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Abstract. More and more customers are outsourcing data storage to remote 
archive service providers that are responsible for properly preserving the data. 
As such, it has become crucial for an archive service to be capable of providing 
evidence to demonstrate the integrity of data for which it is responsible, from 
the time it receives the data until the expiration of the archival period. Pairing-
based provable data integrity (PDI) scheme is proposed that enables not only 
the customer but also a third-party verifier to check remote data integrity. This 
PDI scheme is provably secure and efficient. Compared to the best-known prior 
art, our experiments under defined conditions show that our PDI scheme works 
50 times faster in fingerprinting the data, and the resulting fingerprints are 30 
times smaller in size. 
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1   Introduction 

Data storage outsourcing is a current trend on the Internet, in which data is stored 
with a global archive service instead of using one’s own local storage. Internet-based 
online archive services are now providing their end users, including individual 
customers and businesses, huge amounts of storage space. For example, Apple’s 
iDisk [1] provides 10 GB of online storage space to each .Mac member. Amazon 
Simple Storage Service (Amazon S3) [2] goes even further. It provides a web services 
interface that can be used to store and retrieve an unlimited amount of data, with fees 
metered in GB-months and data-transfer amounts.  

Yet with more and more archive services available to store customers’ digital 
assets such as photos, videos, emails, and file system backups, the security of the 
services that retain this tremendous amount of data becomes critical. As summarized 
in the IETF’s “Long-Term Archive Service Requirements” (RFC 4810) [3], security 
requirements for archive services must include non-repudiation of data existence, 
integrity, and origin. Of these requirements, we will herein focus on data integrity. 
Various news reports have already revealed that even the most popular service 
providers may damage customers’ data [4], such as emails or photos, which may have 
great personal value. Indeed, archive services are vulnerable to three classes of data 
integrity threats, namely latent faults (e.g., caused by a bit error in the storage 
medium), correlated faults (e.g., caused by a lack of geographic location diversity), 
and recovery faults (e.g., caused by improperly debugged procedures) [4]. Thus, 
archive service customers, in making the decision to outsource particular data, must 
be able to evaluate the risk of losing that data. 
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One solution is to empower the customers with tools that can help them 
periodically conduct integrity checks of their data. Another solution, as both Shah et 
al. [4] and Ateniese et al. [5] proposed, is to introduce a third-party verifier to whom 
the customers could delegate the periodic task of checking data integrity. More 
interestingly, the third-party verifier, who has expertise and capabilities that the 
customers do not, can act as an external auditor of the archive service providers. He 
can periodically check the integrity of all the data stored with the archive service 
providers and then release an audit report. Based on the audit report, customers can 
evaluate the risks associated with any particular archive service provider before they 
decide to rely on its service. The audit report may also be beneficial to the archive 
service provider. A positive audit report from a third party may assist the archive 
service provider in obtaining a favorable insurance rate [4]. 

It is therefore a must to develop tools for customers, the third-party verifier, and 
the archive service provider, such that the archive service provider can prove the 
integrity of data for which it is responsible, from the time it receives the data until the 
expiration of the archival period [3]. 

1.1   Related Work 

There is a simple solution to tackle the data integrity issue. Initially, the data source 
divides the data into multiple fragments and for each fragment pre-computes a 
message authentication code (MAC). Whenever a verifier, be it the data source or a 
third party, needs to check data integrity, he retrieves from the archive service 
provider a number of randomly selected fragments and re-computes the MAC of each 
fragment for comparison. This simple solution has a drawback that its communication 
complexity is linear with respect to the queried data size. Moreover, in the case of a 
third-party verifier, sending user data to the verifier is prohibitive because it violates 
the data source’s privacy. To avoid retrieving data from the archive service provider, 
one may improve this simple solution by choosing multiple secret keys and pre-
computing multiple keyed-hash MACs for the data. Thus the verifier can each time 
reveal a secret key to the archive service provider and ask for a fresh keyed-hash 
MAC for comparison. However, in this method, the number of times a particular data 
item can be verified is limited by the number of secret keys that must be fixed a 
priori. When all possible secret keys are exhausted, it is then necessary to retrieve 
data from the archive service provider in order to compute new MACs. 

Golle et al. [6] proposed a scheme to verify data storage commitment, a concept 
that is weaker than integrity. The drawback to their proposal is that the verifier’s 
public key is about twice as large as the data file. 

Juels et al. [7] proposed to verify data retrievability, a concept that is similar to 
integrity, by first encrypting the data file then embedding disguised blocks (so-called 
sentinels) in the ciphertext. One drawback to their proposal is that it is not data format 
independent, i.e., only encrypted data files can be handled. Hence their proposal is not 
applicable to a general archive system. Another drawback is that it allows only a 
limited number of challenges on the data files, which is determined by the number of 
sentinels embedded at the preprocessing phase. 
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Schwarz et al. [8] proposed to verify data integrity using an algebraic signature. 
The drawback to their proposal is that the communication complexity is linear with 
respect to the queried data size. In addition, the security of their proposal is not 
proven and remains in question. 

