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Abstract. Both the spreading and the capabilities of mobile devices
have dramatically increased over the last years. Nowadays, many mobile
devices are able to run Java applications, that can create Internet con-
nections, send SMS messages, and perform other expensive or dangerous
operations on the mobile device. Hence, an adequate security support is
required to meet the needs of this new and evolving scenario.

This paper proposes an approach to enhance the security support of
Java Micro Edition, based on the monitoring of the usage of mobile de-
vice resources performed by MIDlets. A process algebra based language
is used to define the security policy and a reference monitor based ar-
chitecture is exploited to monitor the resource usage. The paper also
presents the implementation of a prototype running on a real mobile
device, along with some preliminary performance evaluation.

1 Introduction

In these last years, the market of mobile devices, such as mobile phones or
Personal Digital Assistants (PDAs), has grown significantly. The computational
power and the capabilities of mobile devices have increased too. For example,
modern mobile devices are able to connect to Internet, to read and write e-mails,
and also to run Java applications.

Java Micro Edition (Java ME) is a version of the Java platform for mobile
and embedded devices. Java ME for mobile devices mainly consists of two com-
ponents: the Mobile Information Device Profile (MIDP) and the Connection
Limited Devices Configuration (CLDC). The security model provided by Java
ME is not flexible enough to allow the spreading of Java ME applications, MI-
Dlets, developed by third party companies, because it takes into account the
provider of the MIDlet only, i.e. the principal that signed the MIDlet. If the MI-
Dlet provider is trusted according to the list of trusted principals stored on the
device, the MIDlet is allowed to perform any security relevant action. Instead,
MIDlets that come from unknown providers are not allowed to perform security
relevant actions, and the mobile device user is tediously prompted to explicitly
allow each of them. To avoid to be asked again, the user could choose to allow
any further invocation, thereby disabling any further control on the MIDlet.
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This paper proposes an approach to enhance the Java ME security support
based on the continuous monitoring of the usage of the mobile device resources.
The usage of the resources of the mobile device is defined in terms of the se-
quences of actions that a MIDlet performs on them, i.e. the behavior of the MI-
Dlet. The resource usage monitoring we define is fine-grained, history-based and
continuous. The monitoring is fine-grained because we define a set of security-
relevant actions, i.e. actions performed on the mobile device resources that could
be critical for the device security, and we monitor all the invocations to such ac-
tions performed by MIDlets. The monitoring is also history-based, because to
decide whether a MIDlet is allowed to perform a given action, we take into ac-
count the sequence of all the actions that have been executed by the MIDlet itself
since it was started. This implies that the existence of the right to perform an
action is not static, because it depends on the actions that have been previously
executed. Furthermore, the monitoring is continuous because our approach al-
lows to define conditions that are continuously (repeatedly) checked, and as soon
as a condition is violated, a system action is executed, such as interrupting the
MIDlet, even if it is not executing a security relevant action. The security policy
describes the allowed resource usage patterns in terms of sequences of actions
that MIDlets are allowed to perform, and the conditions that should be satisfied
before the execution of each action, after, or continuously. The security policy is
stored on the mobile device and is applied to each MIDlet that is executed.

Hence, with respect to Java ME security, the main novelties of the proposed
security support are that: i) the rights granted to a MIDlet to access mobile
device resources do not depend on the MIDlet provider; ii) these rights are not
static; iii) the monitoring of the resource usage is continuous, i.e. the controls
are not executed before the access only, but also while the access is in progress,
and, consequently, a MIDlet could be interrupted while running, even if it is not
performing a security relevant action.

1.1 Paper Structure

The paper is structured as follows. Section 2 describes the standard Java ME
security support, and reports previous attempts to enhance it. Section 3 describes
our approach to improve the security of the Java ME architecture by monitoring
the MIDlet execution. In particular, Section 3.1 describes the security policy we
adopted, and Section 3.2 describes the architecture of our framework. Section 4
describes the implementation of a prototype running on a real mobile device, the
HTC Universal smart-phone, along with a preliminary performance evaluation.
Section 5 draws the conclusion.

