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Abstract. Each facial event will give rise to complex facial appear-
ance variation. In this paper, we propose similarity features to describe
the facial appearance for video-based facial event analysis. Inspired by
the kernel features, for each sample, we compare it with the reference set
with a similarity function, and we take the log-weighted summarization
of the similarities as its similarity feature. Due to the distinctness of the
apex images of facial events, we use their cluster-centers as the refer-
ences. In order to capture the temporal dynamics, we use the K-means
algorithm to divide the similarity features into several clusters in tem-
poral domain, and each cluster is modeled by a Gaussian distribution.
Based on the Gaussian models, we further map the similarity features
into dynamic binary patterns to handle the issue of time resolution, which
embed the time-warping operation implicitly. The haar-like descriptor is
used to extract the visual features of facial appearance, and Adaboost
is performed to learn the final classifiers. Extensive experiments carried
on the Cohn-Kanade database show the promising performance of the
proposed method.

1 Introduction

Automatic facial event analysis is a hot topic in the communities of computer
vision and pattern recognition in recent years due to its potential applications
in human-computer interface, biometrics, multimedia, and so on. Lots of meth-
ods have been proposed [1] [2] [3], and these methods can be categorized into
two classes: image based methods and video based methods. The image based
methods take only the mug shots (mostly the apexes) of the expressions into
account [4] [5] [6] [7]. However, a natural facial event is dynamic, which evolves
over time from the onset, the apex, to the offset, including facial expression. The
image based methods ignore such dynamic characteristics, so it is hard for them
to obtain good performances in a real world setting. Psychology studies also
demonstrated the insufficiency of the image based methods [8] [9]. The video
based methods attempt to analyze the facial event in the spatio-temporal do-
main [10] [11] [12] [13] [14] [15], and extensive experiments showed that they
were better than the image based methods.

However, how to extract and represent the dynamics of facial is a key issue to
the video based methods. The popular one is based on motion analysis. In [10],
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Black and Yacoob used the parametric motion models to describe the local facial
dynamics, and took the parameters of local motion models as dynamic features.
Torre [16] used condensation to track the local appearance dynamics with the
help of subspace representation. In [17], the dynamics are represented by tracking
the points of Active Shape Model [18]. Although the motion based methods are
much intuitive, they are sensitive to image noise. Manifold learning was also
employed to explore the intrinsic subspace of the facial expression events. [19]
used the Leipschitz embedding to build a facial expression manifold, and [20]
used multilinear models to construct a non-linear manifold model. How to find
the intrinsic dimensions of the manifold is still an open problem. In addition,
due to diversity of subjects, it is hard to obtain an efficient and general manifold
structure. Recently, the volume features attracted much attention in dynamic
event analysis [21] [13] [22], which embed the spatio and temporal variation
together. The idea of the volume features is to regard the video data as a 3D
volume and to extract the features directly from the volume data. Guoying [13]
designed the volume local binary patterns (LBP) in the spatio-temporal domain
to capture the dynamics of facial events. In [23], we developed the ensemble of
Haar-like features with coding scheme for expression recognition.

Time resolution is another issue for video based method, especially in real en-
vironment, because there are many factors to make the data varied in different
time resolutions. For example, different cameras have different capture speed;
different subjects have different paces for the same expression; even the same
person will have different response in different situation. Therefore, in practical
systems, some pre-defined time-warping processing should be demanded. How-
ever, most previous works did not take this into account including recent volume
features [13] [23], and they assumed the training and the testing data must have
the same length and the same speed rate, i.e., the same time resolution.