Deswarte et al. [9] and Filho et al. [10] proposed to verify data integrity using an 
RSA-based hash function. Their proposals have the drawback that the archive service 
provider has to exponentiate the entire data file. As a reference, given a 2048-bit RSA 
modulus, MIRACL library v5.3.1 [11] reports that one modular exponentiation with a 
2048-bit exponent takes 21.8 milliseconds on an Intel Core2 Quad 2.66 GHz 
processor1. Thus it would take 5715 seconds to generate one integrity proof for a 
merely 64-MB data file. In addition, the security of their proposals remains in 
question. There is no clear security reduction to the RSA problem or any well-known 
variant [7]. 

Further to [9] and [10], Sebe et al. [12] proposed to verify data integrity by first 
fragmenting the data, fingerprinting each fragment, and then using an RSA-based 
hash function on the fragments. Their proposal does not require the exponentiation of 
the entire file. However, the verifier has to have a local copy of the fingerprints, 
whose size is linear to the number of fragments. In addition, the verifier must not be a 
third party. Otherwise the secret information of the data source is divulged. 

Yamamoto et al. [13] proposed to verify data integrity through batch verification of 
homomorphic hash functions on randomly selected fragments of data. The drawback 
to their proposal is that the verifier has to have a local copy of the hash values, whose 
size is linear to the number of fragments. 

Shah et al. [4] proposed allowing a third-party verifier by first encrypting the data 
then sending a keyed hash of the encrypted data to the verifier. One drawback to their 
proposal is that the number of times a particular data item can be verified is limited by 
the number of secret keys that must be fixed beforehand. Another drawback is that 
their proposal is not data format independent. 

Ateniese et al. [5] proposed an S-PDP scheme (where “S” stands for “sampling”), 
and an S-PDP-PV scheme (where “PV” stands for “public verifiability”) that allows a 
third-party verifier. Both schemes verify data integrity by first fragmenting the data, 
then fingerprinting each fragment. The data integrity proof is computed, exploiting 
the homomorphism of the fingerprints (so-called homomorphic verifiable tags). Both 
schemes are provably secure and data format independent. They do not require a local 
copy of the data or the fingerprints and do not confine in advance the maximum 
number of queries. This sampling strategy introduced by Ateniese et al. is particularly 
beneficial in the third-party auditing scenario, where the archive service provider 
needs to prove the integrity of huge volumes of data, e.g., 1 TB of data, to an auditor. 
Sampling releases the archive service provider from having to access its entire 
storage, thus largely reducing the required disk I/O overhead. In addition, Ateniese et 
al. proposed to simplify the S-PDP scheme which yields E-PDP scheme. The E-PDP 
scheme with weaker security guarantees, i.e., only guarantees possession of the sum 
of the file blocks, is alleged more efficient than the S-PDP scheme [5]. 

                                                           
1 Throughout this paper, MIRACL reference speeds are always measured using only 1 of the 

processor’s 4 CPU cores in Windows Vista 32-bit edition. 
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Unfortunately, both the S-PDP-PV scheme and the E-PDP scheme are 
unsatisfactory. The S-PDP-PV scheme has the drawbacks that it generates fingerprints 
that are too large in size and the time it takes to generate the fingerprints is too long as 
well. As a concrete example, given a 2048-bit RSA modulus, the RSA public key e  is 
chosen to be a 6168 bits prime2. The S-PDP-PV scheme mandates that each fragment 
be less than / 2e , otherwise the S-PDP-PV scheme is not provably secure. So a 64-
MB data file would be divided into at least 87,056 fragments, each of which has a 
2048-bit-long fingerprint. Thus, the combined size of all the fingerprints is about 21.2 
MB. Further, given a 2048-bit RSA modulus, MIRACL library v5.3.1 reports that one 
RSA decryption takes 7 milliseconds. Since generating one fingerprint is 
computationally expensive than doing two RSA decryptions, it would take the data 
source at least 1218 seconds to fingerprint all the fragments of the 64-MB file. 

In terms of the E-PDP scheme, Ateniese et al. [5] argued that its weaker security 
guarantee is of no practical issue. However, in Section 4.2 we will prove that the  
E-PDP scheme has no efficiency gain in practice. 

To summarize, it seems rational to aim for a third-party-verifier-friendly data 
integrity proof protocol that satisfies the following four requirements: 

1. The verifier does not need a copy of the data or fingerprints. 
2. It is provably secure. 
3. It is data format independent. 
4. The number of allowable queries is not limited in advance. 

In addition, an efficient data integrity proof protocol should take the following five 
factors into consideration: 

1. The size of the public key 
2. The computation cost for fingerprinting the data 
3. The size of the fingerprints 
4. The computation cost due to each protocol instance 
5. The amount of communication required by each protocol instance 

From this viewpoint, the S-PDP-PV scheme is the only solution we are aware of 
that achieves public verifiability, but it is inefficient due to its excessively high 
storage and computation consumption. 

 

Our Contributions 

We propose a pairing-based provable data integrity (PDI) scheme that is third-party-
verifier-friendly and efficient, i.e., it satisfies all the nine requirements above. 

Moreover, we implement the PDI scheme to demonstrate its efficiency. In 
particular, we show experimentally that it takes the PDI scheme only 22.4 seconds to 
fingerprint one 64-MB file and the fingerprints collectively consume 713 KB. 
Compared to the S-PDP-PV scheme (under defined conditions above), the PDI 
scheme is more than 50 times faster in generating the fingerprints and the fingerprints 
themselves are 30 times smaller in size. 

