
Unclonable Lightweight Authentication Scheme�

Ghaith Hammouri, Erdinç Öztürk, Berk Birand, and Berk Sunar

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609-2280
{hammouri,erdinc,bbirand,sunar}@wpi.edu

Abstract. We propose a lightweight, tamper-resilient challenge-response
authentication scheme. The scheme that we propose (HB+PUF) is a
variant of the PUF-HB protocol [1] which utilizes Physically Unclonable
Functions (PUFs). We reduce the security of (HB+PUF) in the active
attacker model to solving the LPN problem. The proposed scheme en-
joys strong tamper-resilience due to the PUF properties. We present a
proof of concept implementation for the proposed protocol. To generate
the random bits needed for the protocol, we reuse the PUF circuit as a
Random Number Generator (RNG). This construction shows to be cost-
effective since we will be using the same hardware for authentication as
well as random number generation without incuring any significant over-
head. The overall scheme including storage, tamper-resilience and RNG
can be achieved with less than 1000 gates. The small footprint should
be ideal for constrained environments such as RFID’s, smart cards, and
sensor networks.

Keywords: Provable security, tamper-resilience, lightweight, random
number generation, PUF, HB+.

1 Introduction

Lightweight cryptography has been receiving more attention in the past few
years [10,21]. This attention is mainly motivated by the boom in the next gen-
eration ubiquitous networks. With highly constrained devices such as wireless
sensor nodes, RF identification devices (RFIDs), and smartcards as their main
building block, these networks pose an urgent need for affordable cryptography.
A number of the known results so far reduce the size of the hardware by seri-
alizing classical cryptographic protocols, thus decreasing the circuit’s footprint
[11,22,37,28]. For example, in [37] and [28] the authors present a lightweight im-
plementation of DESL, a variant of DES. The presented function uses a single
S-box 8 times, rather than using the 8 S-boxes needed for DES. With this reduc-
tion, the authors manage to serialize the implementation, therefore decreasing
the footprint. Although these results are very exciting, the approach itself seems
to be inherently limited. Most classical cryptographic protocols were designed
� This material is based upon work supported by the National Science Foundation

under Grants No. ANI-0133297 (NSF CAREER Award) and CNS-0716306.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 33–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 G. Hammouri et al.

with little attention to the hardware implementation. Therefore, the protocol
may not lend itself to serialization. Even from a broader perspective, the notion
of taking classical protocols and attempting to squeeze them into a smaller circuit
seems to eventually face natural limitations. A different yet exciting approach
is to explore new protocols which are motivated by the hardware and which are
lightweight in nature [6,31,17,41]. This approach seems harder due to the typical
computational demands of cryptography. Nevertheless, it also seems more likely
to provide a fundamental solution. This point of view becomes stronger when
we consider the diversity of the attacks that target the hardware. While typical
cryptographic protocols might be very secure in theory, one has to take into
account attacks which exploit so called side-channels [26,25]. These attacks are
roughly classified into two groups. Passive attacks solely observe side-channels
(e.g. computation time, power consumption, electromagnetic emanation, temper-
ature attacks etc.) to deduce internal secrets from leaked side-channel profiles.
In contrast, in active attacks the attacker may also inject faults during the com-
putation [27]. Not surprisingly, active attacks are more powerful and are more
difficult to prevent. A tamper-resilient hardware could help in securing devices
from both passive and active side-channel attacks. With all this in mind, it be-
comes vital to introduce secure lightweight cryptographic protocols which are
motivated by the hardware, and which are tamper-resilient.

Two promising candidates for such a task are Physically Unclonable Functions
(PUFs), and the HB-based authentication family. A PUF is a physical pseudo-
random function which exploits the small variances in the wire and gate delays
inside an integrated circuit (IC). Even when the ICs are designed to be logically
identical, the sensitive delay variances will be unique to each IC. These properties
will result in providing the hardware with a level of tamper-resilience. However,
these devices are not known to be provably secure. On the other hand the HB-
based protocols base their security on the hardness of the learning parity with
noise (LPN) problem which is known to be NP-hard [4]. Although the HB-
based authentication schemes are provably secure in strong settings, they all
lack any notion of tamper-resilience. More recently, PUF-HB was proposed [1].
This scheme aimed at merging the two qualities of PUF and HB to produce an
interesting hybrid. However, the work presented in [1] lacked any implementation
results.

Our contribution: We present a proof of concept implementation for HB+PUF,
a variant of PUF-HB which is also provably secure with a much simpler secu-
rity reduction. The reduction only applies to active attacks which do not have
a full man-in-the-middle control of the communication channel. HB+PUF re-
sists the known man-in-the-middle attacks against the HB+ scheme, and shows
strong indications to resist a variety of these attacks. Due to the lightweight
nature of PUFs and the HB+ protocol the presented scheme proves suitable for
lightweight applications. Our implementation takes advantage of the PUF circuit
in order to produce the random bits typically needed for an HB-based authenti-
cation scheme. Note that the existence of a random number generator (RNG) is

Unclonable Lightweight Authentication Scheme 35

assumed in all HB-based protocols without taking into account the complexity
of such a device. The overall circuit is shown to occupy less than 1000 gates.

The remainder of the paper is organized as follows. In Section 2 we review the
PUF paradigm focusing on tristate PUF circuits. In Section 3 we give a review
of the known HB-based authentication protocols. In Section 4 we define our
notation and describe our proposed protocol. The security analysis is presented
in Section 5. In Section 6 we describe our RNG construction and present analysis
of its randomness. Section 7 describes the proof of concept implementation of
the entire circuit. Finally, we present the conclusion in Section 8.

