducted the optimization for each candidate X , and selected the
best reconstruction. Note that the initial light positions only require qualitative
correctness, which are then corrected quantitatively by the following optimiza-
tion process.

Another possible initialization scheme is to reconstruct the shape by using a
sophisticated method, such as those described in Refs. [4,6,8]. The computational
cost of this scheme could be less than that using the planar initial shape.

The other parameters are relatively trivial. The light intensities ηf can be
assumed to be uniformly 1, if we move a single light bulb around the object.
The albedo at the p-th point, (w1p, w2p, w3p)T , can be prepared as the mean
of all observations of the images,

∑
f mT

fp/F . The specular weight w4p can be
chosen as 0, assuming that the specular region is relatively small compared with
the entire image. The surface roughness ρ is chosen as −10, because it usually



Direct Bundle Estimation for Recovery of Shape 419

converges at approximately −10 in our experiments. The specular color s is
chosen as (1, 1, 1)T , which assumes that the color of the light source is white.

2.4 Incremental Estimation

A complicated reflection model can cause the estimation to be unstable because
such a model produces many local minima. To avoid local minima, we first use a
coarse model with a limited number of parameters and then gradually upgrade
the model and the estimation.

– Step 1
We assume that there is no specular reflection and that all light emittances
are uniform. As a result, we only estimate the shape, diffuse weights, and
light positions without changing the specular reflection parameters and ηf .

– Step 2
We then add the specular reflection parameters to the set of estimation
parameters. Note that we can assume that these steps adjust the ambiguity
X described previously, although we do not explicitly have X as a parameter.

– Step 3
Finally, we estimate all of the parameters, including the light emittance for
each image. This yields the final estimation result.

The required number of iterations differs for each step. We iterate the PCG
process for a predetermined number of times, which is typically 100 for Step 1
and 200 for Steps 2 and 3. If the number of iterations is determined by analyzing
the change in the cost function value for the last few iterations, unnecessary
iterations would then be omitted or better accuracy would be attained.

2.5 Detection and Correction of an Abnormal Estimation

Although the proposed method works well for most parameters, some parameters
tend to converge far away from meaningful values, and as a result, the entire
estimation sometimes becomes meaningless.

The specular reflection weight w4p at the edge pixels is particularly volatile,
which causes the surface normals at the edge pixels to be incorrectly recon-
structed and some light positions to be estimated far away from the other posi-
tions. This problem is caused by specular reflections, which means that Steps 2
and 3 are vulnerable. Thus, we added a procedure to avoid this problem. (i) If a
specular reflection weight is more than 100 times the median of the weights for
the other pixels, it is then corrected to the median value. If the value is negative,
it is then corrected to 0. (ii) If the distance of a light from the object is greater
than 100 times the median of the other distances, it is then corrected to the
median value.

This procedure often improves our estimation process. However, since this
procedure is performed without checking the cost function value, the estimation
process sometimes collapses. Thus, a more sophisticated approach would be to
formulate the reconstruction problem in a quadratic programming algorithm
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with several linear constraints, such as certain parameters not being be less
than 0, or to formulate using regularization terms to avoid an estimation that is
so far away.

2.6 Extensibility

The proposed method can be extended to deal with other image formation mod-
els, such as multiple light sources and/or reflection models that are more compli-
cated than the Torrance-Sparrow model. The main difficulty in implementation
is the derivation of the Jacobian matrix Jfp.

In addition, we can consider interreflections and cast shadows. Even though de-
riving the Jacobian is the main difficulty, it is straightforward to calculate the resid-
ual vector rfp using computer graphics algorithms with respect to these effects.

3 Experiments

3.1 Experimental Setup

In order to validate the proposed method, we estimated the shape and reflectance
properties of several objects, as well as the light positions of several real images
and numerically generated images. The real images were taken in a room, as
shown in Fig. 2, where the only light source was a light bulb held by a human
operator. Photographic images of several static objects were captured by a static
camera while the light source was moving. We also used a set of images extracted
from the Yale Face Database B [4].

The captured images were RGB color images with 8-bit resolution. We did
not use a technique that is required for a high dynamic range acquisition.

As an evaluation criterion, we used the RMS error of the estimation, which is
defined as

√∑
fp rT

fprfp

3M
, (18)

where M is the number of terms contained in the cost function, which is at most
FP . The proposed method was almost completely validated for a simulation

object
camera

light

Fig. 2. Experimental setup in a darkened room
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image set, where the RMS error approached 10−6, which is an inevitable error
because the input measurements were given in single-precision floating point
variables.

For the real images, although we would like to compare the obtained shape
with the true shape, we did not have ground truth data. Therefore, for now, we
evaluated the shape by comparing the obtained result and the real object from
various viewpoints, and partially validated the proposed method based on the
RMS error, Eq. (18). The quantitative evaluation is left as an important future
study. For the light positions, we could compare the results with the ground
truth data, because the true light directions were available for one of our data
sets and Yale Database B. We also present several videos of the reconstruction
results as supplemental material.