                                                           
2 Here we choose a 6168 bits prime e for the S-PDP-PV scheme because it would result in data 

integrity proof that consumes 771 bytes. We will explain and justify this choice in Section 5. 
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2   Notations and Number-Theoretic Preliminaries 

We first define some notations and review a few number-theoretic preliminaries. 

2.1   Notations 

If S  is a finite set, 
R

x ∈ S  denotes that x  is chosen from S  uniformly at random. 

For two algorithms ()A ⋅  and ()B ⋅ , ( ; ) ( || )( )x y A B ς←  denotes the joint execution of 

()A ⋅  and ()B ⋅  on the same input string ς  and the same random tape, and ()A ⋅ ’s 

output is assigned to x  and ()B ⋅ ’s to y . Let ()Ω ⋅  be an arbitrary Boolean predicate, 

i.e., a function that upon input of some string ς  outputs either TRUE  or FALSE . 

By ( ) : ( )A xς ς← Ω  we denote that ( )ςΩ  is TRUE  after ς  was obtained by running 

algorithm ()A ⋅  on input x . 

A function ( )adv κ  is said to be negligible (in κ ) if for every positive polynomial 

()p ⋅  and sufficiently large κ , ( ) 1/ ( )adv pκ κ< . 

2.2   Number-Theoretic Preliminaries  

Throughout this paper, we use the traditional multiplicative group notation, instead of 
the additive notation often used in elliptic curve settings. 

Let 
1 1

g=G  and 
2 2

g=G  be two finite cyclic groups with additional group 

=G g  such that 
1 2

p= = =GG G  where p  is a large prime. Bilinear map 

1 2
:e × → GG G  is a function, such that it is: bilinear – for all 

1 1
h ∈ G , 

2 2
h ∈ G , 

and for all ,
p

a b ∈ Z , 
1 2 1 2

( , ) ( , )a b abe h h e h h= ; non-degenerate – 
1 1
h∃ ∈ G , 

2 2
h∃ ∈ G  

such that 
1 2

( , )e h h ≠ I  where I  is the identity element of G ; and computable – 

there exists an efficient algorithm for computing e . 
We suppose there is a setup algorithm ()Setup ⋅  that, upon input of security 

parameter 1κ , outputs the above settings of the bilinear map and writes this as 

1 2 1 2
( , , , , , , ) (1 )p g g e Setup κ←GG G . We omit g  from the expression as it is easy to 

see that 
1 2

( , )e g g=g . 

q-SDH Assumption. For all probabilistic polynomial time (p.p.t.) adversaries A , 

( )adv κ  defined as follows is a negligible function: 

2

1 2 1 2

1/( )
2 2 2 1

( , , , , , , ) (1 ); ;

Pr ( , ) ( , , , ) : ( )
q

R p

a a a a x
p

p g g e Setup a

x y g g g x y g adv

κ

κ+

← ∈
⎡ ⎤← ∈ ∧ = =⎢ ⎥⎣ ⎦

GG G Z
ZA

 

The q-SDH assumption has been shown to hold in generic bilinear groups by 
Boneh et al. [14]. 
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KEA1 Assumption. For any p.p.t. adversaries A , there exists a p.p.t. extractor E , 

such that ( )adv κ  defined as follows is a negligible function: 

1 2 1 2 1

1

( , , , , , , ) (1 ); ; ;

Pr ( , ; ) ( || )( ) : ( )
R p R

x x

p g g e Setup x h

Y C h Y Y C C h adv

κ

αα κ

← ∈ ∈
⎡ ⎤← ∈ ∧ = ∧ ≠ =⎢ ⎥⎣ ⎦

G

E

G G G
G

Z
A

 

Informally, the KEA1 assumption says that the only way any adversary can output 
xY C=  from xh  is to pick some 

p
α ∈ Z , let C hα=  and let ( )xY h α= . 

q-KEA Assumption. For any p.p.t. adversaries A , there exists a p.p.t. extractor E , 

such that ( )adv κ  defined as follows is a negligible function: 

{ }
{ } { }

1 2 1 2 1

1

( , , , , , , ) (1 ); ; ;

Pr ( , ; ) ( || )( ) : ) ( )j

q
R p j R

x x
j j j

j

p g g e Setup x h

Y C h Y Y C C h adv

κ

αα κ

← ∈ ∈
⎡ ⎤
⎢ ⎥← ∈ ∧ = ∧ ≠ =⎢ ⎥
⎣ ⎦

∏

G

E

G G G

G

Z

A
 

In the example case of 2q = , the 2-KEA assumption (referred to as KEA3 
assumption in [15] and XKEA assumption in [16]), says that the only way any 

adversary can output xY C=  from 
1
xh  and 

2
xh  is to pick some 2

1 2
( , )

p
α α ∈ Z , let 

1 2

1 2
C h hα α=  and let 1 2

1 2
( ) ( )x xY h hα α= . 

