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Abstract. We address the problem of efficiently estimating the rotation
of a camera relative to the canonical 3D Cartesian frame of an urban
scene, under the so-called “Manhattan World” assumption [1,2]. While
the problem has received considerable attention in recent years, it is un-
clear how current methods stack up in terms of accuracy and efficiency,
and how they might best be improved. It is often argued that it is best to
base estimation on all pixels in the image [2]. However, in this paper, we
argue that in a sense, less can be more: that basing estimation on sparse,
accurately localized edges, rather than dense gradient maps, permits the
derivation of more accurate statistical models and leads to more effi-
cient estimation. We also introduce and compare several different search
techniques that have advantages over prior approaches. A cornerstone
of the paper is the establishment of a new public groundtruth database
which we use to derive required statistics and to evaluate and compare
algorithms.

1 Introduction

The problem of single-view 3D reconstruction is of enormous theoretical and
practical interest. Applications range from urban security to architectural and
urban planning systems, to self-localization systems for mobile devices. Given
the prevalence of security cameras in urban environments throughout the world,
single-view methods could be of great value in the refining of 3D databases such
as Google Earth and Microsoft Virtual Earth.

In general, single view reconstruction is an ill-posed problem. The problem be-
comes more tractable under the so-called “Manhattan-World” assumption [1,2]:
that the surfaces of interest are rectangles aligned with a 3D Cartesian frame.

A key step in exploiting the Manhattan World assumption is the estimation
of the Manhattan directions, i.e., the 3D rotation of the camera relative to the
Manhattan frame [1,2]. This is the problem we address here.

The specific contributions we make here fall into four categories. First, we
introduce a new public database, with appropriate groundtruthing, that can be
used to design and evaluate algorithms. Second, we establish accurate statis-
tics required to ground estimation algorithms. Third, we devise new algorithm
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variants that have potential advantages in accuracy and speed over previous ap-
proaches. Finally, we conduct a comprehensive evaluation of six approaches in
terms of both accuracy and efficiency. The results suggest that basing estimates
on sparse but accurate edge maps, rather than the dense gradient fields used in
other methods [2,3,4], leads to a substantial improvement in both accuracy and
computational efficiency.

2 Prior Work

Coughlan & Yuille [1,2] considered the problem of estimating the Manhattan
frame using a calibrated camera. They based their estimation on the dense pat-
tern of pixel gradients in the image, using a mixture model in which each pixel
gradient has a probability distribution over five possible causes: (1) The pixel
is not an edge. (2-4) The pixel is an edge that belongs to one of the three
Manhattan-World directions. (5) The pixel is an edge that does not belong to
any of the Manhattan-World directions.

Coughlan & Yuille searched over the space of camera rotations for the camera
pose that maximized the likelihood of the observed gradient data under their
mixture model. Although the gradients were represented in the continuous do-
main (not Houghed), their coarse-to-fine search technique was discrete.

A number of efforts have been made since to improve on this work, for exam-
ple, to allow simultaneous calibration of the camera [3,5,4,6], and to extend the
Manhattan assumption to more general scene models [3,6]. These methods also
replace Coughlan & Yuille’s coarse-to-fine discrete search technique, either with
an EM method [5,4,6] or stochastic (particle-based) search strategy [3].

There are a number of potential limitations in these methods. Some use
heuristics to initialize search, based on dominant orientations [5] or RANSAC
methods [6], and it is unclear whether these heuristics will reliably direct the
search toward correct solutions. The EM methods [5,4,6] assume that devia-
tions of Manhattan edges and lines from the expected orientations are normally
distributed, however this appears to not be the case ([2], and see Figure 3 of
this paper). Computing probabilities for dense gradient fields over the entire im-
age [2,4] entails substantial computational cost. This problem is multiplied by
complicated iterative search techniques [4]. Subsampling and thresholding the
gradient map [4] in order to contain the overall computation time may sacri-
fice accuracy. While Coughlan & Yuille made an effort to base their method on
statistics of scenes, their models were simplified, and subsequent studies have
generally been less concerned with accurate statistical models.

In this paper we will address these limitations and evaluate a number of de-
sign decisions, using an edge-based method for estimating the Manhattan frame
from a calibrated camera. We show how using edges as sparse features allows
an accurate statistical model to be derived and employed. We use a new public
ground truth database to quantitatively evaluate and compare six algorithms,
including the Manhattan World algorithm [2]. Prior quantitative evaluations of
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Manhattan frame estimates have been limited, and to our knowledge no quanti-
tative comparisons between algorithms have previously been made.

