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Abstract. We present a detection-based three-level hierarchical association ap-
proach to robustly track multiple objects in crowded environments from a single
camera. At the low level, reliable tracklets (i.e. short tracks for further analysis)
are generated by linking detection responses based on conservative affinity con-
straints. At the middle level, these tracklets are further associated to form longer
tracklets based on more complex affinity measures. The association is formulated
as a MAP problem and solved by the Hungarian algorithm. At the high level, en-
tries, exits and scene occluders are estimated using the already computed track-
lets, which are used to refine the final trajectories. This approach is applied to
the pedestrian class and evaluated on two challenging datasets. The experimental
results show a great improvement in performance compared to previous methods.

1 Introduction

Tracking of objects is important for many computer vision applications. This is a rel-
atively easy task when the objects are isolated and easily distinguished from the back-
ground. However, in complex and crowded environments, many objects are present that
may have similar appearances, and occlude one another; also occlusions by other scene
objects are common. We propose a method that can robustly track multiple objects un-
der such challenging conditions.

Traditional feature-based tracking methods, such as those based on color [1], salient
points [2] or motion blobs [3], do not have a discriminative model that distinguishes the
object category of interest from others. Use of object detectors as discriminative models
helps overcome this limitation. It also enables automatic initialization and termination
of trajectories. However, though there has been significant improvement in object detec-
tion techniques, e.g. [4,5,6], the accuracy of the state-of-the-art object detectors is still
far from perfect. Missed detections, false alarms and inaccurate responses are common
(e.g. Fig.1). The tracking method must function with such failures, and also with the
difficulties due to occlusions and appearance similarity among multiple objects.

In most existing association-based tracking methods, e.g. [6,7,8], an affinity score
between detection responses (or tracklets) is computed once and fixed for all later
processing. What we propose is a more flexible approach where associations are made
in several levels and the affinity measure is refined at each level based on the knowledge
obtained at the previous level. A scene model is also estimated from the tracklets and
then used to generate the final object trajectories. This method is applied to track pedes-
trians in a number of videos; the experimental results show that our method achieves a
large improvement in tracking accuracy without much increase in computational cost.
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Fig. 1. Misleading information provided by the pedestrian detector using the method of [6]

1.1 Related Work

The key issue of association based tracking is how to obtain correct associations ro-
bustly with noisy detection results. Multi-Hypothesis Tracking (MHT) [11], Joint Prob-
abilistic Data Association Filters (JPDAFs) [12], and the particle filter based trackers
[14,9] solve this problem by maintaining multiple hypotheses until enough evidence
can be collected to resolve the ambiguity. Some other methods try to get better associa-
tion by doing global analysis. For example, in [13], detection and tracking are coupled
by Quadratic Boolean Programming that is solved by an EM-style algorithm. However,
these approaches are limited for long-time association due to the combinatorial growth
of hypothesis search space. Sampling methods such as MCMC [15] have also been
employed to find the approximate solution in the high-dimensional hypothesis space.

The Hungarian algorithm [10] is another widely used approach for association. Wu
and Nevatia [6] define an affinity measure based on position, size and color, and use the
Hungarian algorithm to associate object hypotheses and detection responses at neigh-
boring frames. Stauffer [7] first obtains tracklets by performing a conservative frame-
to-frame correspondence, and then associates these tracklets by the Hungarian algo-
rithm with an extended transition matrix that considers initialization and termination
of each tracklet. He proposes a parametric source/sink model for the tracklet initializa-
tion and termination, and solves the coupled problem (estimating the source/sink model
and associating tracklets) in an EM framework. Perera et al. [8] modify this extended
transition matrix to maintain object identities even if their trajectories are merged or
split. Kaucic et al. [17] extend Stauffer’s method by introducing a segmentation based
scene understanding module to estimate the locations of scene occluders. However,
training the scene understanding module requires manually-labeling the background in
a few frames of the video, which makes their approach not fully automatic. Singh et
al.[16] use a Multiple Hypothesis Tracker to grow tracklets before associating them
by the Hungarian algorithm. In these methods, the transition matrix for the Hungarian
algorithm is computed only once and fixed for association. Hence, the errors in affin-
ity computation caused by inaccurate detections are hard to be alleviated during the
association process and are likely to be propagated to the higher level analysis.