It is proved in [15] that the KEA3 assumption is a natural extension of KEA1. 
Following that, the q-KEA assumption is trivially provable as a natural extension of 
the KEA1 assumption as well. 

The KEA1 assumption has been shown, by Abe et al. [16] and also by Dent [17] 
independently, to hold in generic (bilinear) groups. In [16], Abe et al. further proved 
Lemma 1 as shown below. 

Lemma 1. Under the KEA1 assumption, for any p.p.t. adversaries A , there exists a 

p.p.t. extractor E , such that ( )adv κ  defined as follows is a negligible function: 

{ }
{ } { } { }

1 2

2
1 2 1 2 1 2 1

1 2 1 2

1 1 2

( , , , , , , ) (1 ); ; , ;

( , ; , ) ( || )( , ) :
Pr ( )

                    ( ), 1,2, ,i i

R p R

x x
i i i i

x
i i i i

p g g e Setup x h h

Y C h h
adv

i Y Y C C h h i n

κ

α α

α α
κ

← ∈ ∈
⎡ ⎤←⎢ ⎥ =⎢ ⎥∃ ∈ ∧ = ∧ ≠ =⎢ ⎥⎣ ⎦

G

E

G G G

G …

Z
A  

Lemma 2, below, is a natural extension of Lemma 1. The proof technique for Lemma 
1 applies to Lemma 2 as well. 

Lemma 2. Under the KEA1 assumption, for any p.p.t. adversaries A , there exists a 

p.p.t. extractor E , such that ( )adv κ  defined as follows is a negligible function: 

{ }
{ } { } { } { }

1 2 1 2 1

1

( , , , , , , ) (1 ); ; ;

( , ; ) ( || )( ) :
Pr ( )

                     ( ), 1,2, ,ij

q
R p j R

x
i i ij j

x
i i i i j

j

p g g e Setup x h

Y C h
adv

i Y Y C C h i n

κ

α

α
κ

← ∈ ∈
⎡ ⎤←⎢ ⎥
⎢ ⎥ =⎢ ⎥∃ ∈ ∧ = ∧ ≠ =
⎢ ⎥⎣ ⎦

∏

G

E

G G G

G …

Z
A  
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3   Provable Data Integrity Scheme 

We start with the definition and description of our provable data integrity (PDI) 
scheme, followed by its security analysis, discussion, and performance evaluation. 

3.1   Definition 

A PDI scheme is a collection of four algorithms, ()KeyGen ⋅ , ()Fingerprint ⋅ , 

()GDIP ⋅ , and ()VDIP ⋅ . 

( , ) (1 )pk sk KeyGen κ← . This probabilistic algorithm takes as input security 

parameter 1κ , and returns public key pk  and private key sk . 

( , ) ( , , )k
k i k
z T Fingerprint pk sk← F . This algorithm takes as input public key pk , 

private key sk , and a file 
k
F . Let 

k
FN  denote 

k
F ’s file reference, which is, for 

example, the file name of 
k
F  plus a unique serial number. The file 

k
F  is an ordered 

collection of super-blocks k
i
M  while each super-block k

i
M  is an ordered collection of 

file blocks ik
j
m . This algorithm returns a file key 

k
z  for 

k
F  and the fingerprint k

i
T  

for k
i
M . There is a one-to-one mapping between 

k
z  and 

k
FN . The length of the file 

block and the number of file blocks that one super-block can aggregate are 
determined by certain parameters of pk . 

V ( , , ,T, )GDIP pk FN chal← F . This algorithm takes as input public key pk , a 

file F  that is an ordered collection of super-blocks 
i
M , the file reference FN  of 

F , an ordered collection of fingerprints { }T
i
T=  for { }iM , and a challenge chal . 

It returns a data integrity proof V . 
{TRUE,FALSE} ( , , , ,V)VDIP pk FN z chal← . This algorithm takes as input 

public key pk , a file reference FN , a file key z , a challenge chal , and the data 
integrity proof V . It returns TRUE  if the integrity of the file F  determined by 
FN  is verified as correct, or FALSE  otherwise. 

Based on the PDI scheme, a PDI system could be easily constructed in three 
phases, Setup, Store, and Challenge. 

Setup: A client’s public key and private key are initialized by invoking ()KeyGen ⋅ . 

The client publishes his public key. 

Store: A client in possession of a file runs ()Fingerprint ⋅  to fingerprint the file and 

stores the file and its fingerprints with the server. The client deletes the file and the 
fingerprints from his local storage. 

Challenge: Any one, a third party or the client himself, can verify integrity of the 
client’s file by invoking ()VDIP ⋅ , which requires to challenge the server and the 
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server executing ()GDIP ⋅  to respond. It is notable that this phase can be executed an 

unlimited number of times. 

3.2   The PDI Scheme 

Now we start to depict our PDI scheme. For simplicity, we regard 

1 2 1 2
( , , , , , , ) (1 )p g g e Setup κ←GG G  and pseudo random functions *

1
: {0,1}

p
prf → Z , 

*
2 1
: {0,1}prf → G , *

3 2
( ) : {0,1}prf φφ → Z  as system parameters. 