3.2 Experiments on Real Images

Wooden Figure: A total of 36 images were taken of this figure. Three of the
images are shown in Figs. 3 (a)-(c). Each image was of size 128× 296, and there
were 25,480 foreground pixels.

The extrinsic parameters of the camera were not required for the proposed
method, and the intrinsic parameters were simply constructed based on the
image size and an approximation of the focal length, as follows:

P =

⎡
⎣

1000 0 64 0
0 1000 148 0
0 0 1 0

⎤
⎦ . (19)

Actually, we tested several focal lengths and chose the one that provided the
best result. This procedure can be replaced with a camera calibration.

We estimated 127,512 parameters, where the initial shape formed a flat plane,
and the initial light positions formed another flat plane. The initial estimate for
the weights is as shown in Fig. 3 (d), which is the average of the input images,
including Figs. 3(a)-(c), and the resulting diffuse weight is shown in Fig. 3(e).

(a) (b) (c) (d) (e)

Fig. 3. Images of the wooden figure
(a)(b)(c) Examples of the image set,

(d) Mean of the input images, used as the initial weight
(e) Estimated diffuse weights

Fig. 4. Estimated shape of
the wooden figure
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(a) (b) (c) (d)

Fig. 5. Input and estimation result of the wooden figure
(a) Input images, (b) Reconstructed images,

(c) Diffuse components, (d) Specular components

object

light paths

Fig. 6. The object and the
circular paths of the light

(a) (b) (c) (d)

Fig. 7. A toy model (a) Overall view and target region, (b) Estimated shape, (c) Input
images, (d) Reconstructed images

The estimated shape is as shown in Fig. 4. We can confirm that a rotationally
symmetric shape was successfully reconstructed without considerable noise.

Figure 5 shows, from left to right, the input images, the reconstructed images,
and the reconstruction of the diffuse components and specular components, for
two different images. The RMS error was approximately 5, which is 2% of the
intensity range, and the error indicates that the model of Eq. (2) effectively
approximated the input images. In addition, the diffuse and specular components
were meaningfully separated.

During this experiment, the light bulb traveled along several controlled cir-
cular paths, as shown in Fig. 6, even though that information was not added
to the optimization. By comparing the estimated positions and the controlled
trajectory, the average error in the estimated direction was calculated to be 25
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(a) (b) (c) (d)

Fig. 8. The other toy models (a) Overall views and target regions, (b) Estimated
shapes, (c) Examples of the input images, (d) Reconstructions

Fig. 9. Input images of a hu-
man face

Fig. 10. Estimated shapes of the human face

degrees. This is a rather poor result, even though the reconstructed shape does
not seem to be greatly distorted. Intrinsically, the estimation of the light posi-
tions is ill-conditioned, since the specular intensity is a consequence of multiple
factors, including the positions of the light, the curvature of the object, and the
roughness of the surface.

Toy Models: Several vinyl models were also used to test the proposed method.
For each model, thirty images were captured in a darkened room. The overall
views of the objects are shown in Figs. 7 and 8, along with the estimated shapes.
They also show (c) input images and (d) reconstructed images. We can confirm
that the input images were well reconstructed by the proposed model, Eq. (2). We
compared the reconstructed shapes with the real models from various viewpoints
and confirmed that the shapes were successfully reconstructed.
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(a) (b)

Fig. 11. Estimated light positions of the human face (a) True light positions, (b)
Estimated light positions

Human Face: Images extracted from the Yale Face Database B [4] were used
to validate the proposed method. Figure 9 shows examples of the input images of
subject #7 in the database, and Fig. 10 shows the estimated shape from a set of
43 images within Subset 4. The light positions are documented in the database,
and the average estimation error of the light direction was 9.5 degrees with a
standard deviation of 4.2 degrees. We did not use known light directions for our
optimization.

4 Conclusions

In the present paper, we described a method that can be used for the recovery of
a shape, reflectance property, and light positions that does not need any special
devices other than a camera and a light source in a darkened room. For a set
of numerically generated images, the method recovers almost the exact param-
eters. For real images, the method recovers satisfactory shapes. The method is
based on the Levenberg-Marquardt algorithm combined with the preconditioned
conjugate gradient algorithm for handling a large-scale nonlinear optimization
problem. We used a three-step algorithm (coarse model to fine model) to increase
the stability of the process. In addition, we do not need precise calibration or
initialization based on special devices such as range finders, spherical mirrors,
or robotic arms.

The method is based on the Torrance-Sparrow model and the assumption that
a single point light source will be used, which might limit the applicability of
the method. Future research will include the replacement of the original models
with more flexible models and the use of multiple cameras.
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