2 PUF

The idea behind a PUF is to have identical logical circuits observe different
input-output behavior. This goal is achieved by taking advantage of the in-
terchip variations which will vary from one circuit implementation to another.
These variations are directly related to physical aspects of the fabrication envi-
ronment. The reason one might seek to explore such a circuit is to prevent any
ability to clone the system. Additionally, because of the high sensitivity of these
interchip variations, it becomes difficult for an attacker to accurately reproduce
the hardware. Another major advantage of the PUF’s sensitivity is to prevent
physical attacks on the system. Trying to tap into the circuit will cause a ca-
pacitance change therefore changing the output of the circuit. Similarly, trying
to remove the outer layer of the chip will result in a change in the output of
the circuit. We mention here that there are different realizations of PUFs. For
example, surface PUFs were proposed in [36,44] and further developed in [40].
In this paper we focus our attention on the delay-based PUF first introduced in
[14]. For the background information we closely follow the presentation of [1].

A delay-based PUF is a {0, 1}n → {0, 1} mapping, that takes a n-bit chal-
lenge (a) and produces a single bit output (r). The basic idea of a PUF circuit
is to create a race between two signals which originate from the same source.
The original PUF circuit proposed in [14] utilizes multiplexers (MUXs) to im-
plement the needed switches. In this work we use a different implementation
of PUFs, in particular we use tristate PUFs proposed in [9]. Instead of having
two interleaved delay paths, the tristate PUF uses two separate paths of delay
units. This realization of a PUF has the advantage of requiring less gates and
consuming less power. As shown in Figure 1 the delay units of a tristate PUF
are constructed by respectively connecting the input and the output ports of two
tristate buffers. The enable ports of these tristate buffers are connected to each
other, with one of the buffers having an inverted enable input. This assures that
only one of the two tristate buffers will be enabled for a particular input value.
When a pulse is applied at the input of the delay unit, it will pass through only
one of the two buffers. The enable input will determine which tristate buffer
passes the pulse. This will change the amount of delay acquired by the signal
according to the value of the enable input. To build the overall PUF circuit, the
delay units are cascaded to construct a serial delay path. For a PUF circuit, we

36 G. Hammouri et al.

Arbiter

. . .

. . . a nn/2+2n/2+1 aa

a n/2a 1 a 2

Fig. 1. PUF built with tristate buffers

need two separate delay paths. These delay paths are constructed as shown in
Figure 1. The inputs of the two delay paths are generated by the same source
while the outputs are fed to a flip-flop which we refer to as the arbiter. We assume
the arbiter to be a positive edge-triggered flip-flop. The flip-flop has two inputs,
the data and the clock. When the clock input has a rising edge the data input
is captured at the output of the flip-flop. In the PUF setting, if the path that is
connected to the data input has a smaller delay, then the output of the arbiter
will be 1. Otherwise, the output will be 0.

In [9] the authors derive a linear delay model for the tristate PUF. The model
is represented by an equation which gives the delay difference in terms of the
challenge bits and the parameters of the PUF. Using their model we can relate
the response bit r the challenge bits1 ai using the following function,

r = PUFY (a) = sign

(
n∑

i=1

(−1)aiyi + yn+1

)
.2 (1)

For simplicity we assume that n is even and we define Y = [y1, . . . , yn+1] where
yi denotes the imbalance in the signal propagation paths of the ith stages and
yn+1 denotes the imbalance in the delay between the upper and the lower paths
and the setup time of the arbiter. These variables are dependent on the circuit
itself and will vary from one PUF circuit to another. Sign(x) = 1 if x ≥ 0, and
0 if x < 0. When the argument in sign(x) is zero the output becomes random. It
is not possible to predict the behavior of the circuit when the two signals have the
exact same mismatch. In fact, this behavior will happen to an even larger window
of delay mismatch values. In such cases the PUF is said to be metastable. We will
shortly address this issue by introducing the noise parameter εP . It is important
to note here that the delay variations yi will depend on the fabrication process of
the PUF circuit. Therefore, one would expect these variables to follow a normal
distribution. In particular, the yi values will follow a Gaussian distribution of
1 In this paper we use superscripts with parenthesis to refer to sequences of strings or

bits, i.e. a(j). We use the subscripts to denote bits of a string, i.e. ai.
2 This model is almost identical to the model derived for MUX based PUFs.

Unclonable Lightweight Authentication Scheme 37

mean zero, and a fixed variance. Without loss of generality, we can normalize
these values and assume they belong to a normal distribution of mean 0 and
variance 1.

