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Abstract. We observe that everyday images contain dozens of objects,
and that humans, in describing these images, give different priority to
these objects. We argue that a goal of visual recognition is, therefore,
not only to detect and classify objects but also to associate with each a
level of priority which we call ‘importance’. We propose a definition of
importance and show how this may be estimated reliably from data har-
vested from human observers. We conclude by showing that a first-order
estimate of importance may be computed from a number of simple image
region measurements and does not require access to image meaning.

1 Introduction

‘Image understanding’, the grand goal of machine vision, is about computing
meaningful and informative semantic descriptions from images.

Progress in visual recognition has been breathtaking during the past 10 years.
We now have algorithms that can recognize individual objects accurately and
quickly [1], classify scenes [2], and learn new categories with little supervi-
sion [3,4,5,6,7].

What are the next steps toward image understanding? A full description of
complex scenes, currently appears to be out of reach (although there is inter-
esting work in that direction [8]). An intermediate goal is generating a list of
keywords for each picture. This simpler description would be useful for indexing
into large image databases (think of flickr.com’s keyword system) and it would
be readily understandable by humans. How should such a list be produced? As
we shall see later, medium-resolution images of everyday scenes contain dozens
of recognizable objects. A number of research groups are making quick progress
on simultaneous recognition and segmentation [9,10,11]. However, rattling off
an alphabetized list of nouns would not be particularly informative — not all
objects are equal. So our goal is to produce a list of the important objects in the
scene. We formalize the concept of importance as

An object’s importance in a particular image is the probability that it
will be mentioned first by a viewer.

This paper is about defining, measuring, and predicting the importance of ob-
jects in images. Figure 1 depicts how our ideas fit together. Section 2 describes
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Fig. 1. Which objects matter in a scene? We can measure the importance of an
object in a photo by combining lists of the objects named by different viewers (Section
2). To this end, we introduce an urn model, treating object naming as drawing balls
from an urn (Section 4). Using these measurements we learn a function to predict
object importance directly from photo regions (Section 5).

how we collect words from human observers. In Section 3 we explore how many
objects there are in individual images and collections of images. Section 4 in-
troduces a model for object naming based on importance. We show that this
model accounts for both object naming frequency and order. This model, in
turn, suggests a method for estimating importance from lists of objects pro-
duced by human observers. Section 5 explores whether object importance may
by predicted directly from bottom-up visual properties of an object. We conclude
in Section 6 with a discussion of our main findings.

2 Human Annotation

Intuitively, an important object is one that could help you identify or recreate the
scene. In this section we describe how we collect data that enables measurement
of importance.

2.1 Previous Work

The ESP game, by Ahn & Dabbish [12], presents the same image to two players
who cannot communicate. Their task is to produce the same word in as few tries
as possible. When the players produce the same word, the game ends, banning
that word for future plays involving the same image and different players. It
is intuitive that the word must be, in some way, related to the image. When
multiple games are played on the same image, a list of words is produced, one
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Fig. 2. Humans generate different lists of objects. When two humans indepen-
dently name 10 objects in a single image, only two thirds of their lists tend to overlap
(left). It is extremely rare for the lists to contain all the same objects. The standard
deviation in the order that humans name an object in a particular image is large (right).

per game. The order of words in the list could measure importance. However,
there are weakness in this approach: words are not always object names (e.g.
funny) and word order is a noisy correlate of importance since only a pair of
players need to produce a given word.

In LabelMe [13] users name objects and outline their contours with mouse
clicks. A user may annotate as many objects as they like in an image. Results
from previous users are visible to following users, so each object instance is
annotated at most once. Elazary and Itti consider the object annotation order a
measure of interestingness [14]; however, as partial annotations are passed on to
new users, a single ordering is produced. Figure 2 shows that when you compare
lists of objects named by several humans for the same photo, different objects
are named and the object naming order varies wildly. Hence a single list will not
capture the statistics of object naming.

2.2 Our Approach

We needed an unbiased, representative, and meaningful set of scenes for our ex-
periments. By ‘unbiased’, we mean that that the choice of scenes should be as
independent as possible from the experimenters and the purpose of the experi-
ment. By ‘representative’, we mean that the collection of images should sample
human visual experience as broadly as possible. However, if the images had been
collected completely at random, that is by attaching the camera to a someone’s
head and snapping one picture per minute for a day [15], most pictures would
turn out to be uninterpretable and irrelevant; by ‘meaningful’, we mean that the
images should represent meaningful moments in a person’s visual experience.
We selected our gallery of 97 pictures from Stephen Shore’s collections ‘Amer-
ican Surfaces’ and ‘Uncommon Places’ [16,17]. Shore took these pictures while
traveling in North America in the 70’s and 80’s and were meant to be a visual
diary of his experience. Figures 3 and 4 show sample images.
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Through the Amazon Mechanical Turk, observers (English speakers in the
U.S.) named 10 objects that they saw in a scene photograph. Each photograph
was displayed with a 600 pixel diagonal and annotated by 25 different observers.
While previous approaches produce a single word list, we have 25 ordered lists for
each image–hence we can use statistical regularities to quantify the importance,
not just order of objects.