KeyGen(·): Select 3( , , )
R p

sk x s t= ∈ Z . Compute 
2
xY g= , s

s
Y Y= , 

2 2
s

s
g g= , 

1 ( , )

1

prf j t

j
h g= , and s

j j
S h= , 1,2, ,

B
j n= … . Choose a positive integer loglen p<  

that determines the length in bits of each file block and another positive integer 
B
n  

which determines the number of file blocks that one super-block contains. 

Finally, output ( , , )sk x s t=  and { }( )2
, , , , , ,
s s j j B

pk Y Y g h S len n= . 

Given pk , a file F  with file reference FN  can be divided into /N Flen len⎡ ⎤= ⎢ ⎥⎢ ⎥  

file blocks 
i
m , each of which is len  bits long, where Flen  is the length of F  in 

bits. And every 
B
n  consecutive file blocks constitute one super-block. In other words, 

the file F  is logically divided into N  file blocks and organized into /
SB B
n N n⎡ ⎤= ⎢ ⎥⎢ ⎥  

super-blocks. Notice that the file F  will be logically padded with zero in the case 

that Flen N len< ⋅  or ( )
SB B

Flen n n len< ⋅ ⋅ . 

Fingerprint(·): Upon input of ( , , )sk x s t= , { }( )2
, , , , , ,
s s j j B

pk Y Y g h S len n= , and a 

file F  with file reference FN , select 
R p

z ∈ Z  as F ’s file key and execute the 

following for each super-block 
i
M  of F , 1,2, ,

SB
i n= … : 

a) Compute a locator 
2 1
( , , )

i
W prf i z FN= ∈ G . 

b) Compute 
1 ( 1)

1

( , )
B

B

n

i i n j p
j

R prf j t m − ⋅ +
=

= ⋅ ∈∑ Z  and 
1

1 1
( )iR x z

i i
T W g += ⋅ ∈ G . 

Finally, output the file key z  and the fingerprints { } 1
T SBn

i
T= ∈ G . 

Notice that ( 1)

1 1

1
1

( ) ( )
B

i n ji B

n
mR x z x z

i i i j
j

T W g W h − ⋅ ++ +

=

= ⋅ = ⋅∏  for all 1,2, ,
SB

i n= … . 

GDIP(·): Upon input of { }( )2
, , , , , ,
s s j j B

pk Y Y g h S len n= ; a file F  with file 

reference FN , file key z , and fingerprints { }T
i
T= ; 

1 2
( , , , )chal l ψ γ γ= , where 

1 lψ≤ ≤  and 2
1 2

( , )
R p

γ γ ∈ Z ; execute the following: 
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a) Compute / 1lφ ψ⎡ ⎤= +⎢ ⎥⎢ ⎥ . 

b) For each 1,2, ,k ψ= …  execute the following atomic proof procedure once 
(i.e., repeat the atomic proof procedure independently ψ  times). 

1) Consider there to be 2φΦ =  buckets in logic. For each bucket, initialize a 

packed fingerprint 
v
T =O , and packed file blocks 0

vj
e = , where O  is 

the identity of 
1

G , 0,1, , 1v = Φ−… , 1,2, ,
B

j n= … . 

2) For each super-block 
i
M  and its corresponding fingerprint 

i
T , randomly 

assign them into one bucket and add them to the bucket’s packed file 
blocks and packed fingerprint, respectively. Specifically, for each 

1,2, ,
SB

i n= … , conduct the following: 

i. Compute 
3 1 2
( , , )prf i k φσ γ= ∈ Z . 

ii. Compute  *  
i

T Tσ =  (i.e., compute 
i

T Tσ ⋅  and store back to Tσ ). 

iii. For each 1,2, ,
B

j n= … , compute 
( 1)

 mod
Bj i n j

e m pσ − ⋅ ++ = . 

3) Initiate a transformed fingerprint 
1k

Τ = ∈O G  and transformed file 

blocks 0
j
E = , 1,2, ,

B
j n= … . 

4) Assign each bucket a random number to randomize its packed fingerprint 
and packed file block, then add them to the transformed fingerprint and the 
transformed file blocks, respectively. Specifically, for each 

0,1, , 1v = Φ−… , conduct the following: 

i. Compute 
3 2 2
( , , )

v
a prf v k φγ= ∈ Z . 

ii. Compute  *  va

k v
TΤ = . 

iii. For each 1,2, ,
B

j n= … , compute  mod
j v vj
E a e p+ = ⋅ . 

5) Compute 
1

1

B
j

n
E

k j
j

S
=

Η = ∈∏ G  as the knowledge proof of the transformed 

file block 
k

Τ . 

Finally, output the data integrity proof ( , )
k k

Τ Η , 1,2, ,k ψ= … 3. 

VDIP(·): Upon input of { }( )2
, , , , , ,
s s j j B

pk Y Y g h S len n= ; a file reference FN ; a file 

key z ; 
1 2

( , , , )chal l ψ γ γ= , where 1 lψ≤ ≤  and 2
1 2

( , )
R p

γ γ ∈ Z ; and a data 

integrity proof 2
1

( , )
k k

Τ Η ∈ G , 1,2, ,k ψ= … ; execute the following: 

                                                           
3 The size of the data integrity proof is proportional to the number of atomic proof procedures. 

However this is of little efficiency concern in practice. See Section 5 for detailed discussion 
on this matter. 
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a) For each 1,2, ,k ψ= … , execute the following atomic verification procedure 
once (i.e., repeat the atomic verification procedure independently ψ  times). 