1.2 Outline of our Approach

In our approach, object trajectories are obtained by progressively associating detection
responses in a three-level hierarchical framework. As shown in Table.1, different mod-
els and methods are used to meet the requirements of association at different levels.
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Table 1. Models and methods used in different levels of the hierarchical framework

Motion Appearance Association Scene model Coordinates

Low level N/A Raw Direct Link N/A Image
Middle level Dynamic Refined Hungarian General Image
High level Dynamic Refined Hungarian Specific Ground plane

First, at the low level, reliable tracklets are generated by linking detection responses
in consecutive frames. A conservative two-threshold strategy is used to prevent “unsafe”
associations until more evidence is collected to reduce the ambiguity at higher levels.

Second, at the middle level, the short tracklets obtained at the low level are itera-
tively associated into longer and longer tracklets. This is formulated as a MAP problem
that considers not only initialization, termination and transition of tracklets but also hy-
potheses of tracklets being false alarms. In each round, positions and velocities of each
input tracklet are estimated. This information helps refine the appearance model, and
additionally provides a motion model to characterize the target. A modified transition
matrix is computed and sent to the Hungarian algorithm to obtain optimal association.

Finally, at the high level, a scene structure model, including three maps for entries,
exits and scene occluders, is estimated based on the tracklets provided by the middle
level. Afterward, the long-range trajectory association is performed with the help of
the scene knowledge based reasoning to reduce trajectory fragmentation and prevent
possible identity switches.

In this framework, inaccuracies of detection responses, automatic initializations and
terminations of trajectories, and occlusions by scene occluders are all taken into ac-
count. The main contributions of this paper include: 1) a novel three-level hierarchical
framework to progressively associate detection responses, in which different methods
and models are adopted to improve tracking robustness; 2) a modified transition matrix
for the Hungarian algorithm to solve the association problem that considers not only
initialization, termination and transition of tracklets but also false alarm hypotheses; 3)
a novel Bayesian inference approach to automatically estimate a scene structure model
as the high-level knowledge for the long-range trajectory association.

The rest of this paper is organized as follows: the proposed hierarchical association
framework is elaborated in Section 2; experimental results on two challenging public
video sets are shown in Section 3; some conclusions are made in Section 4.

2 Hierarchical Association of Detection Responses

We denote a detection response by ri = (xi, yi, si, ti, ai), in which (xi, yi) is the po-
sition, si is the size, ti is the occurrence frame index, and ai is the color histogram;
Tk = {rki |∀i, tki < tki+1} is an object trajectory/tracklet; T = {Tk} is the object
trajectory/tracklet set; T L, T M and T H are association results of the low level, the
middle level and the high level respectively. We assume that a detection response can
only belong to one tracklet/trajectory, which is formulized as a non-overlap constraint:

∀E ∈ {L, M, H} ∀Ti, Tj ∈ T E , Ti ∩ Tj = ∅. (1)
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2.1 Low-Level Association

Denote by R = {ri} the set of all detection responses. The low-level association takes
R as the input, and generates reliable tracklets by a simple and conservative method,
direct link. Similar to that in [6], link probability between two responses is defined as
the product of three affinities based on position, size and appearance:

Plink(rj |ri) =
{Apos(rj |ri)Asize(rj |ri)Aappr(rj |ri), if tj − ti = 1

0, otherwise
. (2)

Notice that the association can only happen between two consecutive frames. Ac-
cording to the non-overlap constraint in Equ.1, (ri, rj) and (rk, rl) are regarded as two
conflicting pairs if i = k or j = l. To prevent “unsafe” associations, two responses
are linked if and only if their affinity is high enough and significantly higher than the
affinity of any of their conflicting pairs:

Plink(ri|rj) > θ1, and ∀rk ∈ R − {ri, rj},

min
[
Plink(ri|rj) − Plink(rk|rj), Plink(ri|rj) − Plink(ri|rk)

]
> θ2,

(3)

where θ1 and θ2 are the two thresholds.
Based on this two-threshold strategy, the low-level association can efficiently gen-

erate a set of reliable tracklets T L = {T L
k }. Any isolated detection response, which is

not linked with any other one, is considered as a degenerate tracklet and also included
in T L. The low-level association does not resolve the ambiguity of conflicting pairs, as
they can be figured out more effectively at higher levels.

2.2 Middle-Level Association

The middle level association is an iterative process: each round takes the tracklets
generated in the previous round as the input and does further association. Take the
first round, whose input is T L, for example. We define a tracklet association as a
set of tracklets: Sk = {T L

i0 , T
L
i1 , · · · , T L

ilk
}, where lk is the number of tracklets in Sk.

T M
k =

⋃
T L

i ∈Sk
T L

i is the corresponding trajectory of Sk, and S = {Sk} is the tracklet
association set.

The objective of the first round association can be formulated as a MAP problem:

S∗ = arg max
S

P (S|T L) = arg max
S

P (T L|S)P (S)

= arg max
S

∏

T L
i ∈T L

P (T L
i |S)

∏
Sk∈S

P (Sk), (4)

assuming that the likelihoods of input tracklets are conditionally independent given S,
and the tracklet associations {Sk} are independent of each other.

A Bernoulli distribution is used to model the probability of a detection response be-
ing a true detection or a false alarm. Let β be the precision of the detector, the likelihood
of an input tracklet is defined as

P (T L
i |S) =

{
P+(T L

i ) = β|T L
i |, if ∃Sk ∈ S, T L

i ∈ Sk

P−(T L
i ) = (1 − β)|T

L
i |, if ∀Sk ∈ S, T L

i /∈ Sk

(5)
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where |T L
i | is the number of detection responses in T L

i , and P+(T L
i ) and P−(T L

i ) are
the likelihoods of T L

i being a true detection and a false alarm respectively.
The tracklet association priors in Equ.4 are modeled as Markov Chains:

P (Sk) = Pinit(T L
i0 )Plink(T L

i1 |T
L
i0 ) · · ·Plink(T L

ilk−1
|T L

ilk
)Pterm(T L

ilk
) (6)

composed of an initialization term Pinit(T L
i0

), a termination term Pterm(T L
ilk

) and a

series of transition terms Plink(T L
ii+1

|T L
ii

). Definitions of these terms will be given later
in the subsection of implementation details.

Constrained by the non-overlap assumption in Equ.1, T L
i cannot belong to more than

one Sk. Thus, we rewrite Equ.4 by inserting P+(T L
i ) into its corresponding chain:

S∗ = argmax
S

∏
∀Sk∈S,T L

i /∈Sk

P−(T L
i )

∏
Sk∈S

[
Pinit(T L

i0 )P+(T L
i0 )

Plink(T L
i1 |T

L
i0 ) · · · Plink(T L

ilk
|T L

ilk−1
)P+(T L

lk
)Pterm(T L

ilk
)
]
. (7)

This MAP formulation has a distinct property compared to the previous work [7,8]:
it allows S∗ to exclude some input tracklets, rejecting them as false alarms instead of
receiving their initialization/termination penalties or transition terms by linking them.