We used WordNet [18] primary definitions to map synonyms and plurals to
the same word, and match missed synonyms (such as misspellings) by hand.
As Figure 2 shows, the objects that a viewer names and the order in which a
viewer names them vary wildly. Figures 3 and 4 show median order vs. naming
frequency (across viewers) for our sample images. Each point corresponds to an
object; if an object is mentioned by 35% of the viewers, it has a .35 x-coordinate.
The y-coordinate represents the median naming order of the object. So if three
observers name a particular object, and it is named 1st, 4th, and 10th, then
the y-coordinate is 4. Section 4 introduces a simple model, the urn model, that
generates object sequences from object importances, enabling us to measure
object importances from human generated sequences.

3 Object Counts

A first observation we make in assessing our data, is that there are many objects
named in each picture (see Figure 5). For each image, some of these objects
are mentioned by a few observers, while other objects are mentioned by many
observers. The heights of the curves in Figure 5 quantify how rich with objects
images, environments, and the world (full collection) are. The dashed line shows
that many fewer objects are named by at least 5 people. The difference between
the solid and dashed lines is the number of objects that are rarely named, in
that 80% of people don’t name them. Hence Figure 5 shows that there are many
recognizable objects in a scene photograph, but few objects are preferred by
viewers. Hence we need to quantify how important an object is, in order to
describe a scene meaningfully with the objects that it contains.

4 Measuring Importance

As proposed in the introduction, we define an object’s importance in a photo
as the probability that a human observer naming objects will name it first. In
principle, we would need an extraordinary number of observers to be able to
directly calculate the importance of all the objects in a picture: some objects’
importances may be less than 1%, and we would need hundreds of observers to
determine that. In this section we show that it is possible to measure an objects’
importance from relatively few observers if we are willing to model the process
that generates an observer’s sequence.
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Fig. 3. Examples where the urn model fits the data well. An object’s (dot’s)
median order named and frequency mentioned (2nd column) are in agreement given
the model. In these cases, the forgetful urn (4th column) produces similar measured
importance to the urn model (3rd column).
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Fig. 4. In many photos with a strong central object, the urn model fails to
identify the most important object. The poor behavior of the urn model (3rd
column) is due to the fact that some viewers fail to name the central object (red dot),
while the viewers that name it, name it early (2nd column). We propose a modified
model, the forgetful urn (4th column) to solve this problem.
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Fig. 5. The number of unique objects named in a photo or collection of photos
is surprisingly large and most of these objects are rarely mentioned. The number of
unique objects (solid lines) named in a photo (top in Figures 3 and 4) as observers are
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as photos are added (right). Many fewer objects have been named by at least 5 viewers
(dashed lines). This (height of the solid line) displays the sheer number of objects and
the large proportion (solid line - dashed line) of rarely named objects.

4.1 Urn Model

We model the process of naming objects in an image with the process of drawing
balls from an urn without replacement (see Figure 6). The balls are different sizes,
affecting their probability of being chosen first. Thus, a ball’s size represents
the importance of the corresponding object. We represent multiple players by
repeatedly refilling the urn with the same set of balls and selecting new sequences
independently of each other.

Figure 7 shows that randomly drawn lists (of balls) from the urn model
can reproduce, at least qualitatively, the order and frequency found in human-
generated lists of object names. The synthetic data does not actually correspond
to objects in images, but to abstract balls in the urn model. This is a phenom-
enological model with matches our observations for many images. In order to
estimate the size of the balls (the importance of each object) from our human
data, we follow the inverse process, that is starting from lists of objects one
computes the Maximum Likelihood (ML) values of the parameters of the model
(Figures 3 and 4). However, we note that for many photographs composed with
a central object, 10-30% of viewers fail to mention that object, (see Figure 4).
In the next section we describe our ML method and provide a solution to this
problem.

4.2 Fitting the Urn

In order to estimate importance, we could count how often an object is named
first, however, this squanders naming order information. When we have limited
data (human annotations), finding the Maximum Likelihood Estimator (MLE)
of urn model parameters improves upon the direct calculation of importance.
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Fig. 6. Urn model relates object importance to named sequences of objects.
An urn (image) is filled with balls (objects), having probabilities πi of being drawn first
(importances). 10 balls are drawn (named) from the urn without replacement, creating
a sequence. M sequences are drawn.