1) Initialize a transformed locator W
k
=O . 

2) Consider there to be 2φΦ =  buckets in logic. For each bucket, initialize a 

packed locator 
v
W =O , 0,1, , 1v = Φ−… . 

3) Re-compute the locators, randomly assign them into the buckets, and add 
them to the bucket’s packed locators. Specifically, compute 

3 1 2
( , , )prf i k φσ γ= ∈ Z  and 

2
*  ( , , )W prf i z FNσ =  for each 

1,2, ,
SB

i n= … . 

4) Assign the buckets random numbers to randomize their packed locators, 
then add them to the transformed locator. Specifically, compute 

3 2 2
( , , )

v
a prf v k φγ= ∈ Z  and W  *  va

k v
W −=  for each 0,1, , 1v = Φ−… . 

5) If 
2 2 2

( , ) ( , ) (W , )z
k k s s k s

e g e Y g e gΗ = Τ ⋅ ⋅ , the output is TRUE , otherwise 

the output is FALSE . 
()VDIP ⋅  outputs TRUE  if and only if all the atomic verification procedures 

output TRUE . 

3.3   Security of the PDI Scheme 

Informally, the security of this PDI scheme is equivalent to the nonexistence of an 
adversary that is capable, within the confines of a certain game, of forging the data 
integrity proof on the condition that at least one file block is not present. We define 
the security of the PDI scheme as an adaptive chosen-file-block game. In this model, 
the adversary A  is given a single public key. His goal is to output a data integrity 
proof. We give the adversary the power to choose all the file blocks as well as the 
super-blocks. The adversary is also given oracle access to fingerprint issuance on the 
super-blocks. 

Remote Data Integrity Game 

Setup. The challenger runs ( , ) (1 )pk sk KeyGen κ← , sends pk  to the adversary, and 

keeps sk  secret. 

Queries. The adversary A  makes fingerprint queries adaptively; it selects file blocks 
ik
j
m  that form super-block k

i
M , assigns k

i
M  to a file 

k
F  that is referenced by 

k
FN , 

and sends 
k

FN  and k
i
M  to the challenger. The challenger computes 

( , ) ( , , , )k k
k i k i
z T Fingerprint pk sk FN M← , stores 

k
z , and sends k

i
T  back to A . The 

file key 
k
z  is not revealed to the adversary at this phase. The challenger needs to 

ensure one-to-one mapping between 
k
z  and 

k
FN . One restriction on A  is that it 

must not query different super-blocks with the same indexes k  and i . Another 
restriction on A  is that the length of the file block and the number of file blocks that 
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one super-block has aggregated must comply with those being determined by the 
parameters of pk . 

Challenge. The adversary selects a file reference FN  that determines a file F . The 

file F  is an ordered collection of super-blocks 
i
M , each of which has a fingerprint 

i
T . And each super-block 

i
M  is an ordered collection of file blocks i

j
m . The 

challenger first outputs z  that is the file key of FN , then generates a challenge chal  
and asks the adversary for a data integrity proof. 

Restricted Queriesx. The adversary A  is allowed to continue querying fingerprints 
as before, except for when adding a new super-block to F  and querying the 
fingerprint for the new super-block. In other words, the adversary is not allowed to 
expand the content of F . 

Output. The adversary A  outputs a data integrity proof V . 
The adversary wins the game if TRUE ( , , , ,V)VDIP pk FN z chal← . 

Definition (Security of PDI Scheme). The PDI scheme is secure if for any p.p.t. 
adversary A  the probability that A  wins the Remote Data Integrity Game on a set of 
file blocks is negligibly close to the probability that the challenger can extract the file 
blocks by means of a knowledge extractor E . 

Theorem 1. The PDI scheme that achieves public verifiability is secure under the q-
SDH assumption and the KEA1 assumption in the random oracle model. 

4   Discussions 

4.1   Sampling for the PDI Scheme 

We can easily add the sampling strategy to the PDI scheme, yielding an S-PDI 

scheme. The S-PDI scheme in addition requires a *
4
( ) : {0,1}

SBSB n
prf n → Z  and the 

challenge will contain a third key 
3 R p

γ ∈ Z  and a positive integer 
SB
nΛ < . By 

computing 
1 4 3
i (1, )prf γ= , 

2 4 3
i (2, )prf γ= , up to 

4 3
i ( , )prf γ
Λ
= Λ , the indexes of 

Λ  randomly selected super-blocks are determined. Each atomic proof/verification 
procedure will then only deal with the super-blocks being selected. This entails no 

more than changing all 1,2, ,
SB

i n= …  in ()GDIP ⋅ and ()VDIP ⋅  to 
1 2
i , i , , ii

Λ
= … . 

Theorem 2. The S-PDI scheme that achieves public verifiability is secure under the 
q-SDH assumption and the KEA1 assumption in the random oracle model. 