The fact that the PUF function could be represented using a linear inequality
means that given a sufficient number of challenge-response pairs (a(i), r(i)) for
a single PUF, an attacker might be able to model the system using standard
linear programming techniques [39,2]. To get an idea of these modeling attacks,
for a 128-bit PUF with about 4000 challenge-response pairs one can model the
PUF with an accuracy of less than 5%. Such an observation seems to completely
undermine the idea of using a PUF. Although a PUF might be tamper-resilient,
it still can be easily modelable. For theoretical and experimental results on mod-
eling a PUF the reader is referred to [14,18,9]. In this paper we view this ability
as an advantage that can help create a more practical system. The ability to
model a PUF will eliminate the need to store a huge database to track all the
deployed devices. The server can store the simple model captured by the real
vector Y for each device. However, note that even with the best ability to model
a PUF there will always be a level of inaccuracy caused by metastability. This
observation is due to multiple reasons. First, the thermal noise will cause slight
fluctuations in the internal variables therefore causing a change in the output.
Second, the two signals propagating inside a PUF will sometimes enter a race
condition such that the decision made by the arbiter will be random. Race con-
ditions are in general the more dominant reason for metastability, and they will
particularly happen when the delay difference between the two internal paths is
less than the resolution of the arbiter. As a result, any PUF device can only be
accurately modeled within a certain level. The best modeling schemes tested so
far can provide an inaccuracy as low as 3% [29]. In our notation we denote the
amount of error that exists in our best model of a PUF circuit with εP .

Next, we introduce an enhancement to the delay-based PUF. We use an n-bit
non-zero binary string x to implement a linear bijection on the input challenge
before it is fed into the PUF. Let a be the challenge string sent to the PUF. To
produce the actual challenge string a′ we treat x and a as elements of a finite
field GF (2n) and compute the product a′ = xa ∈ GF (2n). We next define a new
PUF equation which takes this enhancement as well as the error in modeling the
PUF into consideration3

PUFY,x,εp(a) = PUFY (xa) ⊕ ν, (2)

where ν = 1 with probability εP and ν = 0 with probability 1 − εP . The field
multiplication may be implemented with low footprint using a simple linear
feedback shift register (LFSR) based serial modular polynomial multiplier cir-
cuit. The choice of generating polynomial makes no difference in terms of the
properties of the PUF device. Hence, for efficiency, low-weight polynomials (e.g.
trinomials) may be used in the implementation [3].

3 While this enhancement does not prevent modeling attacks, it will indeed have an
affect on the man-in-the-middle attacks as we will see in Section 5.

38 G. Hammouri et al.

3 LPN-Based Authentication Protocols

In this section we give a quick review of the LPN problem and the different HB
authentication schemes which base their security on the hardness of LPN. We
focus our attention on HB and HB+. For a certain ε ∈

(
0, 1

2

)
the LPN problem

is denoted by LPNε, and stated as: Given k random binary n-bit strings a(j) and
the bits z(j) = a(j) · s ⊕ ν for some s ∈ {0, 1}n, where a · b denotes the binary
inner product between a and b, ν = 1 with probability ε and 0 with probability
1 − ε, then find the binary string s.4

The LPN problem is known to be NP-hard [4]. In [19], the authors show
that the LPN problem is log-uniform and even hard to approximate within a
ratio of 2. Kearns proved in [24] that the LPN problem is even hard in the
statistical query model. The best known algorithm to solve the LPN problem is
the BKW algorithm [5]. However, there has been a number of improvements on
the algorithm with the best running time of 2O(n/ log n) [12,30,33].

In the HB protocol [19], the tag and the reader share an n-bit secret string
s. To authenticate the tag, the reader starts sending randomly generated n-bit
challenge strings a(j). The tag responds with the bit z(j) = a(j) · s⊕ ν where the
variables are as defined in the LPN problem. The tag and the reader repeat the
same step for multiple challenges. Finally, the reader checks to see if the number
of errors in the tag’s response matches the noise level, and decides to accept or
reject accordingly. Note that if the tag’s response did not contain noise, then a
passive attacker would easily be able to deduce s after collecting n challenge-
response pairs using Gaussian elimination. In [19], the authors prove that given
an algorithm that predicts z(j) for a random a(j) with some advantage, then this
algorithm can be used to solve the LPNε problem. However, HB is only secure
against passive attacks. An active attacker can easily repeat the same challenge
multiple times, effectively eliminating the noise and reducing the problem to
Gaussian elimination.

To secure the HB protocol against an active attacker the HB+ protocol was
proposed in [20]. In HB+ the tag and the reader share two n-bit strings s1 and
s2. The tag starts the authentication session by sending a random n-bit string
b(j). The reader then responds with a(j) just like the HB protocol. Finally the tag
responds with z(j) = a(j)·s1⊕b(j)·s2⊕ν, where ν is defined as above. The protocol
is proved to be secure against an active attack on the tag (excluding man-in-
the-middle attacks). In such an adversary model an attacker is not allowed to
obtain final decisions from the reader on whether this authentication session was
successful or not. In [20] and [23] the authors show that in this adversary model
breaking the HB+ protocol is equivalent to solving the LPN problem. However,
as we pointed out earlier, a simple man-in-the-middle attack was demonstrated
on the HB+ protocol in [16]. Note that in a detection based model this attack
will not be successful.

In addition to HB and HB+, there has been a number of other variations such
as HB++ [7], HB-MP [34] and HB∗ [8]. A recent proposal is the HB# [15]. In

4 We follow the LPN formulation given in [23].

Unclonable Lightweight Authentication Scheme 39

their work the authors propose a modified version of HB+ which uses Toeplitz
matrices rather than vectors for a shared secret. Under a strong conjecture the
proposal is proven secure against a class of man-in-the-middle attacks. In this
adversary model which is referred to as GRS-MIM-model, the attacker can only
modify data transmission from the reader to the tag but not from the tag to
the reader. Not that the GRS-MIM-model will essentially protect against the
previously mentioned man-in-the-middle attack. Our work here is based on the
more recent protocol PUF-HB [1] which introduces PUFs to the HB paradigm.