In this paper, we propose a new feature representation named similarity fea-
ture to address the above issues. It is well known that each facial event will
give rise to complex appearance variation, and when it approximates to the
apex, its discrimination become more distinct [24]. The kernel features achieved
much success in describing the complex image variation [25], which are actually
similarity representation against the training samples. Inspired by the kernel
features, we measure each sample against the given references with a similarity
function, and define the log-weighted summarization of the similarities as the
feature to describe the complexity of facial appearance. The cluster-centers of
the apex images are selected as the references. To capture the temporal dynam-
ics, we perform the K-means clustering on the similarity features in the temporal
domain, and each cluster is modeled as a Gaussian distribution. Based on the
Gaussian models, we further map the similarity features into dynamic binary pat-
terns to handle the issue of the time resolution, which involve the time-warping
processing implicitly. The haar-like descriptor is used to extract the low-level
visual features as in [23], and Adaboost learning is adopted to build the final
classifier. Our experiments are conducted on the well-known Cohn-Kanade data-
base, and the experimental results demonstrate that the proposed method has an
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encouraging performance. The proposed feature representation is similar to the
harr-like volume features [21] [22], but it can handle the data in various time
resolution without any assumption. We will give detailed comparisons against
the related work in the experiments.

The rest paper is organized as follows: We first give the definition of the
similarity features in section 2, and describe how to map the similarity features
into the dynamic binary patterns in Section 3. Section 4 addresses the classifier
design, and the experiments are reported in Section 5, followed by conclusions.

2 Similarity Features

The kernel trick has attracted much attention, since the SVM achieved much
success in the field of machine learning [26]. The kernel features are actually a
kind of similarity representation, which are composed of the similarities between
a given sample and all the training samples with a nonlinear kernel function,
and they can describe the complex variations of images efficiently [25]. As we
knew, each facial event is behaved by complex facial appearance variations. In-
spired by the kernel features, we develop the similarity features to represent the
complexity of facial appearance for facial event analysis. Different from the ker-
nel features, we do not use all the training samples in computing similarities.
We only take the apex images into account due to their distinctness. To avoid
the influence of different subjects, we perform the K-Means clustering on the
apex images to divide them into several clusters, and we take the cluster-centers
as the references. The reference selection is also beneficial to computation cost
reduction.

The similarity feature is calculated as follows: Given the references {ri}, i =
1, 2, ..., R and a given sample x, the similarities of x against the references are

S(x) = {f(x, ri}, i = 1, 2, ..., R, (1)

where f(x, y) is the similarity function. In our experiments, we simply use the
L−2 distance as the similarity function, f(x, y) = ‖x− y‖2. Now each sample is
described by a R-dimensional similarity vector. Because the video data has both
spatio and temporal information, it needs high computational cost if we directly
use the above similarity vector. For example, if the number of the references is
100 and the video has 100 frames, then basically we need to do computation in a
104 dimensional space. To reduce the computational complexity, we convert the
similarity vector into a log-weighted similarity as the final similarity feature,

F (x) =
R∑

i=1

log(f(ri, x)). (2)

3 Dynamic Binary Coding

In practice, the video data we obtained often has different time resolution, so it is
necessary to align the data into a same time scale by a pre-defined time-warping
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operation. Most previous work did not discuss this issue and assumed the given
data in the same time resolution including recent volume feature based methods.
In this paper, we apply a coding scheme to handle this issue without any assump-
tion in describing the dynamics of the similarity features.

Although facial event evolves over time from the onset, the apex, to the offset,
we only take the process from the onset to the apex into account for simplicity,
for this process is demonstrated to be enough for recognition in almost all the
previous works. To describe the dynamics, we assume that the process from
the onset to the apex is comprised of several intrinsic states (patterns) along
the temporal domain. Correspondingly it means each kind of similarity feature
can be divided into several patterns in temporal domain. In our experiments,
we set the number of the intrinsic temporal patterns to 5 for all kinds of the
similarity features. Without loss of generality, in the following we discuss how
to build the five-level models for one event based on a similarity feature.

Given the training similarity feature set F = {Fi}, i = 1, 2, ..., N , where N is
the number of the training samples, and each sample Fi has different resolution in
temporal domain, Fi = {F t

i }, where t is the index of frames. We perform the K-
Means algorithm on the feature set F to divide it into five clusters in the temporal
domain, and each cluster is modeled by a Gaussian distribution, Nk{μk, σk}, k =
1, 2, ..., 5, where μ and sigma represent the mean and the variance respectively.
We take these five Gaussian models as the temporal patterns of the feature F . In
this paper, we will use a lot of similarity features to represent one facial event,
so the temporal patterns models of one facial event are an ensemble of these
Gaussian models as:

E =

⎧
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(3)

where the subscript is the index of the similarity feature, and M is the number
of the similarity features.