This is a special case of estimating the weights from a Multivariate Wallenius’
Noncentral Hypergeometric Distribution, which requires numerical methods [19].
Manly showed that the weights can be estimated if there are many (>10) balls
with the same label being drawn [20], but we have only one ball with each label,
so we cannot use his approach. To measure importance via the urn model we
need to calculate the probability of observing a set of sequences given the object
importances πi.

Each sequence consists of 10 balls wm
i (ith ball in the mth sequence) drawn

independently without replacement (out of N balls, where N >> 10), so the
probability of drawing a particular sequence of balls (wm

1 , ...wm
10) is

10∏

n=1

p(wm
n |wm

n−1, ...w
m
1 ) . (1)

However, we are drawing balls without replacement, so this equation is subject
to the condition wm

i = wm
j =⇒ i = j. When we draw the nth ball of a sequence,

n−1 balls have been removed from the urn. The probability that the ball labeled
wm

n is the nth ball drawn is therefore

p(wm
n |wm

n−1, ...w
m
1 ) =

{
0 if ∃i ∈ [1, n − 1] : wm

i = wm
n ,

πwm
n

1−∑ n−1
i=1 πwm

i

otherwise, (2)

where πi is the probability that ball i is drawn first (from a fresh urn) and∑
i πi = 1. However, as Figure 4 shows, sometimes viewers fail to mention the

most meaningful object. We believe that, when an object is very obvious, some
subjects may quickly move beyond it without mention. We treat this as the first
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median order vs. frequency mentioned. Humans (left) and the urn model (middle &
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name the most important object either early or never, as if sometimes discarding the
1st ball they drew (bottom right). In synthetic data, the 3 most important objects (red
dots) are named early and often.

ball being drawn and discarded, and hence excluded from the sequence.1 We deal
with this strange problem in a non-standard way. Consider a sequence of balls
where the first ball has been discarded (i.e. really drawn 1st, but not listed);
the ball is most likely argmaxj:∀ij �=wm

i
πj , that is the most probable of the balls

which haven’t been mentioned. In this case πj will likely be large. For a sequence
of 10 balls in which the first ball was not dropped, πj will probably be small.
Hence, if we include max∀ij �=wm

i
πj in the normalization, we obtain estimates of

πi that are not far from the correct ones when the first ball is not dropped and
most often the correct estimates when the first ball is dropped. This changes
Equation 2 to

p(wm
n |wm

n−1, ...w1) =
πwm

n

1 − max∀ij �=wm
i

πj −
∑n−1

i=1 πwm
i

. (3)

Since we have M independent sequences, the likelihood of our observation is

p(obs) =
M∏

m=1

10∏

n=1

πwm
n

1 − max∀ij �=wm
i

πj −
∑n−1

i=1 πwm
i

. (4)

1 So the rigorous definition of importance is the probability that a ball is drawn first,
regardless of whether it is discarded.
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To measure importance πwm
i

, we maximize the log-likelihood log(p(obs)),

M∑

m=1

10∑

n=1

log πwm
n

− log(1 − max
∀ij �=wm

i

πj −
n−1∑

i=1

πwm
i

) . (5)

Using synthetic data generated by an urn model Monte Carlo with different pa-
rameter settings, we see that the MLE of Equation 5 enables us to estimate the
parameters more precisely than direct calculation from the observed frequency.
Particularly, Figure 8 shows that the urn model and the forgetful urn model
(the model containing the max∀ij �=wm

i
πj term) are much closer to the true im-

portance distribution in the K-L Divergence, DKL(π||π̂) [21]. The forgetful urn
outperforms the original urn model when the first ball has a nonzero probability
of being dropped, and is equivalent when the first ball isn’t dropped. These are
the mean K-L Divergence values over 5 importance distributions, each with 10
sets of 25 sequences drawn, shown at 4 probabilities of dropping the first ball.

Figures 3 and 4 display the importances of the 10 most important objects in
our sample images, using the urn MLE and forgetful urn MLE.

One could wonder if our definition of importance captures objects that may
never be named first. For instance in a photo of Batman and Robin, Robin may
never be named first, yet he is important. In this example Robin’s consistently
second position violates the independence assumption of our model. The fitting
will then assign a high importance to Robin. Empirically, we can take data
from the urn model and move the second most important ball to second place
every time it is drawn first. In our simulations this change does not significantly
decrease the estimated importance of this ball (Wilcoxon Rank Sum Test).

