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Abstract. Visual tracking is a challenging problem, as an object may change
its appearance due to viewpoint variations, illumination changes, and occlusion.
Also, an object may leave the field of view and then reappear. In order to track
and reacquire an unknown object with limited labeling data, we propose to learn
these changes online and build a model that describes all seen appearance while
tracking. To address this semi-supervised learning problem, we propose a co-
training based approach to continuously label incoming data and online update a
hybrid discriminative generative model. The generative model uses a number of
low dimension linear subspaces to describe the appearance of the object. In order
to reacquire an object, the generative model encodes all the appearance variations
that have been seen. A discriminative classifier is implemented as an online sup-
port vector machine, which is trained to focus on recent appearance variations.
The online co-training of this hybrid approach accounts for appearance changes
and allows reacquisition of an object after total occlusion. We demonstrate that
under challenging situations, this method has strong reacquisition ability and ro-
bustness to distracters in background.

1 Introduction

Object tracking is challenging [1] due to appearance changes, which can be caused by
varying viewpoints and illumination conditions. Appearance can also change relative
to background due to the emergence of clutter and distracters. Also, an object may
leave the field of view (or be occluded) and reappear. To address these difficulties, we
aim to track an arbitrary object with limited initialization (labeled data) and learn an
appearance model on-the-fly, which can then be used to reacquire the object when it
reappears.

This tracking problem can be formulated in two different ways: generative and dis-
criminative. Generative tracking methods learn a model to represent the appearance of
an object. Tracking is then expressed as finding the most similar object appearance to
the model. Several examples of generative tracking algorithms are Eigentracking [2],
WSL tracking [3] and IVT [5]. To adapt to appearance changes, the object model is
often updated online, as in [5]. Due to the fact that the appearance variations are highly
non-linear, multiple subspaces [6] and non-linear manifold learning methods [7] have
been proposed. Note that traditional generative tracking methods are trained based on
object appearance without considering background information.
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Instead of building a model to describe the appearance of an object, discriminative
tracking methods aim to find a decision boundary that can best separate the object from
the background. Recently, many discriminative trackers are proposed [9,10,11] and
demonstrate strong robustness to avoid distracters in the background. Support Vector
Tracking (SVT)[8] integrates an offline trained Support Vector Machine (SVM) classi-
fier into an optic-flow-based tracker. In order to update the decision boundary according
to new samples and background, discriminative tracking methods with online learning
are proposed in [10,9]. In [10], a confidence map is built by finding the most discrim-
inative RGB color combination in each frame. However, a limited color feature pool
restricts the discriminative power of this method. In [9], Avidan proposes to use an
ensemble of online learned weak classifiers to label a pixel as belonging to either the
object or the background. To accommodate object appearance changes, at every frame,
new weak classifiers replace part of old ones that do not perform well or have existed
longer than a fixed number of frames. Both methods [9,10] use features at the pixel
level and rely on a mode seeking process (mean shift) to find the best estimate on a con-
fidence map, which restricts the reacquisition ability of these methods. Oza and Rus-
sell [12] proposed an online boosting algorithm, which is applied to the visual tracking
problem [13,14]. Due to the large number of features, either an offline feature selection
procedure or an offline trained seed classifier is usually required in practice. Thus, for
tracking methods based on online boosting, it is difficult to generalize to arbitrary object
types

It has been shown that discriminative classifiers often outperform generative mod-
els [15] if enough training data is available. However, generative methods often have
better generalization performance when the size of training data is small. Specifically,
a simple generative classifier (naive Bayes) outperforms its discriminative counterpart
(logistic regression) when the amount of labeled training data is small [16]. Recently,
hybrid discriminative generative methods have opened a promising direction to benefit
from both types of methods. Several hybrid methods [17,18,19,15] have been proposed
in many application domains [17,18,19]. Most of them imbue generative methods with
the discriminative power via “discriminative training” of a generative model. These
methods train a model by optimizing a convex combination of the generative and dis-
criminative log likelihood functions. Due to the asymmetry in training data, “discrim-
inative training” of a generative model requires a parameter to govern the trade-off
between generative and discriminative. Theoretical discussions in [15] show that an
improper hybrid of discriminative generative model generates even worse performance
than pure generative or discriminative methods.