4 New Authentication Family: HB+PUF

In this section we present the proposed protocol. We will use R to denote the
reader and T to denote the tag. n1 and n2 will be our security parameters. T
and R are both characterized by the set of variables (k, s1, s2, x, Y, εP , ε, u) where
s1, x ∈ {0, 1}n1, s2 ∈ {0, 1}n2 and Y = [y1, y2, . . . , yn1+1] such that yi ∈ N(0, 1)
where N(μ, σ2) is the normal distribution with mean μ and variance σ2. The
noise parameters are ε, εP ∈

(
0, 1

2

)
. We use k to denote the number of rounds

required for authentication. The last variable u is an integer in the range [0, n]
such that εfk ≤ u, where εf = εP +ε−2εpε denotes the total noise in the scheme.

With this notation we describe the basic authentication step. In every round,
T randomly generates b ∈ {0, 1}n2 and sends it to R. Upon reception R replies
with the challenge a ∈ {0, 1}n1. Finally, T computes

z = a · s1 ⊕ b · s2 ⊕ PUFY,x,εp(a) ⊕ ν , (3)

where ν = 1 with probability ε and 0 with probability 1 − ε. Notice that this
is very similar to the basic authentication step in HB+. The only difference is
that here we add a PUF operation. In order for R to authenticate T , the same
basic authentication step is repeated for k rounds. In every round R checks to
see if T ’s response is equal to (a · s1⊕ b · s2⊕PUFY,x,0(a)). If the response is not
equal to this term, R marks the response wrong. At the end of the kth round,
R authenticates T if and only if the number of wrong responses is less than u.

In general, any entity can interact with the reader and try to impersonate an
honest tag. To capture such interaction, let E be any entity trying to authenticate
itself to the reader Rσ characterized by σ = (k, s1, s2, x, Y, εp, ε, u). Following the
notation in [23] we define 〈E ,Rσ〉 := 1 iff E is authenticated by the reader, and
is equal to 0 otherwise. The following protocol formalizes this interaction:

Protocol 1 (HB+PUF): 〈E ,Rσ〉
1. Rσ sets the counter c = 0
2. E sends b ∈ {0, 1}n2 to Rσ

3. Rσ choses a ∈ {0, 1}n1 uniformly at random and sends it to E
4. E sends z to Rσ

5. if z 	= a · s1 ⊕ b · s2 ⊕ PUFY,x,0(a) then c = c + 1
6. Steps 2 through 5 are repeated for k iterations
7. If c ≤ u then 〈E ,Rσ〉 = 1, otherwise it equals 0.

40 G. Hammouri et al.

5 Security Analysis

In this section we show that the proposed protocol HB+PUF is at least as se-
cure as the HB+ protocol. We also discuss security against man-in-the-middle
attacks. Finally, we consider the parameter selection to obtain a secure imple-
mentation. The reduction from HB+PUF to HB+ is in fact very simple. As
can be seen from Equation 3, the HB+PUF protocol utilizes all the terms of
HB+, and only adds a PUF operation. Therefore, it should be expected that
the HB+PUF protocol can not be less secure than the HB+ protocol. We now
formalize this intuition by showing that any algorithm capable of successfully
attacking the HB+PUF protocol can be used to successfully attack HB+. The
HB+ protocol uses a tag T +

τ and a reader R+
τ both of which can be characterized

by the string of variables τ = (k, s1, s2, ε, u). The variables in τ are defined as
we have done for the HB+PUF variables in Section 4. We also use 〈E ,R+

τ 〉 to
indicate an authentication session between any entity E and an HB+ reader R+

τ

using the HB+ protocol. Similar to Protocol 1, 〈E ,R+
τ 〉 = 1 when the reader

authenticates and 0 otherwise. This notation mostly follows the work presented
in [23]. Recall from the previous section that in the HB+PUF protocol we use
a tag Tσ and a reader Rσ both of which can be characterized by the string of
variables σ = (k, s1, s2, x, Y, εp, ε, u). We next state the reduction and keep the
proof to Appendix 8. We prove the reduction in the active attacker model used
to prove the security of the HB+ protocol. In this model the attacker interacts
with the tag in a learning session before he attempts to impersonate as the tag
to an honest reader5.

Theorem 1. Let A be an algorithm which interacts with an honest HB+PUF
tag Tσ for q authentication sessions to achieve Pr[〈A,Rσ〉 = 1]> δ, where
Rσ is an honest HB+PUF reader. Then, there exists an algorithm A′ which
can interact with any HB+ tag T +

τ for q authentication sessions to achieve
Pr[〈A′,R+

τ 〉 = 1]> δ, where R+
τ is an honest HB+ reader.

We point out that in the PUF-HB scheme the security reduction is much more
involved since the secret s1 is replaced by the PUF operation. Theorem 1 poses
an immediate question of how the HB+PUF protocol behaves in relation to the
the known man-in-the-middle attack against HB+ [16]. Briefly, in this attack an
adversary replaces all the challenges {a(j)}k

j=1 sent from the reader in a single
authentication session by {a(j) ⊕w}k

j=1 where w ∈ {0, 1}n1. The attacker knows
that the challenges will interact with the secret s1 through a(j) ·s1. At the end of
the k rounds, if the reader authenticates the tag, then the adversary can deduce
with very high probability that his changes did not affect the responses of the
tag, and therefore w·s1 = 0. On the other hand, if the reader rejects the tag, then
the adversary will know with a very high probability that w · s1 = 1. Repeating
the same attack n1 times will allow the adversary to collect n1 linear equations

5 We only need HB+ to prove the reduction to the LPN problem. However, HB+ is
reduced to the LPN problem under the same attacker model used here.