Hungarian Algorithm. Supposing there are n input tracklets, we can transfer the MAP
problem in Equ.7 into a standard assignment problem by defining a transition matrix:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 · · · C1n C1(n+1) −∞ · · · −∞
C21 C22 · · · C2n −∞ C2(n+2) · · · −∞
· · · · · · · · · · · · · · · · · · · · · · · ·
Cn1 Cn2 · · · Cnn −∞ −∞ · · · Cn(2n)

C(n+1)1 −∞ · · · −∞ 0 0 · · · 0
−∞ C(n+2)2 · · · −∞ 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
−∞ −∞ · · · C(2n)n 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2n×2n

(8)

whose components are defined as

Cij =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ln P−(T L
i ), if i = j ≤ n

ln Plink(T L
j |T L

i ) + 0.5[lnP+(T L
i ) + lnP+(T L

j )] if i, j ≤ n and i 	= j
ln Pinit(T L

j ) + 0.5 lnP+(T L
j ), if i = j + n

ln Pterm(T L
i ) + 0.5 lnP+(T L

i ), if i + n = j
0, if i > n and j > n
−∞, otherwise

(9)
in which ln P+(T L

i ) is divided into two halves that are integrated into the two neigh-
boring transition terms respectively.

As stated before, the MAP formulation in this paper takes false alarm hypotheses into
account. In particular, this is represented by the diagonal components of the transition
matrix: each one is set to be the logarithmic likelihood of the tracklet being a false alarm,
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and the self-association of a tracklet is equivalent to rejecting it as a false alarm since
it cannot be associated with any other tracklet, initialization or termination. Denoting
Γ ∗ = [γ∗

ij ]2n×2n as the optimal assignment matrix obtained by applying the Hungarian
algorithm to the transition matrix C, for each γ∗

ij = 1,
(1) if i = j ≤ n, T L

i is considered as a false alarm;
(2) if i, j ≤ n and i 	= j, link the tail of T L

i to the head of T L
j ;

(3) if i = j + n, T L
j is initialized as the head of the generated trajectory;

(4) if i + n = j, T L
i is terminated as the tail of the generated trajectory.

In this way, we can compute S∗ and its corresponding tracklet set T M.

Implementation Details. The link probability between two tracklets is defined as the
product of three components (appearance, motion and time):

Plink(T L
j |T L

i ) = Aa(T L
j |T L

i )Am(T L
j |T L

i )At(T L
j |T L

i ). (10)

To alleviate noises from inaccurate detections, for each input tracklet, a Kalman Fil-
ter is used to refine the positions and sizes of its detection responses and estimate their
velocities. Color histograms of the detection responses are recomputed and integrated
into a refined color histogram a∗

i for the tracklet by a RANSAC method.
The appearance affinity is defined by a Gaussian distribution:

Aa(T L
j |T L

i ) = G(corr(a∗
i , a∗

j ); 0, σc), (11)

where corr() calculates the correlation between a∗
i and a∗

j .
The motion affinity is defined as

Am(T L
j |T L

i ) = G
(
ptail

i + vtail
i Δt;phead

j ,ΣΔt

)
G

(
phead

j − vhead
j Δt;ptail

i ,ΣΔt

)
,

(12)
where Δt is the frame gap between the tail (i.e. the last detection response) of T L

i and
the head (i.e. the first detection response) of T L

j ; phead
i (or ptail

i ) and vhead
i (or vtail

i )
are the refined position and estimated velocity of T L

i at the head (or tail) (see Fig.2 for
an illustration). The difference between the predicted position and the observed position
is assumed to obey a Gaussian distribution.

The temporal affinity limits the maximum frame gap between two associated track-
lets, and measures the probability of missed detections within the gap:

At(T L
j |T L

i ) =
{

Zξα
Δt−1−ω , if Δt ∈ [1, ξ]

0, otherwise
, (13)

where α is the missed detection rate of the detector, ξ is an upper bound of frame gap,
and Zξ is a normalization factor. Within the frame gap, ω is the number of frames in
which the tracked object is occluded by other objects, and Δt − 1 − ω is the number
of frames in which the tracked object is visible but missed by the detector. In prac-
tice, to compute ω, we interpolate detection responses within the frame gap (Fig.2) and
check whether they are occluded by other objects by applying the occupancy map based
occlusion reasoning method in [6] to T L.