We propose to use co-training to combine generative and discriminative models.
Here, the online learning an appearance model of an arbitrary object with limited la-
beled data is treated as a semi-supervised problem. The co-training approach proposed
by Blum and Mitchell [20] is a principled semi-supervise training method. The basic
idea is to train two classifiers on two conditionally independent views of the same data
(with a small number of exemplars) and then use the prediction from each classifier to
enlarge the training set of the other. It is proved that co-training can find an accurate
decision boundary, starting from a small quantity of labeled data as long as the two fea-
ture sets are independent [20]. Empirical results [21] show that co-training works well
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Fig. 1. Online co-training a generative tracker and a discriminative tracker with different life span
(the area bounded by dashed red boxes indicates the background)

even in the case where the independence is not perfectly satisfied. In [22], the features
used for classification are derived from PCA bases, which are obtained offline from
training samples, and co-training is used to improve an offline learned object detector.
More recently, Tang et al. [23] proposes to use co-training to online train two SVM
trackers with color histogram features and HOG features. This method uses an incre-
mental/decremental SVM solver[25] to focus on recent appearance variations without
representing the global object appearance.

In order to represent the global object appearance, we propose to use a generative
model, which contains a number of low dimension subspaces. This generative model
encodes all the appearance variations that have been seen in a compact way. An online
subspace updating algorithm is proposed to modify the subspaces adaptively. The de-
scriptive power of the generative model increases as new samples are added. For the
discriminative classifier, we use an incrementally learned SVM classifier [24] with his-
togram of gradient (HOG) [26] features. In practice, we find the number of support vec-
tors grows quite fast when the appearance of object and background changes. Moreover,
the adaption of the discriminative model to new appearance changes becomes more and
more slow as samples are accumulated. To address these problems, we decrementally
train the SVM to focus on recent appearance variations within a sliding window. The
training data flow is shown in Figure 1. The image patches bounded with green boxes
are samples used in the generative model. They contain all the object appearance vari-
ations since tracking starts. The red bounding boxes indicate the positive and negative
training samples within the sliding window used in the discriminative classifier. The
main advantage of this method is that it collaboratively combines the generative and
discriminative models with complementary views (features) of the training data and it
encodes the global object appearance variations, thus can handle reacquisition. Experi-
ments show that our method has strong reacquisition ability and is robust to distracters
in background clutter.

The rest of this paper is organized as follows. The overview of the co-training frame-
work is presented in Section 2. The details of the generative tracker and the discrimi-
native tracker are presented in Section 3 and Section 4. The experiments are shown in
Section 5, followed by conclusions and future work.
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2 Bayesian Inference with Co-training

We formulate the visual tracking problem as a state estimate problem in a similar way
as [5,27]. Given a sequence of observed image regions Ot = (o1, . . . , ot) over time
t, the goal of visual tracking is to estimate the hidden state st. In our case, the hidden
state refers to an object’s 2D position, scale and rotation. Assuming a Markovian state
transition, the posterior can be formulated as a recursive equation

p(st|Ot) ∝ p(ot|st)
∫

p(st|st−1)p(st−1|Ot−1)dst−1 (1)

where p(ot|st) and p(st|st−1) are the observation model and state transition model
respectively. p(st−1|Ot−1), which is represented as a set of particles and weights, is the
posterior distribution given all the observations up to time t−1. The recursive inference
in Eq.1 is implemented with resampling and importance sampling processes[27]. In our
approach, the transition of the hidden state is assumed to be a Gaussian distribution as,
p(st|st−1) = N (st; st−1, Ψt), where Ψt is a time variant diagonal covariance matrix.
In this recursive inference formulation, p(ot|st) is the crucial part for finding the ideal
posterior distribution. p(ot|st) measures the likelihood of observing ot given one state
of the object. Besides the 2D position, our state variables encode an object’s rotation
and scale. This reduces the appearance variations caused by such motion at the price of
that more particles are needed to represent the distribution.

Our measurement of one observation comes from two independent models. One is
the generative model, which is based on online constructed multi-subspaces. The other
is the discriminative model, which is online trained with HOG features. The features
used by these two models, namely intensity pattern and local gradient features, are com-
plementary. After limited initialization, these two models are co-trained with sequential
unlabeled data. It is worth noting that co-training is not a classification framework [21],
but an automatic way to train with unlabeled data. In our approach, each model makes
the decision based on its own knowledge and this information is used to train the other
model. The final decision is made by the combined hybrid model. Due to the indepen-
dence between the two observers, our observation model p(ot|st) can be expressed as a
product of two likelihood functions from the generative M model and the discrimina-
tive model C, p(ot|st) ∝ pM(ot|st)pC(ot|st).