Unclonable Lightweight Authentication Scheme 41

containing s1. Therefore, the adversary can use Gaussian elimination to solve
for s1 with a high probability.

As we pointed out earlier, one of the main reasons for such an attack to work
is the linearity of the inner product operation. In our scheme the challenges
a(j) are not only subjected to the inner product operation a(j) · s1, but also to
a PUF operation a(j) · s1 ⊕ PUFY,x,εp(a

(j)). With both operations being used,
an adversary will need to find a way to modify the challenges such that he
can deduce information about each of the two operations separately. To see
why a PUF operation will help against the man-in-the-middle attacks, notice
that on one hand the PUF is inherently non-linear due to the sign operation.
Therefore, it will prevent against any simple man-in-the-middle attack trying
to explore linearity, such as the attack in [16]. On the other hand, it has been
shown in [1] that the probability distribution of two different challenges a(1)

and a(2) yielding the same output from a PUF operation, will only depend on
the Hamming distance between a(1) and a(2). This means that any successful
man-in-the-middle attack would have to exploit the Hamming distances between
different challenges. However, recall from the end of Section 4 that the PUF
circuit used in HB+PUF implements a field multiplication over GF (2n1) with
the secret string x. This multiplication will partially obfuscate the Hamming
distance between different challenges. Therefore, the attacker’s ability to deduce
correlations between the inputs and the outputs of the PUF will be partially
hindered.

Note that here we are talking with respect to the GRS-MIM model introduced
in [15]. To protect against the most general class of man-in-the-middle attacks,
we suggest adding a second PUF circuit to operate on the b(j) strings sent by
the tag. In such a scheme the response of the tag would be

z = a · s1 ⊕ b · s2 ⊕ PUFY1,x1,εp1(a) ⊕ PUFY2,x2,εp2(b) ⊕ ν . (4)

The suggested scheme will be more demanding in terms of hardware and power.
However, we predict that it will be resilient against man-in-the-middle attacks.

We finish this section by discussing security parameters for an implementation
of the design. As shown by Theorem 1 our protocol is at least as secure as the
HB+ protocol, which in turn is at least as hard as solving the LPN problem. All
with respect to the active attacker model. In [30] the authors give a careful study
of the BKW algorithm for solving the LPN problem. They conclude that the
parameters first introduced for the HB+ protocol by [20] and then by [23] do not
provide sufficient security. In our implementation we follow the new parameters
suggested by [30] and later adopted by [15]. To achieve 80-bits of security we
choose n1 = 80, n2 = 512, εf = 0.15 and k = 200. Note that εf is not a separate
parameter but rather a result from εp and ε. In our implementation we will have
εp = 0.15 and ε = 0.

6 PUF-Based RNG

In Section 2 we discussed the inherent metastability in a PUF circuit. As we
pointed out earlier, these metastable states result from either environmental

42 G. Hammouri et al.

fluctuations, or race conditions which occur between the two propagating signals
inside a PUF. In this section, we outline how metastability could be used to
generate random bits. We note here that using a PUF circuit as an RNG is not
a new idea. It has been previously proposed in [35]. In their design the authors
use an LFSR to generate a stream of challenges. Each challenge is fed to the
PUF multiple times in order to decide whether the challenge is metastable or
not. Finally, the metastable outputs are used to extract randomness. In our
approach, we take advantage of a PUF feedback setting. This approach will
essentially remove any need to separately check each challenge for metastability.
Therefore, decreasing the control logic, and increasing the throughput.

Our RNG design is based on a shift register feeding a PUF circuit in parallel.
As we have concluded in Section 5 the size of the PUF and thus the size of the
shift register will be 80 bits. The register is initialized to a random bit string.
At every clock cycle the output of the PUF is fed back to the most significant
bit of the shift register, while the least significant bit is discarded. This mode
of operation will ensure a continuous stream of bits. Without metastability no
randomness is expected to come out of this construction. Therefore, to assess the
generated randomness we need to get a good estimate on the ratio of metastable
points.

In order to get an estimate for the metastability ratio, we implemented the
PUF circuit on a Xilinx XC2VP30 FPGA. In typical PUF implementations,
extra precautions are taken to prevent metastability. However, we are interested
in having a high level of metastability. This is the case, since we use the PUF
in a noisy authentication scheme, and as an RNG. To help induce a higher
level of metastability we allow close adjacency between the PUF circuit and
other parts of the implementation. We carried out a restart test by collecting
1000 different bit streams. Each bit stream was collected after the system was
reset and initialized to the same state. In a completely stable system, these
bit streams would have to be identical. However, in a metastable system, every
time a metastable point occurs these streams are expected to break into two
groups, with each group following a different choice of the metastable point.
After tracking all the bit streams we found that after 6400 bits all the 1000
streams were in completely different states, therefore suggesting the occurrence
of 1000 metastable points. This yields an overall metastability ratio of about
15%. With this ratio, we can insure that the output always contains a metastable
point by Xor-ing every 8 consecutive bits and using the result as the output of
the RNG.