2 Related Work

The Java ME security support involves all the basic components of the Java
ME architecture: Mobile Information Device Profile (MIDP), Connected Lim-
ited Device Configuration (CLDC) and Kilobyte Virtual Machine (KVM). The
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security support provided by CLDC [17] concerns the low level and the applica-
tion level security. The low level security regards the KVM, and guarantees that
MIDlets do not harm the device while running. The application level security,
instead, deals with security relevant operations performed by MIDlets, such as
accesses to libraries or resources. To execute MIDlets, CLDC adopts a sandbox
that ensures that: the MIDlet must be pre-verified; the MIDlet cannot bypass
or alter standard class loading mechanisms of the KVM; only a predefined set
of APIs is available to the MIDlet; the MIDlet can only load classes from the
archive it comes from; and, finally, the classes of the system packages cannot be
overridden or modified.

The security support provided by MIDP [7,8] defines four protection domains:
Untrusted, Trusted, Minimum, and Maximum. Each MIDlet is bound to one pro-
tection domain depending on its provider, and this determines the value of its
permissions. Permissions refer to the actions that the MIDlet can perform dur-
ing its execution and their value can be either allowed or user. For example, the
javax.microedition.io.Connector.http permission refers to HTTP connec-
tions. If the value of this permission is allowed, then the permission is granted,
otherwise, if the value is user, a user interaction to explicitly grant the right is re-
quired every time that the MIDlet tries to establish an HTTP connection. When
asked by the MIDP security support, the user can deny the right to execute the
action, or can allow it by choosing among three possible values: oneshot, session,
blanket. If the user chooses oneshot, the right to execute the current action is
granted, but the user will be asked when the MIDlet will try to perform the
same action again. If the user chooses session, the right to execute the current
action is granted to the MIDlet until it terminates. Instead, if the user chooses
blanket, the MIDlet will be allowed to perform the action until it is uninstalled
or the permission is explicitly changed by the user. In other words, this disables
any further control on this action.

A security study of Java ME has been presented by Kolsi and Virtanen in
[9], where they described the possible threats and the security needs in a mobile
environment. In particular, they described how MIDP 2.0 solved some security
issues of MIDP 1.1, but they concluded that some problem are still present. A
security analysis of Java ME has been presented also by Debbabi et al. in [2], [3]
and [4]. In these papers, they detail the MIDP and CLDC security architecture,
and they identify a set of vulnerabilities of this architecture. Moreover, they
also test some attack scenarios on actual mobile phones. However, the previous
papers do not propose any improvement to the Java ME security support to
solve the security issues they described.

An attempt of extending the Java ME architecture with an enhanced security
support is shown in [6]. This paper proposes a runtime monitor architecture
that consists of a Runtime Monitor, a Policy Manager and a History Keeper.
The Runtime Monitor is in charge of making resource access decisions, and
relies on the Policy Manager to identify the relevant application-specific policy.
Once the policy is identified, the Runtime Monitor evaluates its conditions in
conjunction with resource usage history information of the system and MIDlet, as
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obtained from the History Keeper. This architecture enforces policies written in
Security Policy Language (SPL) [16]. SPL is a constraint based security policy
language that allows to express simultaneously several types of authorization
policies, hence allowing the definition of complex access control models (e.g.
RBAC, DAC, TRBAC).

The main difference with the approach proposed in this paper is in the kind of
security controls that are performed. Our approach is focused on the continuous
monitoring of the mobile device resources usage, and the security policy defines
the rights of a MIDlet by describing the resource usage patterns that the MIDlet
is allowed to perform. These patterns could be very complex, and are expressed
through a process algebra based language. Moreover, our approach defines con-
tinuous controls, that consist of conditions that are continuously checked while
the MIDlet execution is in progress. When one of these conditions is violated, the
monitor executes a control action, such as interrupting the MIDlet execution.
This requires a more complex support then the one for enforcing access control
policies.

3 Runtime Monitoring

This paper proposes to enhance the security support of Java ME by monitoring
the usage of the resources of the mobile device. This implies the monitoring of
the execution of MIDlets to intercept the security relevant actions that they
perform on the mobile device resources and the enforcing of a security policy
that defines the admitted patterns of these actions.