We adaptively adjust Ψt in the state transition model according to the tracking re-
sult at time t. If neither of the models accepts the new unlabeled data, we increase the
covariance matrix Ψt and the number of samples. The extreme condition is that a very
flat transition distribution is close to scanning the whole state space uniformly. This
Bayesian formulation is very proper for the object tracking and reacquisition problem.
By adaptively resampling, we can cover a large search region efficiently. Also, as partial
appearance variations are compensated by the motion state, our method can deal with
object rotation and scale changes. The key step in the co-training algorithm is to incre-
mentally update both the generative and discriminative trackers, which are discussed in
Section 3 and Section 4 respectively.
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3 Generative Tracker with Multiple Linear Subspaces

The global appearance of one object under different viewpoints and illumination condi-
tions is known to lie on a low dimension manifold. However, such a global appearance
manifold is highly non-linear. In [7], a non-linear mapping from the embedding space
to the input space is offline learned for tracking a specific object. Although the ap-
pearance manifold is globally non-linear, the local appearance variations can still be
approximated as a linear subspace. Thus, we propose to incrementally learn a set of
low dimension linear subspaces to represent the global appearance manifold. A multi-
subspace representation is used in [6], where a fixed number of subspaces are offline
built and are online updated with new samples.

Let M = {Ω1, ..., ΩL} represent the appearance manifold of one object and Ωl, l ∈
[1, ..., L] denote the local sub-manifold. An appearance instance x is a d-dimension
image vector. Let Ωl = (x̂l, Ul, Λl, nl) denote one sub-manifold, where x̂l, Ul, Λl

and nl represent the mean vector, eigenvectors, eigenvalues and the size (number of
samples) of the subspace respectively. For simplicity, we omit the subscript when this
causes no confusion. Here, Λ = diag(λ1, . . . , λn) with sorted eigenvalues of the sub-
space, λ1 ≥ λ2 · · · ≥ λn. A η-truncation is usually used to truncate the subspaces,
namely m = arg mini (

∑
i λi/tr(Λ) ≥ η). From a statistical point of view, a sub-

space with m eigenbases can be regarded as a m-dimensional Gaussian distribution.
Suppose Ω is a subspace with the first m eigenvectors, the projection of x on Ω is
y = (y1, . . . , ym)T = UT (x − x̂). Then, the likelihood of x can be expressed [28] as

p(x|Ω) =

⎡
⎢⎢⎣

exp
(

− 1
2

m∑
i=1

y2
i

λi

)

(2π)m/2
m∏

i=1
λ

1/2
i

⎤
⎥⎥⎦ ·

⎡
⎣exp

(
− ε2(x)

2ρ

)

(2πρ)(d−m)/2

⎤
⎦ (2)

where ε(x) = |x − UUT x| is the projection error, namely L2 distance between the
sample x and its projection on the subspace. The parameter ρ = 1

d−m

∑d
i=m+1 λi

[28] or uses the 1
2λm+1 as a rough approximation. By using Eq.2, we can evaluate the

confidence of a sample from one subspace. As our generative model contains multiple
subspaces (each subspace can be regarded as a hyper-ellipsoid), we maintain the neigh-
borhood according to L2 distance between the mean vectors of subspaces. To evaluate
the confidence of one sample from such a generative model, we use the maximum con-
fidence of the K-nearest (we use K = 4 in experiments) neighboring subspaces.

3.1 Online Subspace Learning

Given that samples are given in a sequential way, we aim to learn the low dimension
linear subspaces incrementally. A new subspace is created with d0 dimension, namely
d0 + 1 sequential samples form a new subspace. Local smoothness is guaranteed by
a small d0. A new subspace is created and added into the subspace pool. In order to
represent a large number of sequential samples, we use a fixed number subspaces: if
the number of subspaces exceeds a predetermined maximum, the most similar two sub-
spaces are merged. The outline of the online subspace learning algorithm is shown in
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Algorithm 1. Online Subspace learning algorithm
Input: (I, M, d0,L)
I = {I1, · · · , In, · · · }: a sequence of samples M = ∅: the appearance manifold
d0: the initial dimension for each subspace L: the maximum number of subspaces
Output: M = (Ω1, · · · ΩL): multi-local linear subspaces
while I �= ∅ do

fetch d0 + 1 samples and form a new subspace
Ωn ← (Ii, · · · , Ii+d0)
if there exists an empty subspace then