4.2   Knowledge Error and Its Practical Implication 

The standard notion of proofs of knowledge as per [19], specifically, Definition 3 of 
[19], contains a knowledge error that is the probability that the verifier might accept 
even if the prover did not in fact “know” the witness. When constructing a proof of 
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knowledge system, it is the knowledge error that determines the number of necessary 
repetitions in practice. By repetition, the knowledge error could be reduced to an 
arbitrarily small amount. For example, if the knowledge error is 1/2, Γ  times of 

sequential iterations may reduce the knowledge error to 2−Γ  [20]. 
Since repetitions linearly increase the computation complexity and communication 

complexity of a proof of knowledge system, quantifying the knowledge error is a 
must before analyzing practical efficiency of a proof of knowledge scheme. However, 
this part was missing in [5] for the E-PDP, S-PDP, and S-PDP-PV schemes. 

Claim 1. The E-PDP scheme of [5] attains knowledge error no smaller than 1/2. 

Proof (Sketch). The Atomic Random Subset Test method disclosed in [18] could be 
used to construct a specific attack on the E-PDP scheme. Although both guarantee 

that congruence *

1 1

c c

i i
i i

m M M m
= =

′ = = =∑ ∑  hold, the E-PDP scheme allows a 

stronger adversary than the Atomic Random Subset Test method does. This is because 
the verifier by the Atomic Random Subset Test method receives all the file blocks 

i
m ′ , whereas, the verifier by the E-PDP scheme receives only *M . From this 

viewpoint, what the E-PDP scheme does is no more than first choosing c  file blocks 
as the full set then applying subset test on the full set itself. As per Lemma 3.14 of 
[18], this allows for knowledge error 1/2.                                                                    □ 

Recall that in [5] it was shown that a challenge on 460c =  randomly selected file 
blocks can reach a detection probability of 99.02% in the case of failure of 1% of the 
file blocks. However, calculating this probability has a precondition, i.e., all the c  file 
blocks must be correctly possessed by the archive service with overwhelming 
probability. If with probability 1/2 that at least one of the c  file blocks is incorrect, 
the E-PDP scheme has to be iterated in practice. For instance, 15Γ =  reiterations 

reduce the knowledge error to 152− , i.e., the probability that at least one of the c  file 

blocks is incorrect is 152− . Thus the overall detection probability can reach 
15(1 2 )* 99.02% 99%−− > . As the consequence, both the computation complexity 

and the communication complexity of the E-PDP scheme would be Γ  times larger in 
practice. 

Claim 2. The S-PDP scheme (also the S-PDP-PV scheme) of [5] attains knowledge 

error no smaller than 2 l−  for each file block, where l  determines the bit length of the 

coefficients 
i
a ’s. 

Proof (Sketch). Very briefly, the Small Exponent Test method disclosed in [18] 
could be used to construct a specific attack on the S-PDP scheme.                             □ 

                                                           
4 Lemma 3.1 of [18] is originally proved over a finite cyclic group G of prime order p. It’s not 

hard to generalize the proof for Lemma 3.1 to the case of a finite cyclic group of composite 
order p’q’ regardless of whether p’q’ is available to the adversary or not, e.g., G=QR(N). 
Theorem 3.3 of [BRG 98] can be generalized to work on QR(N) as well. 
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Claim 3. The PDI scheme attains knowledge error no smaller than 2 l−  for each file 
block. 

Proof (Sketch). Very briefly, the atomic proof procedure and the atomic verification 
procedure of the PDI scheme are in principle reusing the Bucket Test method, as per 
the findings of [18].                                                                                                      □ 

Claim 4. The S-PDP scheme (also the S-PDP-PV scheme) of [5] attains knowledge 

error no larger than ( 1) 2 lc −− ⋅  for each file block, where l  determines the bit length 

of the coefficients 
i
a ’s and  2c ≥  is the number of the file blocks being chosen. 

Proof (Sketch). Our proof reuses the proof technique that Damgard utilized to prove 
his Theorem 1 in [21].                                                                                                 □ 

Claim 5. The S-PDI scheme attains knowledge error no larger than 2 lc

ψ
−⋅  for each 

file block, where ψ  is the number of repetitions required for the atomic 
proof/verification procedure and c ψ≥  is the number of the super-blocks being 
chosen. 

5   Efficiency of the PDI Scheme 

In order to demonstrate its efficiency, we implement the PDI scheme using MIRACL 
library v5.3.1 in Windows Vista 32-bit edition. All experiments were conducted on a 
Dell Precision 390 workstation with an Intel Core2 Quad 2.66-GHz processor, 4 GB 
of ECC RAM, and a 400-GB RAID-0 disk array consisting of 3 SCSI drives. 

The 64-MB data file we use for the experiments is AES-CBC encrypted such that 
our experiment results are not necessarily subject to the entropy of the data file. 

We use a pairing-friendly non-supersingular curve, as per Brezing et al. [22]. Its 
parameters as listed below are provided by MIRACL library source code, wherein the 
modulus q  is a 256-bit prime, the group order p  is a 192-bit prime, and the 
embedding degree is 8. The security depends on the difficulty of a 2048-bit discrete 
logarithm problem [11]. 