While there are some advantages to the simultaneous estimation of camera
parameters, allowing camera parameters to vary freely also reduces the number
of scenes providing sufficient constraints for reliable estimation of the Manhat-
tan frame. In many practical situations camera parameters are known, can be
independently estimated, or can be adequately approximated by nominal values.
In this paper we assume a calibrated camera, and focus on the issue of how to
maximize accuracy and efficiency of Manhattan frame estimation.

3 Approach

There are two main components to our approach: (1) Construction of the ground
truth database and camera calibration, and (2) Design of the algorithms to be
evaluated.

3.1 Ground Truth Database

We created two databases of 640×480-pixel images of urban Toronto scenes using
a standard digital camera (Panasonic Lumix DMC-LC80). The first database,
used to calibrate the camera, consisted of 10 images (3 indoor and 7 outdoor)
taken with the camera held in a generic attitude with respect to the Manhat-
tan world frame. The second database, used to train and evaluate algorithms,
consisted of 102 images (45 indoor and 57 outdoor). The camera was held in
a natural attitude. (Posthoc analysis revealed a mean and maximum absolute
deviation of the image y-axis from estimated gravitational vertical of 4 deg and
19 deg, respectively.) These 102 images were further randomly divided into train-
ing and test sets of 51 images each.

To establish ground truth, we developed an interactive MATLAB program
that allows a user to identify lines in the image with sub-pixel precision and to
indicate the Manhattan directions with which they are associated (Figure 1).

Vanishing points were first inferred for the calibration database from these
ground truth lines using the Gauss Sphere method of Collins & Weiss [7], and
nominal values for the internal camera parameters. We then used a standard
non-linear search to solve for the focal length and principal point that make the
three Manhattan directions for each image mutually orthogonal in 3D space.
We assumed a simplified camera model with no skew and unit aspect ratio. The
focal length was estimated to be 6.053± 0.009mm, and the (x, y) coordinates of
the principal point were estimated to be (−12.9± 4.4, 11.0± 6.4) pixels, relative
to the image centre.

Vanishing points for the training and test databases were subsequently cal-
culated with the estimated camera parameters [7]. Since each Manhattan direc-
tion was estimated independently, the resulting ground truth Manhattan frames
were not exactly orthogonal. We therefore fit an orthogonal frame to the three
independently-estimated vectors for each image [8].
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Fig. 1. Ground truth labeling tool

This ground truth database of images, including the estimated Manhattan
lines and directions, is available for public use through our website at http://
www.elderlab.yorku.ca/YorkUrbanDB, in the hope that it will encourage more
rapid development as well as quantitative evaluation and comparison of
algorithms.

3.2 Mixture Model

We employ a mixture model similar to that used by Coughlan & Yuille ([1],
[2]) but applying only to the set of edges E detected and localized to subpixel
precision by a standard multiscale edge detector [9]. This reduces the size of the
input space by slightly more than a factor of 10.

Each edge Eu consists of a pixel location u and orientation φu, and is assumed
to be generated by one of four causes:

mu = v Linear scene structure aligned with the vertical Manhattan
direction

mu = h1, h2 Linear scene structure aligned with one of the two horizontal Man-
hattan directions

mu = b Background scene structure not aligned with any Manhattan
direction

Our goal is to use the edge data to estimate the rotation Ψ ′ of the coordinate
frame of the urban scene (the “Manhattan frame”) relative to the camera frame.

http://
www.elderlab.yorku.ca/YorkUrbanDB
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As in [2], we assume conditional independence between edges and use a maximum
likelihood estimator:

Ψ∗ = argmaxΨ

∑

u

log P (Eu|Ψ) (1)

where
P (Eu|Ψ) =

∑

mu

P (Eu|mu, Ψ)P (mu). (2)

Estimating the Manhattan frame thus requires a reasonable model for the con-
ditional probability P (Eu|mu, Ψ) of observing a particular edge Eu given that
it was generated by a specific cause mu, and for the expected proportion P (mu)
of edges generated by each cause.

3.3 Error Model

In [1], the conditional probability P (Eu|mu, Ψ) of observing a particular edge
Eu given that it was generated by one of the Manhattan causes mu ∈ {v, h1, h2}
was assumed to be a function only of the angular deviation Δφ(u, mu, Ψ ) of the
observed edge orientation φu from the expected direction (Figure 2a). The dis-
tribution of φu given a background cause was assumed to be uniform. Coughlan
& Yuille employed a simple box function to model all three Manhattan condi-
tional distributions. Here we use our ground truth database to determine more
accurate models of these distributions.