The actions that are considered as security relevant are the ones that allow
the MIDlet to interact with the underlying resources, such as establishing a
network connection, sending an SMS message, initiating a phone call, and so
on. Hence, we identified a set of methods of the MIDP and CLDC core classes
that implement the security relevant actions, and we monitor the execution of
these methods. For example, javax.microedition.io.Connector.open(url)
is the method that creates a connection with the entity represented by url,
and the method javax.wireless.messaging.MessageConnection.send(msg)
interacts with the mobile device to send an SMS message to a remote device.

3.1 Security Policy

This section gives a short description of the language for defining security poli-
cies. We adopt an operational policy language because we believe that it is closer
to user’s expertise than denotational ones. Since we deal with sequences of ac-
tions, we use a POlicy Language based on Process Algebra (POLPA) (see also
[1,11,10]). A policy results from the composition of security relevant actions, con-
trol actions, predicates and variable assignments, as described by the following
grammar:

P ::= ⊥ ‖ � ‖ α(x).P ‖ c.P ‖ p(x).P ‖ x := e.P ‖ P1orP2 ‖ P1parα1,..,αnP2 ‖
{P} ‖ Z
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where P is a policy, α(x) is a security relevant action, c is a control action, p(x)
is a predicate, x are variables and Z is a constant process definition Z

.= P . The
difference between security relevant actions and control actions is that security
relevant actions are the ones that the MIDlet tries to perform on the mobile
device resources, while control actions are executed by our monitoring support
to enforce the security policy. Interrupting and suspending the MIDlet execution
are two examples of control actions. The informal semantics is the following:

– ⊥ is the deny-All operator;
– � is the allow-All operator;
– α(x).P is the sequential operator for security relevant actions, and represents

the possibility of performing an action α(x) and then behave as P ;
– c.P is the sequential operator for control actions, and represents the possi-

bility of performing a control action c and then behave as P ;
– p(x).P is the sequential operator for predicates and behaves as P in the case

the predicate p(x) is true;
– x := e.P assigns to variables x the values of the expressions e and then

behaves as P
– P1orP2 is the alternative operator, and represents the non deterministic

choice between P1 and P2;
– P1parα1,...,αnP2 is the synchronous parallel operator. It expresses that both

P1 and P2 policies must be simultaneously satisfied. This is used when the
two policies deal with actions (in α1, . . . , αn);

– {P} is the atomic evaluation, and represents the fact that P is evaluated in
an atomic manner. P here is assumed only to have one action, predicates
and assignments;

– Z is the constant process. We assume that there is a specification for the
process Z

.= P and Z behaves as P .

As usual for (process) description languages, derived operators may be de-
fined. For instance, P1parP2 is the parallel operator, and represents the inter-
leaved execution of P1 and P2. It is used when the policies P1 and P2 deal with
disjoint actions. The policy sequence operator P1; P2 may be implemented using
the policy languages operators (and control variables) (e.g., see [5]). It allows to
put two process behaviors in sequence. By using the constant definition, the se-
quence and the parallel operators, the iteration and replication operators, i(P)
and r(P) resp., can be derived. Informally, i(P) behaves as the iteration of P
zero or more times, while r(P) is the parallel composition of the same process
an unbounded number of times.

Many different execution patterns may be described exploiting POLPA.
Figure 1 shows a simple example of security policy to avoid redirections to
other web sites while accessing a predefined web site, “www.siteA.it“. At the
beginning of the execution, this policy allows the MIDlet to open any network
connection. However, if the MIDlet opens a HTTP or a HTTPS connection with
the predefined site, then it cannot open any other connection with any other
site. On the other hand, if the MIDlet opens a connection with an URL that
is not the predefined one, then in this session it cannot open this site anymore.
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Moreover, the policy does not allow the MIDlet to open any connection to the
predefined site if the protocol is not HTTP or HTTPS. For instance, this policy
could be adopted when executing MIDlets that implement Internet browsers,
such as Opera Mini [14], to avoid redirections to malicious sites when accessing
the predefined site.

r([ (address(url)!=“www.siteA.it“) ].javax.microedition.io.Connector.open(url))
or
r([ ( (protocol(url)==HTTP) or (protocol(url)==HTTPS) ) and

(address(url)==“www.siteA.it“) ].javax.microedition.io.Connector.open(url))

Fig. 1. Example of security policy

Figure 2 shows another example of POLPA policy. In this case, the policy
allows the MIDlet to send no more than 10 SMS messages to italian users only
(i.e. if the telephone number begins with “+39“). As a matter of fact, the pol-
icy allows the MIDlet to execute the javax.microedition.io.Connector.open
method only if the protocol is the SMS one and if the telephone number begins
with “+39*“, and it allows the MIDlet to invoke for 10 times only the method
javax.wireless.messaging.MessageConnection.send.