Add Ωn to M
else

(p, q)∗ = arg max Sim(Ωp, Ωq), p, q ∈ [1, · · · , L], p �= q
Ωm = Ωp ∪ Ωq and replace Ωp and Ωq with Ωm

end if
end while

Algorithm 1. In order to maintain the local property of the subspaces, merging only
happens between neighboring subspaces. Merging of two subspaces and measuring the
similarity between two subspaces are two critical steps in this algorithm.

Several methods have been proposed to incrementally update the eigenspaces. Only
the method proposed by Hall et al. [29] takes into account the change of the mean
of a subspace. This approach provides an exact solution to update an eigenspace and
does not require storing original samples. Similar method was also used in [5,6] to
update a subspace given new samples. We summarize Hall’s method in [29] by using
scatter matrixes to simplify the representation. Suppose there are two subspaces Ω1 =
(x1, U1, Λ1, N) and Ω2 = (x2, U2, Λ2, M), which we are trying to merge to a new
subspace Ω = (x̄, U, Λ, M + N). If the dimension of Ω1 and Ω2 are p and q, the
dimension r of the merged subspace Ω satisfies: max(p, q) ≤ r ≤ p + q + 1. The
vector connecting the centers of the two subspaces does not necessarily belong to either
subspace. This vector causes the additional one in the upper bound of r.

It is easy to verify that the scatter matrix S of the merged subspace Ω satisfies,
S = S1+S2+ MN

M+N (x1−x2)(x1−x2)T . We aim to find a sufficient orthogonal spanning
of S. Let h1(x) denote the residual vector of a vector x on Ω1, h1(x) = x − U1U

T
1 x.

Note that h1(x) is orthogonal to U1, i.e. h(x)′U = 0. Now, U ′ = [U1,v] is a set of
orthogonal bases to span the merged space, where v = GS (h1 (U2, (x2 − x1))) and
GS(·) denote the Gram-Schmidt process.

Given the sufficient orthogonal bases, we can obtain the SVD decomposition of S.

U ′T SU ′ =
[
Λ1 0
0 0

]
+

[
GΛ2G

T GΛ2Γ
T

ΓΛ2G
T ΓΛ2Γ

T

]
+ MN

M+N

[
ggT gγT

γgT γγT

]
= RΛRT (3)

where G = UT
1 (x2 − x1), Γ = vT U2, g = UT

1 (x2 − x1) and γ = U ′(x2 − x1). Now,
the eigenvalue of the merged subspace is Λ in Eq.3 and the eigenvector U is simply
U ′R. Note that incrementally updating a subspace with one observation as in [6] is one
special case of merging two subspaces using Eq.3.
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3.2 Subspace Distance

The other critical step in Algorithm 1 is to determine the similarity between two sub-
spaces. We use two factors to measure the similarity between two neighboring sub-
spaces Ω1, Ω2, the canonical angles (principal angles) and the data-compactness.

Suppose the dimensions of two subspaces are p, q, p ≥ q, then there are q canonical
angles between the two subspaces. A numerical stable algorithm [30] computes the
angles between all pairs of orthonormal vectors of the two subspaces as, cos θk =
σk(UT

1 U2), k = 1, · · · , q , where σk(·) is the kth sorted eigenvalue computed by SVD.
The consistency of two neighboring subspaces can be represented as follows.

Sim1(Ω1, Ω2) =
q∏

k=q−d0+1

σk(UT
1 U2) k = 1, · · · , q (4)

As the dimensionality of subspaces is larger than d0, the initial dimension, we select
the d0 largest principal angles, which approximately measure the angle between two
local subspaces. In a 3D space, the largest canonical angle between two 2D subspaces
is equivalent to the angle between the two planes. In this case, we prefer to merge 2D
patches with a small plane-to-plane angle. Note that the merge only happens between
neighbor subspaces. The neighborhood is defined according to the mean vector L2 dis-
tance. Merging subspaces with a small principal angle can avoid destroying the local
structure of the appearance manifold.