Initialization and termination probabilities of each tracklet are empirically set to be

Pinit(T L
i ) = Pterm(T L

j ) = Zξα
1
2 ξ. (14)
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Fig. 2. Motion affinity and temporal affinity between two tracklets: the dashed circles and the
dashed squares are predictions of T L

i and T L
j by their motion models, and the dashed diamonds

are interpolated responses between the two tracklets

So far we have elaborated the first round at the middle level. In the following rounds,
tracklets with longer frame gaps are associated by progressively increasing ξ.

2.3 High-Level Association

During the middle-level association, all tracklets have the same initialization/termination
probabilities as there is no prior knowledge about entries and exits at that stage. This is
equivalent to assuming uniform distributions of entries and exits in the scene. At the high
level, an entry map and an exit map are inferred from T M, which are used to specify
the initialization/termination of each tracklet in the scene. In addition, a scene occluder
map is also inferred from T M to revise the link probabilities. The three maps, as hid-
den variables, constitute a scene structure model in the high-level association. With a
homography between the image plane and the ground plane, the scene structure model
is estimated in the ground plane coordinates for better accuracy. We solve this coupled
scene-estimation tracklet-association problem by an EM-like algorithm.

E-step. In the E-step, the probability distributions of entries, exits and scene occluders
are calculated via Bayesian inference:

P (Mq(x) = 1|x)
P (Mq(x) = 0|x)

=
P (Mq(x) = 1)P (x|Mq(x) = 1)
P (Mq(x) = 0)P (x|Mq(x) = 0)

(15)

where Mq(x) ∈ {0, 1} is the indicator function for entries, exits or scene occluders
(q = {en, ex, oc}) at position x on the ground plane.

The positive and negative likelihoods are computed based on T M. A tracklet Tk is
used to propose a set of hypotheses for entries, exits and scene occluders as Fig.3.

The complete version of a tracklet Tk that includes missed detections, T̃k = {rki}, is
obtained by filling the gaps between inconsecutive detection responses with interpolated
ones. One observation is that an entry/exit is likely to be located close to the head/tail
of a tracklet. Thus, two Gaussian hypotheses are proposed for the positive likelihoods
of the entry and the exit respectively:

pen+(x|Tk) = G (x; xen, σp) , xen = phead
k − vhead

k Δtm

pex+(x|Tk) = G (x; xex, σp) , xex = ptail
k + vtail

k Δtm (16)
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Fig. 3. Hypotheses for entries, exits and scene occluders proposed by a tracklet

where phead
k /ptail

k and vhead
k /vtail

k are the estimated position and velocity at the
head/tail of T̃ H

k by the Kalman Filter, and Δtm is a short time span for predicting
the positions of the entry and the exit. Another observation is that entries and exits are
unlikely to be close to the passed region of a tracklet. Therefore, a mixture of Gaussian
hypotheses is adopted to model their negative likelihoods:

pen−(x|Tk) = pex−(x|Tk) =
1

|T̃k|

∑

rki
∈�Tk

G (x; xki , σp) (17)

where xki is the position of response rki .
Estimation of the scene occluder map focuses on the area between the camera and the

tracklet. Given the camera position xcam on the ground plane, an angle-based Gaussian
distribution is defined to model the occlusion relationship between a target at position
xt and a scene occluder at position xo:

G̃angle(xo,xt,xcam) = ZaG (angle(xo − xcam,xt − xcam); 0, σa) (18)

where angle() computes the view angle difference between the target and the occluder
(i.e. θ shown in Fig.3), and Za is a normalization factor. The probability is maximized
when the occluder lies on the line segment between the target and the camera.