One of the difficulties in estimating these distributions lies in determining
which edges are associated with the hand-labeled lines in the ground truth
database. Hand-labelling all of these edges would be prohibitively time-
consuming. Instead, consider the density of edges in the image as a function
of their distance from the ground truth lines in the database (Figure 2b). The
data show a uniform background density of 0.1 edges/pixel, on which is super-
imposed a peaked distribution of edges generated by the line. We infer from this
distribution that the sub-pixel localized edges generated by ground truth lines
lie within a distance xu of roughly 1 pixel from the generating line, and thus
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Fig. 2. (a) Angular deviation Δφ of a Manhattan edge from the expected direction, in
the image plane. (b) Edge density histogram.
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Fig. 3. Empirical densities of image-based angular deviation measure Δφ for edges ly-
ing within 1 pixel of horizontal (right) and vertical (left) Manhattan lines. Distributions
are fit with a mixture model: see text for details.

confine our analysis to these edges. The conditional distributions of the angu-
lar deviation Δφu for these edges, for both horizontal and vertical Manhattan
directions, are shown in Figure 3.

We assume that these distributions arise from a mixture of edges generated
by the nearby Manhattan line and edges generated by background structure.
Letting M ∈ {v, h1, h2} represent the Manhattan direction with which the line
is associated, the density P (Δφ|xu < 1) can be represented as

P (Δφ|xu < 1) = λP (Δφ|mu = M, Ψ) + (1 − λ)P (Δφ|mu = b). (3)

We model the former as a Generalized Laplace distribution and the latter by a
uniform distribution:

P (Δφ|mu = M, Ψ) =
1
Z

exp (−|Δφu/b|α) (4)

and
P (Δφ|mu = b) = U(−90, 90) (5)

Maximum likelihood parameters for the mixture model are shown in Table 1.
Two interesting observations emerge: (1) The Manhattan densities P (Δφ|mu =
M, Ψ) are highly leptokurtic (α < 1), far from being Normal distributions α =
2) as commonly assumed [4] and even further from the boxcar distributions
employed by Coughlan & Yuille. (2) The dispersion of the vertical Manhattan
density is one third that of the horizontal. This suggests that the orientations
of edges generated by vertical structure are more accurate than for horizontal.
One possible explanation is that vertical structure may have higher contrast, for
example when silhouetted against the sky.

Table 1. Maximum likelihood parameters for mixture model representing deviation of
nearby edges from Manhattan lines. See text for details.

λ b (deg) α

Horizontal 0.91 4.0 0.84
Vertical 0.94 1.7 0.65
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While Coughlan & Yuille measured error as angular deviation in the image
domain, others ([5], [6]) have measured error Δφ as the angle between the van-
ishing direction and the interpretation plane of the edge in the Gauss Sphere.
In the absence of error, this angle should be 0. Using the above method we have
also derived estimates of the conditional distributions under this measure of de-
viation. For lack of space we do not show the distributions here, but we will
evaluate and compare the two methods in Section 4.

3.4 Prior Model

To estimate the proportion of edges generated by each causal factor v, h1, h2, b,
we first compute the density of the angular deviation measure Δφ (in the image)
of all edges relative to both horizontal and vertical ground truth vanishing points
(Figure 4). Note that these densities have peaks at 0 deg due to edges generated
by the corresponding Manhattan structure, and at 90 deg, due to edges generated
by orthogonal Manhattan structure.
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Fig. 4. Density of the angular deviation measure Δφ of all edges relative to both
horizontal (right) and vertical (left) ground truth vanishing points. Density is fit with
a mixture of densities representing the contributions of edges from all causal factors.
See text for details.

To represent this latter contribution, we generalize our notation to let ΔφM ,
where M ∈ {v, h1, h2}, denote the deviation measure relative to each of the three
Manhattan directions. Now P (ΔφM |mu) represents the conditional distribution
of Δφ measured relative to the vanishing point for M , given an edge generated
by mu ∈ {v, h1, h2, b}. We approximate the empirical distributions for mu ∈
{v, h1, h2}, mu �= M by measuring Δφ relative to a Manhattan direction, for
edges within xu < 1 pixel of a different Manhattan direction. Now the total
density P (ΔφM ) for all edges can be represented as a mixture from all 4 causes:

P (ΔφM ) =
∑

mu∈{v,h1,h2,b}
P (ΔφM |mu)P (mu) (6)

where the P (mu) represent the proportion of edges generated by each causal
factor, serving as the mixing parameters in this model. Fitting the mixture
to the empirical distribution for all edges thus provides an estimate of these
proportions.
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Table 2. Comparison between the edge priors estimated here and the gradient priors
estimated by Coughlan & Yuille [1]

Model MW Priors Our Priors
P (mu = h1) 0.2 0.23
P (mu = h2) 0.2 0.23
P (mu = v) 0.2 0.23
P (mu = b) 0.4 0.32

Table 2 lists our estimates and compares them to estimates of gradient priors
made by [1]. The estimates are in reasonable agreement.

3.5 Search Strategies

Our statistical models allow calculation of the likelihood P (E|Ψ) of observing a
set of edges E given a camera rotation Ψ relative to the Manhattan frame. Our
task now is to estimate the Ψ∗ that maximizes this probability.

Coughlan & Yuille [2] employed a coarse-to-fine search strategy over a dis-
cretized space representing the three Euler angles composing Ψ . The resolution
of the discretization potentially limits the accuracy of the method. Here we ex-
plore two alternative search methods in the continuous domain.

Quasi-Newton Method. We first employ a method based upon the BFGS
Quasi-Newton gradient descent technique [10]. First, the likelihood P (E|Ψ) is
evaluated for some number r of initial guesses Ψi, i ∈ [1...r]. Then, for the n most
probable guesses, the BFGS Quasi-Newton method is deployed to compute n
refined estimates, and the estimate maximizing P (E|Ψ) is selected as the final
estimate.

Initial guesses assumed the y-axis of the image plane to be aligned with grav-
itational vertical, and rotations about the vertical axis were uniformly sampled
between 0 and 90 deg. Based on experiments using the training database, values
for r and n were selected to achieve maximum speed while remaining within 10%
of the achievable accuracy. Suitable values were found to be r = 5, n = 2.

EM Method. Schindler & Dellaert [4] proposed a different continuous alter-
native to Coughlan & Yuille’s discrete search strategy, based on Expectation-
Maximization (EM). The EM technique had been applied before, for the purpose
of estimating individual (not necessarily orthogonal) vanishing directions [5].

As applied to the problem of estimating the Manhattan frame, the EM algo-
rithm alternates between an E-step, in which an estimate is made of the proba-
bility P (mu|Eu, Ψ) over possible causes mu of each edge Eu, and an M-step, in
which a new estimate of the camera rotation Ψ is made based upon the causal
probabilities computed in the E-step. The E-step is straightforward, since, given
an estimate Ψt of Ψ , P (mu|Eu, Ψt) ∝ P (Eu|mu, Ψt)P (mu) can be calculated di-
rectly using the densities and distributions estimated in Section 3. The M-step,



Efficient Edge-Based Methods for Estimating Manhattan Frames 205

on the other hand, is non-trivial, since no closed-form estimator of Ψ is evi-
dent. By assuming the conditional error distributions P (Δφ|mu = M, Ψ), M ∈
{v, h1, h2} to be Gaussian, Schindler & Dellaert [4] reduce the M-step to a non-
linear least-squares problem, which they solve using iterative nonlinear optimiza-
tion techniques. However, we know from Section 3 that these distributions are
highly non-Gaussian.

Here we consider two methods for performing the M-step. In the first, we
again use a BFGS Quasi-Newton gradient descent technique [10] to update the
estimate of Ψ :

Ψ t+1 = arg max
Ψ

∑

u

∑

m

P (mu|Eu, Ψi) log(P (Eu|mu, Ψ)P (mu)) (7)

= arg min
Ψ

∑

u

∑

m∈{h1,h2,v}
P (mu|Eu, Ψt)

∣∣∣∣
Δφm,u

bm

∣∣∣∣
αm

(8)

where Δφm,u is the angular deviation of the edge at site u from vanishing point
m, and bm and αm are the Generalized Laplace parameters for that deviation.

As for the Quasi-Newton Method (Section 3.5), the likelihood P (E|Ψ) was
first evaluated for some number r of initial guesses. Then, for the n most
probable guesses, the above EM method was deployed for t iterations. Based
on experiments using the training database, suitable values were found to be
r = 15, n = 3, t = 15.