Optimization Note: There are as many parameters πi as objects mentioned.
Figure 5 shows that this number can get large, which results in poor convergence.
However if we limit our optimization to the 10 most frequently named objects
and set the others to a small constant, our convergence using fmincon (repeatedly
and perturbing the solutions) in the Matlab Optimization Toolbox is quite good.

5 Predicting Importance

Is it possible to automatically predict importance from image measurements
without using human observers? A number of researchers are working on the
problem of segmentation and recognition. In this paper we wish to focus on
the orthogonal problem of estimating importance once the objects have been
detected and segmented. Since no such system works sufficiently well nowadays,
we segment the image by hand.

Using a training set of 30 images (687 objects), a validation set of 10 images
(217 objects), and a test set of 35 images (800 objects), we fit a generalized linear
model log(πi) =

∑
j Xijbj. Here πi is the measured importance of object i (from

Section 4) in training and the predicted importance in testing. Our features
consider the composition of the photo in relation to an object’s outline; Xij is
object i’s value for feature type j and bj is the weight of the jth feature.
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As there were many more unimportant objects than important ones (impor-
tance > 0.07), we selected an equal number of each, using outlier removal. Our
outlier removal was inspired by Angelova et. al’s [22] idea that noisy data should
be predicted poorly by a partial model that it didn’t influence. We built many
partial models and predicted the low importance training objects with them; we
discarded the objects that gave the largest squared error across partial models.

We added features to each regression greedily, by choosing the feature that
most reduced training error. We grew a regression starting at each feature, stop-
ping growth at the lowest validation error. Finally, we selected the regression
with the lowest training error. Out of a list of 30 features, the chosen features
(in order of choice) were: distance from the image center to the closest part
of the object, minimum distance from the object to the 4 points that divide
the image into thirds (taken from the thirds rule of photographic composition),
minimum vertical distance above the image center, maximum saliency[23] on
the object, mean number of overlapping objects, total saliency over object, total
blurred saliency over object (2 pixel blur on saliency map), maximum vertical
distance below the image center, and maximum horizontal distance from the
image center.

Our regression predicted importance (from photo patches) which we com-
pared to measured importance (from human data in Section 4). We evalated the
quality of such predictions quantitatively by building a binary classifier: objects
were classified as as having higher or lower importance than a given importance
threshold. Figure 9 shows the ROC curves at 3 importance levels, illustrating
that our prediction method can discriminate very important objects. If we want
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how much measured importance has been captured by the first n objects named (right).
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the total saliency of an object (red), which is much better than chance (black).
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Fig. 10. Examples of predicted importances for sample images. The object with
the highest measured importance (red) tends to have a high predicted importance. We
train on image region properties with measured importance (Figures 3 and 4) as the
desired output. Our testing output is predicted importance.

to name objects to capture as much measured importance as possible, we can
sum the measured importance of the first n objects named. The naming order is
obtained by sorting objects by predicted importance (or total saliency). Figure 9
shows the performance of predicted importance is sandwiched between human
naming and saliency; it also shows that all 3 greatly outperform chance.
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For a more intuitive evaluation, Figure 10 shows the importance predictions
for sample photographs, the most noticeable discrepancy between automatically
predicted importance (Figure 10) and importance estimated directly from human
subjects (Figures 3 and 4) is that the fire hydrant was more important to people
than our regression predicted.

6 Discussion

We asked a number of human observers to list the objects that they saw in
images of complex everyday scenes; each image (of 97) was annotated by 25
observers. The data we collected shows that our visual world is rich (Figure 5):
there are dozens of things that may be recognized in each image.

A number of research groups are making progress on simultaneous recognition
and segmentation. Here we study the complementary problem of importance.
Not all objects are equal: in a given image some are mentioned by all observers
and some by few, some are mentioned early and some later. This suggests that
we should not be content for our recognition algorithms to return a laundry list
of things that are present in the image. We suggest that a complete system will
require both recognition-segmentation and importance.

We defined ‘importance’ as the probability that an object is mentioned first
by a human observer. We provided a methodology for measuring importance of
objects in images from the data provided by our human observers. We noticed
that human observers sometimes miss the most obvious object. We proposed
a procedure to measure importance that takes this phenomenon into account.
We found experimentally that our measurements of importance are reliable on
synthetic data (Figure 8) and intuitive on human data (Figures 3 and 4).

One could worry that it may be impossible to assess an object’s ‘importance’
automatically until the meaning of an image is understood [24]. We explored how
far can one go in estimating object importance automatically from bottom-up
image measurements. We found that a small number of simple measurements go
a long way towards predicting importance (Figure 9).

Finally, it should be pointed out that this work is about photographs taken by
humans — our findings may not generalize to haphazardly captured photographs.
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