An interpolated response of a tracklet is not detected by the detector. If it is not
occluded by any other tracked target, it might be occluded by a scene occluder. Con-
versely, with high probability, there are no scene occluders lying between the camera
and the detection responses. Based on these observations, a tracklet gives positive and
negative likelihoods of scene occluders by

poc+(x|Tk) =
1

|Ok|
∑

rki
∈Ok

G̃angle (x,xki ,xcam) ,

poc−(x|Tk) =
1

|Tk|
∑

rki
∈Tk

G̃angle (x,xki ,xcam) (19)

where Tk is the original tracklet whose responses are all detected, and Ok is a subset of
the complete tracklet T̃k, consisting of the interpolated responses that are not occluded
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by any other tracked target. Again the occlusion reasoning method in [6] is adopted
here to decide the occlusion type of an interpolated response. Notice that interpolated
responses that are occluded by other tracked targets make no contributions to the esti-
mation of scene occluders.

Considering the hypotheses proposed by each tracklet as a set of i.i.d. samples ex-
tracted from the true likelihood distributions, we approximate the likelihoods in Equ.15
by the mixture of all hypotheses.

P (x|Mq(x) = 1) =
1

|T M|
∑

Tk∈T M

pq+(x|Tk),

P (x|Mq(x) = 0) =
1

|T M|
∑

Tk∈T M

pq−(x|Tk), q = {en, ex, oc}. (20)

Eventually, the posterior probabilities in Equ.15 can be computed with their corre-
sponding predefined prior probabilities.

M-step. In the M-step, the tracklets in T M are further associated to form even longer
ones. Similar to the middle level, the association problem is formulated as a MAP prob-
lem and solved by the Hungarian algorithm. However, based on the scene structure
model obtained from the E-step, the initialization and termination probabilities (Equ.14)
of each tracklet are recomputed as

Pinit(Tk) = Zξα
min( 1

2 ξ,Δtinit), Pterm(Tk) = Zξα
min( 1

2 ξ,Δtterm). (21)

Δtinit(or Δtterm) is the frame number of missed detection part between the head (or
tail) of Tk to the nearest entry (or exit):

Δtinit = inf
{
Δt : P

(
Men(x) = 1|x = xhead

k − vhead
k Δt

)
> 0.5

}
,

Δtterm = inf
{
Δt : P

(
Mex(x) = 1|x = xtail

k + vtail
k Δt

)
> 0.5

}
. (22)

where inf{} is the infimum of a set. Moreover, an interpolated response r0 at position
x0 is considered to be occluded by scene occluders if and only if

max
α∈[0,1]

[P (Moc(x) = 1|x = αx0 + (1 − α)xcam)] > 0.5. (23)

This is used to reivse the temporal affinity in Equ.13 by considering occlusions by scene
occluders when counting the occluded frame number ω.

The scene structure model helps explain three important events for tracklet associa-
tion: entering the scene, exiting the scene and being occluded by scene occluders. This
greatly reduces the ambiguity of associating tracklets with long frame gaps. Compared
to the parametric sources/sink model in [7] and the semi-automatic scene understanding
module in [17], our approach is nonparametric and fully automatic. It directly calculates
the posterior probability maps by Bayesian inference based on object tracklets.

Table.2 summarizes the overall algorithm of our hierarchical framework.
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Table 2. The overall algorithm of hierarchical association framework

0) (Given): the detection response set R, upper bounds of frame gap {ξi| ξi < ξi+1}
and the number of iterations in the middle-level association D

1) (Low-level association): obtain tracklet set T L by the direct link method.
2) (Middle-level association):

• Initialize: T M = T L.
• For i = 1 to D

� (Affinity Revision): for each tracklet in T M, obtain a motion model by
Kalman filter and a refined appearance model by a RANSAC method; for
each frame, compute an occupancy map according to T M.

� (Association): calculate the transition matrix C with ξi, obtain the optimal
tracklet association set S∗ and the corresponding T ∗. Set T M = T ∗.