N:=0.
i([((protocol(url)==SMS) and (address(url)==“+39*“)].
javax.microedition.io.Connector.open(url)
or
( [(N<10)].javax.wireless.messaging.MessageConnection.send(msg).
N:=N+1)

)

Fig. 2. Example of security policy

Figure 3 shows a further example of POLPA policy where the MIDlet is al-
lowed to open a network connection with the site “http://www.siteA.it“, and
then, either it opens a network connection with the site “http://www.siteB.it“
within 10 seconds, or it is interrupted by the control action revoke execution.
As a matter of fact, the control action revoke execution is executed as soon
as the predicate [(timer > 10)] is satisfied. In this example we suppose that
the variable timer represents a timer.
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[(url == “http://www.siteA.it“)].javax.microedition.io.Connector.open(url).
timer:=0.
( [(timer > 10)].revoke execution()
or
[(timer ≤ 10) and (url == “http://www.siteB.it“)].
javax.microedition.io.Connector.open(url)

)

Fig. 3. Example of security policy

3.2 Runtime Monitor Architecture

The architecture for the runtime monitoring follows the reference monitor model,
and consists of two main components: a Policy Decision Point (PDP) and a Policy
Enforcement Point (PEP), as shown in Figure 4.

Policy
Security 

PEP

PEP

MIDP
method(params)

grant/deny

grant/deny

method(params)

CLDC

Ja
va

 M
E

MIDlet

KVM

Mobile Device OS

control action

PDP

Fig. 4. Runtime monitoring architecture

The PEP is integrated in the MIDP and CLDC components of the Java
ME architecture, while the PDP is implemented as a distinct component. This
solution requires the modification of the Java ME architecture to embed the
PEP, while does not require any modification of the MIDlets, hence allowing the
execution of standard MIDlets.

The PEP has two main tasks during the execution of a MIDlet: i) intercepting
the security relevant methods invocation, and ii) enforcing the decision resulting
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from the evaluation of the security policy on this method. When a security
relevant method is intercepted, the PEP invokes the PDP, by passing it the
method name and all the invocation parameters. To embed the PEP in the
MIDP and CLDC methods we modified the source code of those methods by
inserting the invocation of the PDP at the beginning and at the end of the
method code. In this way the policy is evaluated and enforced both before and
after the execution of the method. The PEP also enforces the decision of the
PDP. If the PDP decision is positive, the execution of the method is permitted,
then the PEP continues the execution of the original method code. Instead, if the
result is negative, the execution of the method is denied, and the PEP terminates
it by throwing a Java Exception. In this case, if the PDP invocation has been
made before the execution of the method, the method execution is skipped.

The PDP is the component that decides whether a given security relevant
method can be performed in a given state according to the security policy. The
PDP is initiated by the KVM before beginning the execution of the MIDlet byte-
code. The PDP initially gets the security policy from the local storage, and builds
an internal representation of the policy. This internal representation is used to ef-
ficiently evaluate the policy against the security relevant actions that the MIDlet
tries to perform. The PDP consists of two parts: a passive one and an active one.
The passive PDP is invoked by the PEP for each security relevant method that
the MIDlet tries to execute, before and after the execution of the method. When
the policy evaluation process terminates, the passive PDP returns the decision
to the PEP that enforces it. The active PDP, instead, repeatedly tests whether
a control action should be executed, by evaluating the predicates before the ac-
tive control actions. A control action is active when the previous actions in the
sequence defined by the policy have been already executed by the MIDlet. For
example, in the security policy shown in Figure 3, the revoke execution control
action is active only after that the connection to the site “http://www.siteA.it“
has been established. The passive PDP, for each security relevant action executed
by the MIDlet, updates the set of active control actions.