CC485D26177A1A5FCC9D53BA93DA298FD7F2F23D8FC02A8123BF24F9548A5F15

9D0261DD89CF83D5D20198162C22C942EF68622A6DF25621

0 2 14 13 7298021445,  8,  ,  D FF

q

p

A B cof k

=
=
= = = =

 

We choose SHA-256 as *
1
: {0,1}

p
prf → Z  and UMAC [23] as 

*
3 2
( ) : {0,1}prf φφ → Z . And we choose SHA-256 to build *

2 1
: {0,1}prf → G . 

In order to fingerprint the file, we choose 256
B
n =  and 184len = , thus each 

super-block contains 5888 bytes and the 64-MB file consists of 11,398 super-blocks. 



432 K. Zeng 

Our experiments show that the size of the public key is 32.5 KB5, generating 
fingerprints takes 22.4 seconds6, and the size of the fingerprints is about 713 KB. 

In order to evaluate the efficiency of generating data integrity proof and verifying 
the proof, we choose 84l =  and 12ψ = , which means that the atomic 
proof/verification procedure will be reiterated 12 times to attain security level 

84 7411398
1 2 1 2

12
− −− ⋅ > −  for every 184 bits of the 64-MB data file. Each atomic 

proof/verification procedure needs to handle 256 buckets. 
Our experiments show that generating the data integrity proof takes 6.395 seconds, 

verifying the proof takes 6.961 seconds, the size of the challenge is 50 bytes, and the 
size of the data integrity proof is 771 bytes. 

Recall that the S-PDP-PV scheme needs at least 1218 seconds to fingerprint a 64-
MB data file and those fingerprints collectively require 21.2 MB. It is therefore clear 
that our PDI scheme is more than 50 times faster in generating the fingerprints and the 
fingerprints themselves are 30 times smaller in size. It is notable that in this 
comparison we choose a 6168 bits prime e  for the S-PDP-PV scheme. As per the S-
PDP-PV scheme, this choice results in data integrity proof that consumes 771 bytes 
([5], p.14). We note that choosing a larger e  for the S-PDP-PV scheme could reduce 
the size of its fingerprints and the time to generate the fingerprints as well. Whereas a 
larger e  at the same time increases the size of its data integrity proof. We thus 
compare efficiency of the PDI scheme and the S-PDP-PV scheme on condition that 
they generate the same size of data integrity proof. This comparison is appropriate at 
least for the case that the amount of communication required by each protocol 
instance is strictly restricted. 

5.1   Speeding Up the PDI Implementation 

Noting that fingerprinting can be done on multiple super-blocks simultaneously, and 
the atomic proof/verification procedures run independently, parallel computation 
should therefore be beneficial to the PDI scheme. Utilizing OpenMP [25] technology, 
we make the fingerprinting, proof generation, and proof verification all run in parallel. 
Making use of all 4 of the CPU cores of the Intel Core2 Quad 2.66 GHz processor, 
our experiments show that for the 64-MB file, generating fingerprints takes 5.632 
seconds, generating the data integrity proof takes 1.997 seconds, and verifying the 
proof takes 1.769 seconds. Using the 4 CPU cores yields roughly a three- to fourfold 
speed increase compared to using only 1 CPU core. 

Another approach for speeding up the implementation of the PDI scheme is simply 
reducing the intended security level. For instance, choosing 48l =  and 8ψ =  will 

reduce the security level to 371 2−−  and our experiments show that generating one 
integrity proof now takes 1.279 seconds, compared to 1.997 seconds for security level 

741 2−− . It is, however, more interesting to exploit the sampling strategy, i.e., make 
use of the S-PDI scheme. 

                                                           
5 Except for storing the fingerprints, we always use point compression technology, by which 

each elliptic curve point is stored as its x coordinate and the LSB of its y coordinate. 
6 All experimental results on time consumptions represent the mean of 10 trials. 
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Similar to the analysis given by [5], a challenge on 460 super-blocks can reach a 
detection probability of 99.02% in the case of failure of 1% of the super-blocks. 
Therefore, choosing 23l = , 4ψ = , and 460 super-blocks per challenge, the overall 

detection probability would be 23460
(1 2 )* 99.02% 99%

4
−− ⋅ > . We implement the 

S-PDI scheme and our experiments show 0.312 seconds in generating one integrity 
proof and 0.077 seconds in verifying the proof, when all 4 CPU cores are utilized. 
Note that in this case, the size of the data integrity proof is mere 257 bytes. 

6   Conclusions and Future Work 

In this paper, we present a provably secure and efficient scheme, which enables not 
only the data source but also a third-party verifier to check remote data integrity. 

There are still some problems yet to be resolved. First, the PDI scheme is not able 
to fingerprint data file incrementally. Our Remote Data Integrity Game prohibits a 
data file been modified in whatever manners once the file has been fingerprinted. 
Second, in the case that the data source is malicious, a third-party verifier who dares 
to be responsible for the integrity of the data is in danger because the data source can 
arbitrarily manipulate the data stored with the archive service provider while the 
fingerprints remain valid. Third, in the case that a third-party verifier colludes with 
the archive service provider, one can easily surmise that the verifier can fabricate a 
favorable audit report for a customer’s precious file even if the archive service 
provider has deleted the file completely. Last but not least, it is always interesting to 
find novel third-party-verifier-friendly schemes that are in the standard model. 
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