The other factor to consider is data-compactness, which measures how much extra
dimensionality is incurred by a merge operation. Suppose the dimension of two sub-
spaces Ω1, Ω2 is p, q, p ≥ q, the sorted eigenavalues of original merged subspace are
Λr = (λ1, . . . , λr), r = p+ q +1. The similarity based on data-compactness is defined
as

Sim2(Ω1, Ω2) =
∑p

i=1
λi/

∑r

i=1
λi (5)

If Sim2 is close to one, this indicates the merge operation does not incur any new
dimension; on the contrary, if Sim2 is small, this indicates the variations in Ω1 and Ω2
cannot use common eigenvectors to represent it. Combining the two factors in Eq.4 and
Eq.5, the final similarity between two subspaces is defined in Eq.6.

Sim(Ω1, Ω2) = Sim1(Ω1, Ω2) + wdSim2(Ω1, Ω2) (6)

where wd is the weight to balance these two factors. We use wd = 0.2 in experiments.
One example of online trained local subspaces is shown in Figure 2. A saddle-like

3D surface (shown in Figure 2(a) is generated with Gaussian noise. The 3D points are
input to Algorithm 1 sequentially. The final subspaces are shown in Figure 2(b) with
L = 15, η = 0.995. The initial dimension d0 is one. Although the online built subspaces
depend on the order of the samples, a compact representation of the samples can always
be created as long as the data are input with local smoothness. The subspace updating
operation dominates the complexity of the generative tracker. Merging two subspaces
with dimension p, q requires Golub-Reinsch SVD O(r3) of r = p + q + 1 dimension
square matrix. Since the dimension of each subspace is low, the total complexity is
quite low. The low dimensionality of the local subspaces can guarantee both the local
property and efficient computation.
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Fig. 2. 3D example of incremental updating subspaces

4 Discriminative Tracker Using Online SVM

It has often been argued that SVM has better generalization performance than other
discriminative methods on a small training set. For the discriminative model, we adopt
an incremental SVM algorithm, LASVM [24], to train a classifier between object and
background. SVM [31] is able to form the optimal separating function, which reduces
to a linear combination of kernels on the training data, f(x) =

∑
j αjyjK(xj ,x) + b,

with training samples xi and corresponding label yi = ±1.
In practice, this is achieved by maximizing the dual objective function maxα W (α)

with W (α) =
∑

i αiyi − 1
2

∑
i,j αiαjK(xi, xj), subject to

∑
i
αi = 0, Ai ≤ αi ≤ Bi, (7)

where Ai = min(0, Cyi), Bi max(0, Cyi). Here, α is a vector of weights on yi. A
SVM solver can be regarded as updating α along some direction to maximize W (α).
Let g = (g1, . . . , gn) denote the gradient of W (α)

gk =
∂W (α)

∂αk
= yk −

∑
i

αiK(xi, xk) = yk − ŷ(xk) + b (8)

LASVM suggests that optimization is faster when the search direction mostly contains
zero coefficients. LASVM uses the search directions whose coefficients are all zero ex-
cept for a single +1 and a single -1. The two non-zero coefficients, are called τ -violating
pair (i, j) if αi < Bi, αj > Aj , and gi − gj > τ , where τ is a small positive value.
and LASVM selects the τ -violating pair (i, j) that maximizes the directional gradient
gi − gj .

The LASVM algorithm contains two procedures named PROCESS and REPROCESS
[24]. When a new sample xk arrives, PROCESS forms a τ -violating pair (i, j), which
contains xk and another existing support vector, and updates the weights of this pair.
Following PROCESS, REPROCESS selects a τ -violating pair from the set of support
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vectors and updates their weights. The new sample xk may become a new support vec-
tor through PROCESS, while another support vector may need to switch out by RE-
PROCESS. Both PROCESS and REPROCESS select τ -violating pair with the largest
gradient. The complexity of such a selection grows linearly with the number of vectors.
A finishing step, which runs REPROCESS multiple times to further remove as many
τ -violating pairs as possible, is performed after online process. For tracking, the inter-
mediate classifier is useful, hence we run this finishing step every 10 frames. Note that,
since we do not need to look at the ignored vectors for incremental learning, τ -violating
pair is only selected from the set of support vectors. For online tracking problem, many
appearance variations and limited training samples may degrade the generalization abil-
ity of SVM. Also, in experiments, we find that the number of support vectors grows fast
when the appearance of object and background changes. Thus, we propose to decremen-
tally train the SVM and focus on recent appearance variations within a sliding window.
REPROCESS in LASVM can be used to achieve the “unlearning” of old samples. For
decremental learning, removing ignored vectors (when ignored vectors move out of the
sliding window) will not change the decision boundary. However, the removal of a sup-
port vector will affect the decision boundary and some ignored vectors may become
support vectors. In order to remove one support vector, we first zero its coefficient and
put its coefficient into the closest vector to keep the constraint in Eq.7. We then apply
REPROCESS multiple times to select τ -violating pairs in set of both ignored and sup-
port vectors and update the weights. The cost of decremental learning is that we need
to store all samples within a sliding window.