As mentioned in Section 1, each sequence may have different time resolution
and different number of frames t due to various reasons. In order to handle this
issue, we adopt the coding scheme to further convert the similarity features to
the dynamic binary patterns. Given a feature sequence Fi with t frames,{F t

i },
based the temporal pattern models described above, we can first map each F t

i

into a five-dimensional binary vector, i.e., F t
i −→ bt

i = {vc}, where c = 1, 2, ..., 5.
vc is binary, and it is computed by the Bayesian rule as:

vc =

{
1 if c = argmax

k
P (F t

i |Nk), k = 1, 2, ..., 5;

0 otherwise,
(4)

where P (F t
i |Nk) means the probability of F t

i given the corresponding Gaussian
model {Nk}. We can see that there has only one element is 1 and the other four
are 0 in the 5-dimensional binary feature bt

i. It means each feature in a temporal
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point only belongs to one temporal pattern. We map all the {F t
i } in a sequence

into the five-dimensional binary feature vectors, and compute their histogram
and do normalization as in [27],

ϕ(Fi) =
∑t

i=1 bt
i

t
, (5)

where ϕ(Fi) is always a five-dimensional vector whatever the t is. Thus, ϕ(Fi)
is independent of the time resolution. We call ϕ(Fi) the dynamic binary pat-
tern, and we use it to represent the sequence. As in [13], the binary pattern is
transferred into the decimal value for the final classifier design.

4 Classifier Design

4.1 Haar-Like Appearance Descriptor

Facial event is behaved by facial appearance variations. Besides taking the gray
or color values as appearance descriptor directly, there have three popular local
descriptors: Gabor [27] descriptor, haar-like descriptor [28], and LBP descrip-
tor [29]. In this paper, we use the haar-like descriptor due to its simplicity, for
it has obtained a good performance for face detection and expression recog-
nition [28] [23]. Compared to the Gabor and LBP descriptors, the haar-like
descriptor only needs simple add or minus operations, so its computation cost
is much lower. We perform the harr-like descriptor on each frame to extract the
visual appearance features, and based on each haar-like feature, we can obtain
its corresponding similarity feature. Then we convert the similarity feature to
the dynamic binary pattern for learning classifier. Figure 1 shows an example
how to calculate the dynamic binary pattern for a haar-like descriptor.

Fig. 1. Dynamic binary pattern calculation based on haar-like descriptor
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4.2 Adaboost Learning

Since the number of the dynamic binary patterns is equal to the number of the
haar-like features, each sequence has a large number of dynamic binary patterns.
It is unrealistic to use all the dynamic binary patterns to design the classifier.
Moreover, only parts of facial appearance are dominant in each facial event.
Adaboost learning is a good tool to select some good features and combine them
together to construct a strong classifier [28]. Therefore we adopt Adaboost to
learn a set of discriminant dynamic binary patterns and use them to build the
final classifier. In this paper, we take six basic facial expressions into account,
i.e., happiness, sadness, angry, disgust, fear, and surprise, so it is a six-class
recognition problem. We use the one-against-all strategy to decompose the six-
class issue into multiple two-class issues. For each expression, we set its samples
as the positive samples, and the samples of other expressions as the negative
samples. Algorithm 1 summarizes the learning algorithm.