4 Implementation

We developed a prototype of the modified Java ME runtime environment that
runs on a real mobile device, a HTC Universal smart-phone, exploiting the
PhoneME Feature Software MR2 [15]. The PhoneME feature software is an
implementation of the main components of the Java ME architecture, such as
the MIDP v2.0, the CLDC v1.1, the Wireless Message API and many others.
The PhoneME Feature Software MR2 release includes the full source code. In
particular, the KVM code is developed in C++, both for efficiency reasons and
because it interacts with the underlying operating system. The code of the Java
ME core classes is developed partly in Java and partly in C or C++. In this
case too, C functions are used mainly to implement the interactions with the
underlying operating system. Our customized version of PhoneME was built on a
desktop computer exploiting the OpenEmbedded development environment [12]
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and configuring the cross compiler for the specific mobile device architecture.
The PhoneME was installed on a HTC Universal smartphone (also known as
QTEK 9000) running Linux (Openmoko distribution [13]).

The PEP and the PDP have been integrated in the PhoneME source code,
according to the architecture described in Figure 4. From the implementation
point of view, the Policy Decision Point consists of two threads developed in C
language mainly for efficiency reasons. The PDP is started by the KVM before
the execution of the MIDlet bytecode. Once activated, one PDP thread sus-
pends itself waiting for an invocation from the PEP component, while the other
repeatedly check the predicates paired with the active control actions every t
seconds, where t is a system parameter. If one of these predicate is violated,
this thread enforces the corresponding control action through the native AMS
support provided by the phoneME.

The PEP, in contrast, consists of a Java class and a C function. The Java
class includes a method, checkPolicy, to activate the PDP. The invocations to
the checkPolicy method are embedded in the source code of the Java ME methods
that implement the security relevant actions, before and after the original code.
In this way, the security policy is checked before and after the execution of
the security relevant action. The PEP communicates with the PDP exploiting
shared variables and semaphores. The enforcement of the PDP decision, when
the right to execute an action has been forbidden, is implemented by throwing
a SecurityException error in the code of the Java ME method. This error will
be reported to the MIDlet.

4.1 Experimental Results

This section evaluates the impact of our enhanced security support on the per-
formances of the Java ME Virtual Machine. As a matter of fact, the MIDlet
monitoring slows down the execution of the MIDlet because of the time spent
to check the security policy. The overhead on the execution time depends on
the enforced policy. As a matter of fact, in general, complex security policies
take more time to be evaluated than simple ones. Moreover, the performance
degradation also depends on the specific MIDlet, i.e. on the methods it invokes.
In particular, the overhead depends on the number of security relevant methods
invoked by the MIDlet with respect to the invocations to other methods, because
the security relevant methods are the ones that introduce the overhead.

The MIDlet used for our tests performs 10 HTTP connections to a remote
site. This is the worst case from the performance point of view, because most
of the methods invoked by this MIDlet are security relevant ones, and introduce
the monitoring overhead. In a real case MIDlet we expect that the most of the
methods invoked are not security relevant ones and, consequently, the overhead
due to our security support will be less relevant. To perform these tests the
MIDP permissions support has been disabled.

Figure 5 shows the execution times of the chosen benchmark. The three ex-
periments have been executed with the original phoneME software, and with the
phoneME software instrumented with our enhanced security support enforcing
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Fig. 5. Performance evaluation

two policies, one with one rule only and the other with 10 rules. In the policy
with 10 rules, we chose a worst case again, because the policy has been written
in a way such that the PDP must examine all the rules before finding the one
that allows the method invoked by the MIDlet. The execution time of the test
MIDlet executed on the original PhoneME environment is compared against the
one of the same MIDlet executed using PhoneME with our enhanced security
support. The results show that the overhead introduced by our system is small.
In fact, the enforcing of a policy with one rule results in a 0,5% overhead, while
the enforcing of a 10 rules policy results in an overhead of 2,6%. As previously
discussed, this results represent the worst case, and we think that in case of a
real MIDlet the overhead will be even less.

5 Conclusion and Future Work

We proposed an approach to enhance the security support of the Java ME archi-
tecture based on the monitoring of the behavior of the MIDlets. The experiments
we carried out on the prototype we developed showed that the overhead due to
security controls is very low. Hence, we think that this approach can be suc-
cessfully adopted on modern mobile devices to allow the secure execution of
MIDlets.
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