5 Experiments

For both generative and discriminative models, we use image vectors of size 32×32 (for
face) or 32×64 (for human and vehicle). For the generative model, η is set to 0.95-0.99
and the maximum number of subspaces is set to 5-10. The initial subspace dimension
is 4, which is very low compared to the input space. Thus, every 5 frames, we form
a new subspace, which is then inserted into the subspace pool. For the discriminative
model, we use LASVM with R-HOG feature vectors, which are created from 16×16
blocks containing 8×8 cells. The strike size is 4 to allow overlapping HOG descriptors.
Each cell has 9 bins oriented histogram; hence, we have 36-bin oriented histogram for a
block. For a 32 × 64 window, the vector size is 2340. We use the linear kernel function
in SVM. The number of support vectors varies between 50-150 for different sequences.
We use a sliding window of 30 frames. We manually label the first 10 frames as the
initialization for the two trackers. The Bayesian inference framework generates 600
particles. The co-trained hybrid model is implemented in C++. The combined tracker
runs at around 2 fps on a P4 2.8GHz dual core PC. All testing sequences are 320 × 240
graylevel images.

During co-training, each learner labels the unlabeled data on which it makes a confi-
dent prediction based on its own knowledge. For this purpose, a threshold is needed for
each learner. For the generative model, we set a threshold based on the log likelihood
in Eq.2. To be more conservative, we use a second criteria: we find several local optima
in the posterior distribution and if ratio ρ between the second optimum and the global
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optimum is small enough (ρ ≤ 0.7), we accept the global optimum as a positive sample
and all other samples that far enough from the global optimum are negative samples. For
the discriminative model, due to the very limited training data, the positive and negative
training data are usually well separated. Thus, we cannot adopt the way used in [21]
to select the threshold. Instead, we select the confidence threshold so that at most 80%
positive samples’ confidence is above that threshold. This threshold is updated every
30 frames. The positive and negative samples labeled by the generative model will not
be added to the discriminative model unless they are close to the decision boundary. To
express the SVM confidence as a probability, we use the method in [32] to fit a sigmoid
function that is updated every 30 frames.

5.1 Comparative Analysis

We compare our co-trained tracker with two generative methods, including (G1) IVT
[5] and our multiple linear subspaces (G2) algorithm and three discriminative methods,
including online selection of discriminative color (D1) [10], our online SVM method
(D2) and ensemble tracking (E.T) [9]. G1 uses a single 15D linear subspace and updates
it incrementally. Note that D1 does not consider tracking with large scale change and
rotation. G1, G2, D2 and the co-trained tracker use the same parameters in CONDEN-
SATION algorithm, but G1, G2 and D2 use self-learning to update their models.

We compare these methods with challenging data sets, which contain image se-
quences of various types of object, including face (seq1-seq2), human (seq3-seq5)
and vehicle (seq6). The challenging conditions include significant illumination changes
(seq1), abrupt camera motion and significant motion blur (seq2-seq5), viewpoint
changes and/or pose variations (seq3-seq6), and also occlusions (seq4-seq6). To com-
pare the robustness under the challenging conditions, we show how many frames these
methods can track the objects before tracking failure, i.e. after this frame a tracker can-
not recover without re-initialization. Table 1 shows the comparison between different
methods. The number of frames and the number of frames where occlusion happens
in each sequence are also shown in Table 1. The comparison demonstrates that the co-
trained tracker performs more robustly than other methods. Note that D1 requires color
information, thus it cannot process some sequences, which are indicated with “n/a”.
The visual results are shown in Figure 4, where the tracked objects and part of negative

Table 1. Comparison of different methods G1:IVT [5], G2: incremental learning multiple sub-
spaces, D1: online selection of discriminative color features [10], D2: online SVM, E.T: ensemble
tracking [9]. D1 uses color information, which is not available for Seq1 and Seq6.