To verify the statistical quality of the RNG output, we collected a large num-
ber of bit streams and analyzed them with the NIST statistical test suite. As
recommended by the NIST tools, every bit stream contained 20, 000 points. The
test suite reports a proportion value, which reflects the ratio of bit streams which
actually passed this particular test. The final results we obtained are shown in
Table 1. The NIST tools return a statistical result where even a true random
number generator could fail in some of the runs. We can conclude from the shown
results that the proposed RNG is a reasonably good generator.

Unclonable Lightweight Authentication Scheme 43

Table 1. NIST suite results

Test Name Proportion

Frequency 100%
Frequency within block 100%
Longest run of ones in block 95%
Cumulative sum 100%
Runs 100%
Discrete Fourier Transform 100%
Non-overlapping template matching 95%
Overlapping template matching 97.5%
Maurer’s Universal 100%
Approximate Entropy 97.5%
Serial 97.5%
Lempel-Ziv Complexity 100%

7 Implementation

The authentication scheme presented in Section 4 is implemented as shown in
Figure 2. The PUF circuit is positioned at the center of the implementation
to ensure tamper-resilience for the entire circuit. As we have verified from our
FPGA implementations of a PUF circuit, any change in the surrounding hard-
ware to the PUF circuit will result in changing the PUF’s internal variables.
We point out here that a PUF can easily protect against active side-channel
attacks. However, for passive side-channel attacks a designer might have to re-
sort to standard power balancing techniques [42,43,38]. Although effective, these
technique will incur about 200 − 400% area overhead. A cost too high for ligh-
weight implementations. Our authentication architecture runs in two different
modes of operation during the entire protocol.

11

1

1

1

1

.s b

εY,

.s a
1

1 1

1

.

r

2

2s [511:0]

PUF

a 1

1

mode

Serial Multiplier

801 Shift Register / PUF (xa)

.s [79:0]

1

1

a

εY,

Fig. 2. PUF Authentication Scheme

RNG Mode: In this mode the PUF circuit acts as a random number generator.
As explained in Section 6 the random string b ∈ {0, 1}512 is achieved using a shift
register along with the PUF circuit. This shift register is initialized with the ini-
tialization value (IV) stored in an 80-bit ROM structure. The shift register will

44 G. Hammouri et al.

be serially initialized to (IV) in RNG mode. For the remainder of the RNG op-
eration the serial input of the shift register will be fed back by the output of the
PUF. Conveniently enough, we do not need to store the entire random string b
generated by the PUF. As b is generated 1 bit at a time, we can serially compute
the inner product b · s2, and at the same time serially transmit b to the reader.
It is important to point out that in the RNG mode, the system will not be able
to detect any active side-channel attacks. With a stream of random bits, the at-
tacker’s effect is gone undetectable. This will not be a major problem since any
invasive attack on the circuit will permanently affect the PUF circuit. Therefore,
as soon as the circuit is back to PUF mode, the attack can be detected. In the case
where more gates are dedicated for security purposes, two separate PUF circuits
can be used for authentication and random number generation.

PUF Mode: In this mode we perform the serial field multiplication xa which
will be the input of the PUF. The hardware component Shift Register/Serial
Multiplier shown in Figure 2 is used for this multiplication. The serial input of
this shift register comes from the input a which is serially received. The field
multiplication is realized through an LFSR serial multiplier, and is carried out in
parallel with the inner product operation a·s1. These two operations will operate
serially and will take about 80 cycles. The result of the field multiplication xa
is fed to the PUF as the challenge input. The response bit of the PUF is then
XOR-ed with the inner products a · s1 and b · s2. Finally, the response of the
entire circuit r is transmitted to the reader. Note from the last section that the
ratio of metastability was about 15%. This matches the overall desired noise.
Therefore, there will be no need for an added noise parameter ε.

To estimate the gate count, HB+PUF was developed into Verilog modules
and synthesized using the Synopsys Design Compiler. For the synthesis we used
the TSMC 0.13 μm ASIC library. The circuit components and their gate count
are explained as follows:

-ROM Structure: The IV for the RNG and the private keys s1 and s2 are
stored inside the hardware and they are unique for each tag. Instead of utilizing
flip-flops to store these values, we designed a ROM structure for low-area storage.
To minimize the area usage, we used a design similar to a look-up table. Separate
architectures are needed to store s1, s2 and IV. Since s2 is 512 bits, s1 and IV
are 80 bits, we have 672 bits of total ROM area. Synthesis results show that 110
gates are required for this storage.
-PUF Circuit: In our authentication scheme, we utilize an 80-bit PUF circuit.
As pointed out in Section 2 we use the tristate PUF implementation presented in
[9]. This particular PUF implementation is of interest due to its low-power and
low-area features. When we used the tristate PUF design our synthesis results
showed the area of the PUF to be 350 gates. However, with custom circuit design,
where each tristate buffer utilizes about a single gate, this number was reduced
to 160 gates.
-Shift register/Serial Multiplier: The shift register has a total size of 80
bits. The structure also contains a number of XOR gates used to achieve the