As for the Schindler & Dellaert method, the above method nests two iterative
procedures, and therefore is unlikely to be efficient. We therefore also consid-
ered a quasi-EM approach in which we simplify the M-step by decoupling the
estimation of the three Manhattan directions. In particular, we have adapted
the fast, closed-form method of Collins & Weiss [7] to estimate each vanishing
point direction in the Gauss Sphere independently. To estimate a new vector for
a particular Manhattan direction, this adaptation simply requires weighting the
interpretation plane normal associated with each edge Eu in the image by the
probability P (mu|Eu, Ψ), computed in the E-step, that the edge was generated
by this cause.

Since the vanishing directions are estimated independently, the frame will no
longer be orthogonal. At the end of every M-step, we therefore re-orthogonalize
the frame by fitting an orthogonal Manhattan frame to the independently-
estimated vectors.

As for the other search methods, we empirically estimated the parameters r,
n and t that would yield the highest achievable accuracy. We found near-optimal
values of r = 2, n = 1 and t = 7 iterations when measuring error in the image
domain, and r = 1, n = 1 and t = 8 iterations when measuring error in the Gauss
Sphere (Section 3.3). However, we also observed erratic convergence behaviour
in both cases, suggesting that our approximation of the M-step had destroyed
the crucial convergence properties of the EM algorithm.



206 P. Denis, J.H. Elder, and F.J. Estrada

4 Results

We evaluated six algorithms, summarized in Table 3, on our groundtruth test
database. The MW algorithm is the original Manhattan World algorithm of
Coughlan & Yuille [2], with code graciously provided by James Coughlan. We
list the remaining algorithms in descending order of similarity to the original
Manhattan World algorithm. The Edge-Based Newton MW Params algorithm
is our edge-based variant of the MW method, using the same statistical dis-
tributions as the original algorithm, but using a Quasi-Newton search method
instead of the coarse-to-fine search employed by Coughlan & Yuille. The Edge-
Based Newton method replaces the Manhattan statistics with our own estimated
distributions. The Edge-Based EM algorithm uses the EM method with a nested
Quasi-Newton procedure in the M-step (Section 3.5). Finally, the Edge-Based
Quasi-EM and Quasi-EM GS algorithms use the quasi-EM method employing
the method of Collins & Weiss to update the estimate of the Euler angles in the
M-step (Section 3.5).

Empirical accuracy for the six algorithms is shown in Figure 5a. We found
that the Edge-Based Newton method performed about 35% better than the
original Manhattan World (MW) method, despite using less than 10% of the
input data, and even when using the original Manhattan World statistical mod-
els (Edge-Based Newton MW Params). We believe this improvement derives
from two sources. The first is the higher information content and lower redun-
dancy of the sub-pixel-localized edges [9] underlying the edge-based method,
relative to the gradient features used in MW. Given perfect statistical models,
noisier gradient features would be downweighted to avoid error. However, in a

Table 3. Properties of the six algorithms evaluated. See text for a description of each
algorithm. For each algorithm we list: (1) the image feature used as a cue to estimate the
Manhattan frame, (2) the source of the statistical distributions underlying the method,
(3) the domain in which the deviation of each feature from the ideal is measured, (4)
whether the search space is discretized, and (5) the search method.

Algorithm Feature Statistics Domain Search
Space

Search
Method

MW Gradients
(dense)

Coughlan &
Yuille

Image Discrete Coarse-to-
Fine

Edge-Based Newton
MW Params

Edges
(sparse)

Coughlan &
Yuille

Image Continuous Quasi-
Newton

Edge-Based Newton Edges
(sparse)

Current
study

Image Continuous Quasi-
Newton

Edge-Based EM Edges
(sparse)

Current
study

Image Continuous EM

Edge-Based
Quasi-EM

Edges
(sparse)

Current
study

Image Continuous Quasi-EM

Edge-Based
Quasi-EM GS

Edges
(sparse)

Current
study

Gauss
Sphere

Continuous Quasi-EM
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Fig. 5. (a) Average error and (b) average run time for the six algorithms tested. See
Table 3 for a definition of each model. Error bars show standard error of the mean.

practical world, models are imperfect, and it is better to exclude noisy fea-
tures that contain little independent information. The second advantage of the
Edge-Based Newton method is the more accurate search algorithm, which is not
limited by the discretized search space and discrete search strategy employed in
MW.

Using the correct statistics led to a further 35% improvement in accuracy, with
the result that the Edge-Based Newton method is more than twice as accurate as
the original MW algorithm. Since our estimated priors are fairly close to those of
MW, we believe these additional benefits derive mainly from the more accurate
likelihood distributions we employ.