3) (High-level association):
• (E-step): estimate the scene structure model from T M.
• (M-step): based on the scene structure model, repeat the iterative process in the

middel-level association once with ξ = ξD+1 to obtain trajectory set T H.
4) (Output): the complete trajectory set �T H by filling the frame gaps in T H.

3 Experimental Results

We apply our hierarchical association framework to the multiple pedestrian tracking
problem. In all experiments, the number of iterations D is set to be 3, and the upper
bounds of frame gap ξi are set to be 8, 32, 128 for the middle level and 256 for the high
level. We evaluate our method on two public video corpora: the CAVIAR set [19] and
the i-LIDS AVSS AB set [20]. The CAVIAR set contains 26 videos captured in a cor-
ridor, and its ground truth contains 235 trajectories. The i-LIDS AVSS AB set contains
three videos captured in a subway station, and its ground truth includes 135 trajectories.
Both data sets are challenging due to heavy occlusions. We learn our pedestrian detector
by the method in [6], and none of the videos in these two test sets are used for training.

Evaluation Metric. We adopt the metrics in the CLEAR evaluation [18] and use an
automatic scoring software provided by the organizer. The three adopted metrics are:

(1) MOTA: Multiple Object Tracking Accuracy, calculated from the number of false
alarms, missed detections, and identity switches;

(2) FGTIM: Fraction of Ground Truth Instances Missed; and
(3) FAPF: False Alarm Per Frame.
For the first score, higher is better; for the last two scores, lower is better.
For comparison, we also evaluate the method in [6] on the two sets. Table.3 lists the

scores. Among them, “Wu & Nevatia’s [6]” and “Our high level” are the final results
of the two methods; “Our low level” and “Our middle level round i” (i = {1, 2, 3}) are
the intermediate results obtained in our method, which are used to demonstrate the pro-
gressive improvement achieved by the hierarchical association framework. In addition,
to show the advantage of the iterative process at the middle level, a simplified version of
middle-level association with only one round, denoted as “Our middle level #”, is eval-
uated. To show the benefit from the E-step at the high level, we evaluate a degenerate
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Table 3. Evaluation results on CAVIAR and i-LIDS with CLEAR metric

CAVIAR i-LIDS
MOTA FGTIM FAPF MOTA FGTIM FAPF

Wu & Nevatia’s [6] 0.537 0.470 0.012 0.553 0.370 0.228
Our high level 0.800 0.200 0.025 0.684 0.290 0.137
Our low level 0.540 0.338 0.395 0.475 0.507 0.080
Our middle level round 1 0.627 0.332 0.141 0.490 0.507 0.042
Our middle level round 2 0.694 0.292 0.064 0.547 0.459 0.024
Our middle level round 3 0.759 0.235 0.032 0.640 0.358 0.059
Our middle level # 0.705 0.263 0.118 0.592 0.401 0.060
Our high level # 0.771 0.223 0.041 0.656 0.343 0.062

version of the high-level association (denoted as “Our high level #”), which replaces
the estimated scene structure model with a general one. The homography between the
image plane and the ground plane is obtained by manually labeling several points on
the ground. This could also be easily derived from camera parameters.

CAVIAR Set. As shown in Table.3, from the low level to the high level, the MOTA
score of our method is progressively increased, while the FGTIM score and the FAPF
score are gradually decreased. The low-level association has the lowest detection rate
and the highest false alarm rate since it just links detection responses in consecutive
frames and doesn’t take false alarm hypotheses into account. As the hierarchical as-
sociation proceeds, the upper bound of frame gap ξ increases from 8 to 256. On one
hand, it enables the algorithm to associate strong tracklets with long frame gaps, so that
more and more missed detections can be recovered; on the other hand, it decreases the
initialization and termination probabilities of each tracklet (see Equ.14), so that weak
tracklets are likely to be rejected as false alarms. Compared to Wu & Nevatia’s method
[6], ours achieves a comparably low FAPF score, a much lower FGTIM score, and a
much higher MOTA score. The first row (input detection responses) and the second row
(tracking results) of Fig.4 demonstrate the improvements achieved by our method: 1)
two false alarms in frame 133 are rejected by the proposed false alarm hypotheses in the
MAP formulation; 2) three missed detections in frame 233 are recovered by associating
long-gap tracklets; 3) an inaccurate response in frame 407 is corrected. The third row
is the tracking result of another video in the CAVIAR set, and more example results are
submitted as supplementary materials. The experimental results show that our method
can overcome some deficiencies of the pedestrian detector as shown in Fig.1.