Algorithm 1. Learning procedure
1: Input the training image sequences (xi, yi),...,(xn, yn),

yi ∈ {+1,−1}.
2: Compute the similarity features for each image sequence.
3: Map the similarity features of each sequence into the dynamic binary patterns

according to equation (4), and get ϕ(Fxi).
4: Build one weak classifier on each ϕ(Fxi).
5: Initialize weight D1(i) = 1/N .
6: for t = 1 to T do
7: Find the classifier ht : ϕ(Fx) → {+1,−1} that minimizes the error with respect

to the distribution Dt. ht = argmin εj , where εj =

m�
i=1

Dt(i)[yi �= hj(ϕ(Fxi))]

8: Prerequisite: εt < 0.5, otherwise stop.
9: Choose αt ∈ R, typically αt = 1

2
ln 1−εt

εt
where εt is the weighted error rate of

classifier ht.

10: Update: Dt+1(i) = Dt(i) e
−αtyiht(ϕ(Fxi

))

Zt
, where Zt is a normalization factor.

11: end for
12: Output the final classifier: H(x) = sign

��T
t=1 αtht(ϕ(Fx))

�

5 Experiments

Our experiments are conducted on the Cohn-Kanade facial expression data-
base [30], which is widely used to evaluate the facial expression recognition algo-
rithms. This database consists of 100 students aged from 18 to 30 years old, of
which 65% are female, 15% are African-American, and 3% are Asian or Latino.
Subjects are instructed to perform a series of 23 facial displays, six of which
are prototypic emotions mentioned above. For our experiments, we select 300
image sequences from 96 subjects. The selection criterion is that a sequence is
labeled as one of the six basic emotions. We randomly select 60 subjects as the
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training set, and the rest of subjects is for the testing set. The face is detected
automatically by Viola’s face detector [28], and it is normalized to 64 × 64 as
in [14] based on the location of the eyes.

The proposed work is related to the haar-like volume features [22], so we first
compare our work with it. For simplicity, we denote our method as the DSBP and
the haar-like volume features as the 3D haar. We also investigate the robustness
of the proposed method, if the training samples and the testing samples have dif-
ferent length and different time resolution. ROC curve is used as the measurement
tool to evaluate the performance, because it is more general and reliable than the
recognition rate. The number of references is set to 5 for all the haar-like features
in all the experiments.

5.1 Comparison to 3D Haar-Like Features

In this subsection, we compare the DSBP with the 3D haar. As mentioned
above, the 3D haar takes the video data as the 3D volume data, and performs
the haar-like descriptors in the spatio-temporal domain directly on the volume
data, so it needs all the input sequence with same time resolution, i.e., the data
has the same length and the same motion speed. The DSBP does not make
such assumption, for it embeds the time-warping process in the dynamic binary
coding. For fair comparison, we compare them under the same framework, and
the training samples and the testing samples have the same length, but we make
the data with different time resolution. Since the sequences in the Cohn-Kanade
facial database have different lengthes, we use a fixed-length window to slide
over the sequences to produce the fix-length samples.

We fix the training samples with 7 frames and 9 frames respectively. Figure 2
reports the ROC curves of the comparison experiment, and table 1 reports the
area below the ROC curves. We can see that the performance of the DSBP is
better than that of the 3D haar. This because: 1) similarity features are able to
efficiently describe complex facial appearance; 2) the dynamic binary patterns
are encoded based on the statistics and the Bayesian rule, so it is robust to some
noise; 3) the samples generated

from the fix-length window should have different active speeds, but the DSBP
is insensitive to active speeds.

Table 1. The Area under the ROC curves (the 3D haar and the DSBP)

Expression 9(xxxxxxxxx) frames 7(xxxxxxx) frames
3D Haar DSBP 3D Haar DSBP

Angry 0.934 0.957 0.893 0.935
Disgust 0.822 0.941 0.769 0.952
Fear 0.697 0.935 0.830 0.952
Happiness 0.977 0.997 0.978 0.997
Sadness 0.758 0.963 0.875 0.917
Surprise 0.974 0.999 0.982 0.999
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Fig. 2. ROC curves of six expressions in table 1

5.2 Robustness Analysis

The DSBP has another advantage against the 3D-haar: it has no requirement
on the length of the samples. In the following, we will analyze its robustness
if the training samples and the testing samples have different lengthes. We use
sampling strategy to simulate this case. In following, the xxx0x0x means that we
sample 5 frames from a sequence of 7 frames, where 0 means the corresponding
frame is lost.