We found that replacing the Quasi-Newton search method with the Edge-
Based EM method had relatively little influence on accuracy. However, a notice-
able and significant loss in accuracy was observed when Manhattan directions
were independently estimated in the M-step (Quasi-EM methods), presumably
reflecting the loss of convergence properties due to this approximation.

Figure 5b shows the average time taken for each 640 × 480 pixel image in our
test database, on a 1.83 GHz Core 2 Duo Intel CPU. All methods have been im-
plemented in MATLAB except for the MW algorithm which was implemented in
Python and C++. The Manhattan World method [2] and the edge-based EM
method are relatively slow, requiring 20-30 seconds per image. Note that the EM
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Fig. 6. Distribution of errors for the Edge-Based Newton algorithm over the 26 images
in our test database
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Fig. 7. Example results of our Edge-Based Newton method. Top Row: Lines are
drawn through the 10 edges most likely to be generated by each Manhattan direction
mu ∈ {v, h1, h2}, i.e., maximizing P (Δφ|mu , Ψ∗). Middle Row: Edge pixels u for which
the most probable model m∗

u ∈ {v, h1, h2} is a Manhattan direction. Bottom Row: log
likelihood distributions log P (E|Ψ ) as a function of rotation around the ground truth
vertical axis. 0 (red line) indicates ground truth frame.

method run on denser gradient maps, as proposed in the literature (e.g., [4]) would
likely run even slower. We find the Edge-Based Newton and Quasi-EM methods
run much faster, on the order of 5 seconds or less per image. However, since conver-
gence of the Quasi-EMmethods is unreliable, the Edge-BasedNewton algorithm is
the method of choice, providing the most accurate results of all methods evaluated,
and running 4-6 times faster than previous methods from the literature.

Given these findings, we consider further the distribution of errors observed
for the Edge-Based Newton algorithm. Figure 6 shows histograms of horizontal
and vertical vanishing point errors over the 51 test images. While the great
majority of estimates are very accurate

Figure 7 shows results of the top-performing Edge-Based Newton method on
three example images (best, average and worst cases) from the test database. The
grid-like scene structure in the first (best) image produces a sharppeak in the likeli-
hoodvery near the ground truth solution.The average case image exhibits a greater
variety of orientations, resulting in a broader likelihoodwith greater deviation from
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the ground truth. In our last (worst) image, several factors conspire to produce a
horizontal error of 33deg.Although there is sufficientvisible vertical structure, only
one of the horizontal directions is adequately represented. A tree not only obscures
a large portion of the Manhattan structure in the scene, but also contributes edges
forming a central nexus that masquerades as a vanishing point. Finally, an oblique
fence contributes another false direction. In sum, the scene does not conform par-
ticularlywell to the Manhattan assumption. The result is a likelihood function that
is peaked very far from the ground truth direction, resulting in a large error.

This failure cannot be avoided by changing the search algorithm, since the likeli-
hood distribution itself is misleading. Allowing inference of more than 3 vanishing
points [5,4] could in theory prevent the oblique fence from biasing estimation of
the Manhattan frame, however this would not solve the problem of capture by the
tree. We find that the maximum log likelihood is negatively correlated with the
frame error, and thus could be used as a threshold or a confidence measure for the
applicability of the Manhattan model for a particular image [2].

5 Conclusions

We have introduced a new public database that may be used to evaluate and com-
pare methods for estimating Manhattan frames in urban imagery. We have found
that basing the estimation of the Manhattan frame on sparse, accurately-localized
edges, rather than dense gradient maps, leads to substantially faster and more ac-
curate performance. We believe the gain in accuracy is due mainly to the greater
informativeness, accuracyand independence of the sub-pixel-localized edges [9] un-
derlying the edge-based method, relative to the gradient features used in previous
methods [2,3,4]. Using edges as input features also reduces the input size by a factor
of 10, thereby allowing the deployment of better searchmethods, leading to further
improvements in accuracy.

Several authors have proposed EM-based search methods. We find that a simi-
lar EM method based upon edges is reasonably accurate but slow. Methods using
denser gradientmaps [5,4,6] would likely be even slower. Herewehave also explored
faster quasi-EM methods in which approximate estimates of the Euler angles are
made during the M-step, however convergence of these algorithms is found to be
unreliable.

In contrast, we find an edge-based method that uses a Quasi-Newton procedure
to directly estimate the Euler angles in the image domain yields the most accurate
results, with double the accuracy of the original Manhattan world method, and
running 4-6 times faster than methods previously proposed.
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