Compared to the iterative association approach (“Our middle level round 3”) at the
middle level, the simplified one (“Our middle level #”) is inferior in terms of all three
scores. Without the estimated specific scene structure model, the degenerate high-level
association (“Our high level #”) can not perform as well as the original one (“Our high
level”). The comparisons justify the use of the iterative association approach and the
specific scene structure model in our method.

i-LIDS Set. Similar to the results on the CAVIAR set, our method achieves big im-
provement for MOTA and FGTIM on the i-LIDS set. However, the FAPF score is not
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Fig. 4. Tracking results of our method on the CAVIAR set: the first row and the second row are
the input detection responses and the corresponding tracking results for a video; the third row is
the tracking result for another video

monotonously reduced: it drops to the minimum at the second round of the middle level
and rises afterward. We attribute this to the extremely heavy inter-occlusions in this
data set (as shown in the second row of Fig.5): when a train stops at the station, many
pedestrians rush in and out of the carriage in a short time. Tracklets of pedestrians in
such crowded environments are highly fragmented and noisy. Associating these track-
lets with long frame gaps is risky, since it is difficult to distinguish too many disordered
targets with similar appearance based on color and motion. However, as the tradeoff
between the detection rate and the false alarm rate, the MOTA score keeps increasing,
and the final results of our method outperform those of Wu & Nevatia’s [6] for all three
scores. Again, the difference between the two modified methods (“Our middle level
#” and “Our high level #”) and their original versions (“Our middle level round 3”
and “Our high level”) justify the use of the iterative association approach and the spe-
cific scene structure model. Fig.5 shows some tracking results of our method on this
set.

Scene Structure Models and Tracking Speed. In practice, the three probability maps
in the scene structure model are implemented as discrete grids for efficiency. To vi-
sualize the estimated scene structure model, we binarize every probability map with a
threshold of 0.5 as shown in Fig.6. It can be seen that our Bayesian inference approach
in the E-step of the high level is capable of effectively reconstructing the crucial en-
vironment elements for the final association in the M-step. In particular, our method
successfully locates the pillars as occluders in both scenes, which is important for the
recovery of trajectories occluded by the pillar for a long time. The first row of Fig.5
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Fig. 5. Tracking results of our method on i-LIDS set

Fig. 6. Estimated scene structure models for CAVIAR and i-LIDS: the entry map and the exit map
are both painted in red as they are mostly overlapped; the occluded region (in yellow) is inferred
from the positions of camera (at the bottom) and scene occluders (in green); the three rectangles
of each image indicate the ground plane coordinates.

shows an example from the i-LIDS set, in which the trajectory 15 is not broken al-
though it is occluded by the pillar for more than 200 frames (i.e. 8 seconds).

For computational efficiency, a sliding window technique is used at the middle level
to reduce the size of transition matrix for the Hungarian algorithm. Given the detection
results, the speed of our method is about 50 FPS on a 3.0G Hz PC.

4 Conclusion

In this paper, we present a robust hierarchical association framework for the multiple
object tracking problem. Experimental results on two challenging data sets show that
the proposed method significantly improves the tracking performance by effectively as-
sociating tracklets with inaccurate detection responses and long-time occlusions. This
hierarchical framework is a general approach, and other affinity measures or optimiza-
tion methods can be easily integrated into this framework.
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