Unclonable Lightweight Authentication Scheme 45

field multiplication. In addition, 2-to-1 multiplexers are used to decide which
inputs feed the individual flip-flops of the register. Synthesis results show that a
total equivalent of 500 gates is needed for this structure.
-Serial inner products: The AND and XOR components shown in Figure 2
are utilized for serial inner product operations. The boxes labeled as s2 · b and
s1 · a are single flip-flops storing the results of the inner products s2 · b and s1 · a
of Protocol 1. They work as accumulators. In each clock cycle, one bit of s2 and
one bit of b pass through an AND gate and the result is XORed with the value
in the accumulator flip-flop. The same procedure is repeated for s1 and a. In the
end, the results in the accumulator registers s2 · b and s1 · a are XOR-ed with
the result of the PUFY,ε(xa) and the result is sent to the output as r. The area
for these operations is estimated at 50 gates.
-Control logic: The control logic for this scheme is quite simple. For the ROM
structures storing s1 and s2, a single 9-bit counter is needed. Since the inner
products for s1 and s2 are operated in parallel, a single counter is enough for
both operations. For the RNG a 3-bit counter is needed to track the XOR-ing of
each 8 consecutive bits. This can be interleaved with the inner product operation
s2 ·b. The architecture has only 2 modes of operation. Therefore, a single flip-flop
would suffice to track the state of the hardware. The total area of the control
block is estimated at about 150 gates.

The total area of the authentication hardware is 970 gates. This is below 1K
gates, a typical threshold for the RFID’s footprint allotted for security [37].

8 Conclusion

In this paper we presented a tamper-resilient and provably secure authentica-
tion scheme requiring less than 1K gates. We proved the security of our scheme
against active attacks, and against known man-in-the-middle attacks. Moreover,
the proposed scheme seems resilient against a more general class of man-in-the-
middle attacks. We also demonstrated an efficient method for generating the
random bits needed for our proposed protocol. This was done without incurring
significant overhead to the hardware, and by reutilizing parts of the authentica-
tion circuit.

Our work here opens an interesting avenue for exploring cryptographic algo-
rithms naturally supported by the hardware. For future work one might hope
to explore modifications to the current protocol which might yield provable se-
curity against man-in-the-middle attacks. This problem has been addressed by
multiple proposals, but no proof has been provided.

References

1. Hammouri, G., Sunar, B.: PUF-HB: A Tamper-Resilient HB based Authentication
Protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

2. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Mathematical
Programming 71(2), 221–245 (1995)

46 G. Hammouri et al.

3. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill, New York (1968)
4. Berlekamp, E.R., Mceliece, R.J., van Tilborg, H.C.: On the Inherent Intractability

of Certain Coding Problems. IEEE Transactions on Information Theory 24(3),
384–386 (1978)

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: Proceedings of STOC 2000, pp. 435–440. ACM,
New York (2000)

6. Bogdanov, A., Leander, G., Knudsen, L.R., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT - An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Bringer, J., Chabanne, H., Dottax, E.: HB++: a Lightweight Authentication Proto-
col Secure against Some Attacks. In: Proceedings of SECPERU 2006, Washington,
DC, USA, pp. 28–33. IEEE Computer Society, Los Alamitos (2006)

8. Duc, D., Kim, K.: Securing HB+ Against GRS Man-in-the-Middle Attack. In:
Institute of Electronics, Information and Communication Engineers, Symposium
on Cryptography and Information Security, January, pp. 23–26 (2007)

9. Ozturk, E., Hammouri, G., Sunar, B.: Physical Unclonable Function with Tristate
Buffers. In: Proceedings of ISCAS 2008 (2008)

10. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey of
Lightweight Cryptography Implementations. IEEE Design & Test of Computers –
Special Issue on Secure ICs for Secure Embedded Computing 24(6), 522–533 (2007)

11. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID
Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156. Springer, Heidelberg (2004)

12. Fossorier, M., Mihaljevic, M., Imai, H., Cui, Y., Matsuura, K.: A Novel Algorithm
for Solving the LPN Problem and its Application to Security Evaluation of the HB
Protocol for RFID Authentication. In: Proc. of INDOCRYPT, vol. 6, pp. 48–62

13. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of CCS 2002, pp. 148–160. ACM, New York (2002)

14. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Delay-based Circuit Authenti-
cation and Applications. In: Proceedings of the 2003 ACM Symposium on Applied
Computing, pp. 294–301 (2003)

15. Gilbert, H., Robshaw, M., Seurin, Y.: HB#: Increasing the Security and Efficiency
of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378.
Springer, Heidelberg (2008)

16. Gilbert, H., Robshaw, M., Sibert, H.: An Active Attack Against HB+ A Provably
Secure Lightweight Authentication Protocol. IEE Electronic Letters 41, 1169–1170
(2005)

17. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., et al.: HIGHT: A New Block Cipher Suitable for Low-Resource Device.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

18. Ozturk, E., Hammouri, G., Sunar, B.: Towards Robust Low Cost Authentication
for Pervasive Devices. In: PERCOM 2008, Hong Kong, March 17-21 (2008)

19. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

20. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

Unclonable Lightweight Authentication Scheme 47

21. Kaps, J., Gaubatz, G., Sunar, B.: Cryptography on a Speck of Dust. Com-
puter 40(2), 38–44 (2007)

22. Kaps, J.-P., Sunar, B.: Energy Comparison of AES and SHA-1 for Ubiquitous
Computing. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y.,
Lee, D.C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS,
vol. 4097, pp. 372–381. Springer, Heidelberg (2006)

23. Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB+ Pro-
tocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87.
Springer, Heidelberg (2006)

24. Kearns, M.: Efficient Noise-Tolerant Learning from Statistical Queries. In: Pro-
ceedings of STOC 1993, pp. 392–401. ACM Press, New York (1993)