 Frames  Occlusion G1 G2 D1* D2 E.T Ours  

Seq1 761 0 17 261 n/a 491 94 759 

Seq2 313 0 75 282 313 214 44 313 

Seq3 140 0 11 15 6 89 22 140 

Seq4 338 93 33 70 8 72 118 240 

Seq5 184 30 50 50 50 50 53 154 

Seq6 945 143 163 506 n/a 54 10 802 
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(a) the proposed method

(b) ensemble tracking

Fig. 3. Tracking and reacquisition with long occlusion and clutter background

samples are bounded with green boxes and white boxes respectively. The red box indi-
cates none of the models is updated in this frame. In experiments, we frequently find
that the co-trained tracker has better self-awareness of current tracking performance and
can safely enlarge the search range (by changing the diffusion dynamics) without be-
ing confused by distracters in the background. Also, the co-trained tracker successfully
avoids drifting caused by varying viewpoints and illumination changes.

We compare with two other methods to demonstrate our method’s reacquisition abil-
ity. One is ensemble tracking [9]. The other one is the online SVM tracker without
decremental learning. In the experiments, we find that ensemble tracking can only reac-
quire the object after a short occlusion. Also, ensemble tracking cannot deal with ro-
tation and scale change, which restricts its reacquisition ability. Without decremental
learning, the number of support vectors increases to several hundreds quickly when
the background becomes cluttered and the object appearance changes. This makes the
online SVM tracker very slow. Meanwhile, the performance of the tracker goes down,
exhibiting as drifting and being trapped by distracters.

We also compare our generative tracker G2 with G1 and another generative method
G3, in indoor environments with few distracters. G3 uses 5 key 10D subspaces (cor-
responding to front, left profile, right profile, up and down), which are trained offline
by manually labelling 150 samples into 5 categories; our generative method G2 uses
at most 10 subspaces and each new subspace starts from 4-dimensions. The indoor
sequence exhibits significant head pose variations, shown in Figure 5(b). We calcu-
late projection errors of each method in Figure 5(a) (average of multiple runs) within
1000 frames before the other two trackers start to drift. Offline 5-key subspaces method
shows large projection errors at some frames where the poses are not covered in offline
samples. G1 is not able to adapt rapidly to new appearance variations after running a
long sequence. Our generative method G2 can promptly adapt to appearance variations
and show smaller projection errors consistently, though each subspace in our generative
track has much smaller dimensionality than the other two methods. As we can see, the
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(a) Tracking and reacquisition with abrupt motion and blur

(b) Tracking human with clutter background and distracters

(c) Tracking and reacquisition with long leaving out of field of view

Fig. 4. Tracking various type of objects in outdoor environments

0 200 400 600 800 1000
0

0.02
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0.06
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0.1

0.12
G2: our generative tracker
G1: updating a single subspace
G3: 5−key offline subspaces

(a) Comparison of projection errors (b) Tracking with pose variations

Fig. 5. Comparison of generative methods in indoor environments

online trained subspaces approximately represent the poses that have been observed,
though we do not train offline in different poses.

6 Summary and Future Work

We have proposed a co-training framework to combine one global generative tracker
and one local discriminate tracker. Our generative tracker builds a compact representa-
tion of the complete appearance of an object by online learning a number of local linear
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subspaces. The discriminative tracker adopts the online SVM algorithm to focus on
local appearance. By co-training, the two trackers can train each other on-the-fly with
limited initialization. Though no offline training data is used, our method has strong
reacquisition ability and robustness against the distracters in background. Extensive ex-
periments demonstrate that our method can handle different challenging situations.

Our method relies on smoothness in appearance changes and cannot deal with abrupt
appearance changes. Also, our method cannot explicitly handle the partial occlusion
problem. Partial occlusions are often regarded as non-object by our method. This is a
safe strategy to avoid updating the model with wrong appearance instances. It is worth
noting that our method addresses online building appearance model for unknown types
of objects. In the future, we expect to combine this method with offline learning for
tracking one particular type of object. For tracking a particular type of objects, the
robustness of tracking can be significantly improved by combining online training with
offline training, as shown in [33] and [34]. We also expect to introduce collaborative
part-based trackers under this co-training framework to deal with partial occlusions.
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