We first fix the training samples with the same length, but the length of the
testing samples is variable. First, we fix the training samples with 7 frames, and
the testing samples are with different number of frames. Table 2 reports a group

Table 2. The Area under the ROC curves (Training on 7(xxxxxxx) frames)

Angry Disgust Fear Happiness Sadness Surprisee
xxx00xxxx0xx 0.9758 0.9283 0.9623 0.9992 0.9455 1.0000
x0xxx0xxxxx0 0.9756 0.9407 0.9768 0.9991 0.9412 1.0000
xxxxxxxxxx 0.9313 0.9374 0.9401 0.9954 0.9086 0.9998
xxxxxxxxx 0.9314 0.9610 0.9471 0.9948 0.9185 0.9993
x000xxx 0.9277 0.9356 0.9537 0.9966 0.9223 0.9995
xx0xxxx 0.9499 0.9509 0.9366 0.9957 0.9136 1.0000
x0x0xxx 0.9369 0.9494 0.9486 0.9971 0.9204 0.9992
0xx0x 0.9422 0.9455 0.9503 0.9961 0.9167 0.9999

mean 0.9463 0.9436 0.9519 0.9968 0.9233 0.9997
standard variance 0.0194 0.0103 0.0128 0.0016 0.0131 0.0003
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Table 3. The Area under the ROC curves (Training on 9(xxxxxxxxx) frames)

Angry Disgust Fear Happiness Sadness Surprise
xxx00xxxx0xx 0.9809 0.9361 0.9677 0.9985 0.9825 1.0000
x0xxx0xxxxx0 0.9780 0.9378 0.9706 0.9991 0.9713 1.0000
xxxxxxxxxx 0.9344 0.9053 0.8848 0.9970 0.9528 0.9988
xxxxxxxxx 0.9374 0.9392 0.9004 0.9951 0.9502 0.9985
x000xxx 0.9306 0.9129 0.9206 0.9969 0.9548 0.9991
xx0xxxx 0.9454 0.9217 0.9062 0.9970 0.9530 0.9991
x0x0xxx 0.9401 0.9218 0.9167 0.9969 0.9536 0.9990
0xx0x 0.9451 0.9048 0.9285 0.9965 0.9531 0.9996

mean 0.9490 0.9224 0.9244 0.9971 0.9589 0.9993
standard variance 0.0195 0.0141 0.0306 0.0012 0.0116 0.0006

of experimental results, where the length of testing samples from 12 to 5 and
the sampling ratio is variant, the corresponding ROC curves are shown in 3.
We can see that the DSBP is basically not influenced by the length variation
of the testing data. We extend the length of the training samples to 9 frames,
and use the same testing samples. Table 3 shows the experiment results and the
corresponding ROC curves are displayed in 4. We can see that results are similar
to those in Table 2 and 3. It means the DSBP is insensitive to the length variance
and resolution variance of the testing samples. The large window size has a little
better performance, because the large window captures much dynamics of the
expressions.
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Fig. 3. ROC curves of six expressions in table 2
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Fig. 4. ROC curves of six expressions in table 3

6 Conclusions

In this paper, we designed a novel similarity feature to describe the facial ap-
pearance for facial event analysis, which is inspired by the kernel features. The
similarity feature is defined as the log-weighted summarization of the similarities
between the given sample and the reference samples. We selected the references
from the apexes of facial events due to their distinctness. In order to capture
the dynamics of facial event, we divided the similarity features into several clus-
ters in the temporal domain, and used the Gaussian distribution to model each
cluster. Then we further mapped the similarity features into dynamic binary
patterns to handle the issue of time-resolution, for this mapping processing in-
volved the time-warping operation implicitly. The haar-like descriptor was used
to extract the low-level visual features, and Adaboost was adopted to learn the
final classifier. Experiments on the well-known Cohn-Kanade facial expression
database showed the power of the propose method.
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