25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

27. Kulikowski, K.J., Karpovsky, M.G., Taubin, A.: Dpa on faulty cryptographic hard-
ware and countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 211–222. Springer, Heidelberg (2006)

28. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, p. 196. Springer, Heidelberg
(2007)

29. Lee, J.W., Daihyun, L., Gassend, B., Samd, G.E., van Dijk, M., Devadas, S.: A
technique to build a secret key in integrated circuits for identification and authen-
tication applications. In: Symposium of VLSI Circuits, pp. 176–179 (2004)

30. Levieil, E., Fouque, P.: An Improved LPN Algorithm. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, p. 348. Springer, Heidelberg (2006)

31. Lim, C., Korkishko, T.: mCrypton-A Lightweight Block Cipher for Security of
Low-cost RFID Tags and Sensors. In: WISA, vol. 5, pp. 243–258

32. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205
(2005)

33. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subsetsum problem. In: APPROXRANDOM (2005)

34. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Comput. Networks 51(9), 2262–2267 (2007)

35. O’Donnell, C.W., Suh, G.E., Devadas, S.: Puf-based random number generation.
Number 481 (November 2004)

36. Posch, R.: Protecting Devices by Active Coating. Journal of Universal Computer
Science 4(7), 652–668 (1998)

37. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Ligh-Weight Crypto
Algorithms for RFID. In: Proceedings of ISCAS 2007, pp. 1843–1846 (2007)

38. Regazzoni, F., Badel, S., Eisenbarth, T., Grobschadl, J., Poschmann, A., Toprak,
Z., Macchetti, M., Pozzi, L., Paar, C., Leblebici, Y., et al.: A Simulation-Based
Methodology for Evaluating the DPA-Resistance of Cryptographic Functional
Units with Application to CMOS and MCML Technologies. In: IC-SAMOS 2007,
pp. 209–214 (2007)

39. Roos, C., Terlaky, T., Vial, J.-P.: Interior Point Methods for Linear Optimization,
2nd edn. Springer, Heidelberg (2005)

48 G. Hammouri et al.

40. Skoric, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic Analysis
of Coating PUFs. Cryptology ePrint Archive, Report 2006/101 (2006)

41. Standaert, F., Piret, G., Gershenfeld, N., Quisquater, J.: SEA: A Scalable En-
cryption Algorithm for Small Embedded Applications. In: Workshop on RFID and
Lightweight Crypto, Graz, Austria (2005)

42. Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on
smart cards. In: Proceedings of ESSCIRC 2002, pp. 403–406 (2002)

43. Toprak, Z., Leblebici, Y.: Low-power current mode logic for improved DPA-
resistance in embedded systems. In: ISCAS 2005, pp. 1059–1062 (2005)

44. Tuyls, P., Skoric, B.: Secret Key Generation from Classical Physics: Physical Un-
cloneable Functions. Philips Research Book Series. Springer, Heidelberg (2006)

Appendix A

Proof of Theorem 1

Proof. The basic operation of A′ is to map a given τ = (k+, s+
1 , s+

2 , ε+, u+)
characterizing the HB+ tag and reader to σ = (k, s1, s2, x, Y, εp, ε, u) used to
characterize an HB+PUF tag and reader. Note that all the variables in the HB+

protocol are still used in the same manner in the HB+PUF protocol. Therefore
we can create σ+ =

(
k = k+, s1 = s+

1 , s2 = s+
2 , x, Y, ε = ε+, εp = 0, u = u+

)
. The

variable x is chosen randomly to be any string in {0, 1}n1. The (n1+1) real vector
Y is chosen such that yi ∈ N(0, 1). A′ runs as follows: It initializes A and allows it
to carry its communication with T +

τ . In particular, A′ passe the vector b sent by
T +

τ to A which will reply with the vector a. Again A passes a back to T +
τ . Finally,

when T +
τ returns its response z, A′ returns ẑ = z⊕PUFY,x,0(a) to A. The same

step is followed for all q authentication rounds between T +
τ and A. When A′

wants to authenticate itself to R+
τ , it again runs A in its authentication phase. A

will start by sending the radnom string b(i). A′ will pass the string directly to R+
τ

which will respond with the vector a(i). A′ passes a(i) back to A. Finally, when
A returns its response z(i), A′ returns ẑ(i) = z(i) ⊕ PUFY,x,0(a(i)) to R+

τ . The
algorithm A′ repeats these steps for all k rounds of the authentication session,
such that i = 1 . . . k.

To see why this will actually work, notice that in the first q rounds A is getting
the response ẑ which is effectively responses from a tag Tσ+ . This means that
at the end of the q authentication sessions A will have effectively communicated
with Tσ+ . In the authentication phase, when A′ tries to authenticate itself to
R+

τ , it uses the algorithm A which will be trying to authenticate itself to Rσ+ .
Assuming that A will succeed in impersonating Tσ+ with probability larger than
δ, then the responses returned by A which are z(i) will match the responses of
an honest tag with probability larger than δ. However, this immediately implies
that the responses returned by A′ to R+

τ which are ẑ(i) and which differ from
z(i) with the term PUFY,x,0(a(i)) will match the responses of an honest tag with
probability larger than δ. Therefore, A′ should also succeed in impersonating a
tag T +

τ with probability larger than δ.

	Unclonable Lightweight Authentication Scheme
	Introduction
	PUF
	LPN-Based Authentication Protocols
	New Authentication Family: HB+PUF
	Security Analysis
	PUF-Based RNG
	Implementation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

