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Abstract. SMS4 is a 128-bit block cipher used in WAPI (the Chinese
national standard for wireless networks). Up until recently, the best at-
tacks on SMS4 known, in terms of the number of rounds, were the rect-
angle attack on 14 rounds and the impossible differential attack on 16
rounds (out of 32 rounds) presented by Lu. While analyzing them, we
noticed that these attacks have flaws and that their complexity analysis
is inaccurate. In this paper we make a more comprehensive analysis of
these attacks and further improve these results.

1 Introduction

SMS4 [1] is a Generalized Feistel Network (GFN) cipher, specified in the Wire-
less Authentication and Privacy Infrastructure (WAPI), which is mandatory in
wireless networks in China. The cipher has block size of 128 bits, and each block
is processed in 32 rounds using a secret key of 128 bits long.

The Chinese Standards Association (SAC) submitted WAPI to ISO for recog-
nition as an international standard, at about the same time as the IEEE 802.11i
standard. As a result, SMS4 was the subject of an extensive international de-
bate since its introduction. Despite that, up until recently little cryptanalysis
of SMS4 was performed. The previously published cryptanalytic results are the
differential fault analysis presented in [11], the integral attack on 13 rounds [8],
the rectangle attack on 14 rounds and the impossible differential attack on 16
rounds [9], the rectangle attack on 16 rounds and the differential attack on 21
rounds [12], and finally the rectangle attack on 18 rounds, the differential attack
and linear attack on 22 rounds [6]1.
1 We note that the results in [6,12] were found independently of our line of research.
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The cryptanalytic results on SMS4, on which we focus are those of [9]. The
proposed rectangle attack on 14 rounds of SMS4 uses 2121.82 chosen plaintexts
and has a claimed time complexity of 2116.66 14-round SMS4 computations2.
The impossible differential attack on 16-round SMS4 from [9] uses 2105 chosen
plaintexts and its time complexity is conjectured to be 2107 16-round SMS4
computations.

While verifying the results of [9], we found several flaws and possible im-
provements. In this paper, we show that the actual probability of the 12-round
rectangle distinguishers of [9] is 2−230.71, rather than the claimed probability of
2−237.64. We also present better 12-round rectangle distinguishers with proba-
bility of 2−209.78. Moreover, we show that the claimed time complexity of the
rectangle attack of [9] is flawed due to the deficient process of obtaining candi-
date quartets, which is not considered in the original time complexity analysis.
Therefore, given our improved distinguishers and refined analysis, we present
a 14-round rectangle attack that uses 2106.89 chosen plaintexts pairs and has
running time of 2107.89 encryptions for obtaining the data, 2107.89 memory ac-
cesses to find the pairs, and 287.97 encryptions for the analysis. Similarly, we
identify several flaws in the impossible differential attack of [9]. We first show
that more data is needed than the claimed figures, and then we point out a
delicate issue concerning the running time of this attack. We then follow to
suggest a corrected attack with data complexity of 2117.06 chosen plaintexts
and time complexity of 2117.06 encryptions for obtaining the data, 2132.06

memory accesses for the preliminary elimination, and 295.09 encryptions for the
analysis.

Independent of our research, SMS4 was analyzed also in [6,12]. A rectangle
attack on 16 rounds of SMS4 which requires 2124 chosen plaintexts with a time
complexity of 2116 encryptions, and a differential attack on 21 rounds of SMS4
with data and time complexities of 2118 and 2112.83, respectively are presented
in [12]. These results are improved in [6], by using the early abort technique, to a
rectangle attack on 18 rounds of SMS4 with a data complexity of 2120 and time
complexity of 2116.83, a differential attack on 22 rounds of SMS4 with a data
complexity of 2118 chosen plaintexts, and a time complexity of 2125.71 encryp-
tions. Also, a linear attack on 22 rounds of SMS4 which has data complexity of
2117 known plaintexts, and time complexity of 2109.86 encryptions is described
in [6].

This paper is organized as follows: In Section 2, we give a brief description
of the SMS4 cipher and its properties. In Section 3, we give an overview of
the rectangle attack, followed by the previous rectangle attack of [9] on SMS4.
Then, we present our observations and improvements for this attack on SMS4.
In Section 4, we follow the same outline for the impossible differential attack.
Finally, we conclude this paper and summarize our findings in Section 5.

2 This is the claimed time complexity in [9], but in fact the actual number should
be 2121.82, which is the time required to obtain the ciphertexts to perform attack,
according to [9].
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2 A Description of SMS4

2.1 Notation

Throughout this paper, we will use the following notation. Each 128-bit block is
composed of four 32-bit words (X0, X1, X2, X3). Note that the words and blocks
are in a “Chinese”-endian order (i.e., the most significant bit is the leftmost bit
numbered 0, and the least significant bit is bit 31 for a 32-bit word). Similarly,
the most significant byte of a word is the leftmost byte numbered 0, and least
significant byte is numbered 3. We denote the bit rotation of the word w by r
positions to the left by w ≪ r; ej denotes a word whose all positions except the
j-th bit are zero and

ei1,...,ij = ei1 ⊕ ... ⊕ eij for 0 ≤ i1, . . . , ij ≤ 31

2.2 The SMS4 Cipher

SMS4 [1] accepts a 128-bit plaintext P = (P0, P1, P2, P3) and a 128-bit user key
as inputs, and is composed of 32 rounds. In each round, the least significant
three bytes of the state are xored with the round key and the result passes the
S transformation. The S transformation uses an 8-bit to 8-bit bijective SBox
four times in parallel to process each byte, then the concatenated bytes are
processed using a linear transformation L. Let Xi = (Xi,0, Xi,1, Xi,2, Xi,3) and
Xi+1 = (Xi+1,0, Xi+1,1, Xi+1,2, Xi+1,3) denote the 128-bit input and output to
the i-th round, respectively. Then the round function may be formally described
by the following equations:

Xi+1,0 = Xi,1

Xi+1,1 = Xi,2

Xi+1,2 = Xi,3

Xi+1,3 = Xi+1,0 ⊕ L(S(Xi,1 ⊕ Xi,2 ⊕ Xi,3 ⊕ RKi))

where the S transformation uses the SBox given in [1] and L is the linear trans-
formation:

L(x) = x ⊕ (x ≪ 2) ⊕ (x ≪ 10) ⊕ (x ≪ 18)⊕ (x ≪ 24) where x ∈ Z32
2

The transformation L ◦ S is named T in the specification document. RKi is
the 32-bit round sub key for the i-th round, obtained from the key schedule.
Decryption is identical to the encryption except for the order of the subkeys,
which are used in the reverse order.

Key Schedule: The key schedule is similar to the encryption function. The
only difference is that instead of using the linear transformation L, the following
linear transformation L′ is used:

L′(x) = x ⊕ (x ≪ 13)⊕ (x ≪ 23) where x ∈ Z32
2
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Fig. 1. Round Function

In addition, the user supplied key K is xored with a system parameter, FK.
The subkey RKj of the j-th round is computed as follows:

FK = (0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC)
k = (k0, k1, k2, k3) = K ⊕ FK

RKj = kj+4 = kj ⊕ L′(S(kj+1 ⊕ kj+2 ⊕ kj+3 ⊕ CKj))

where CKj = (ckj,0, ckj,1, ckj,2, ckj,3) and ckj,k = 28j + 7k (mod 256).

2.3 Properties and Definitions

Since SMS4 uses a bijective SBox, thus, S(Δx) = 0 if and only if Δx = 0. The
difference distribution table (DDT) of the SBox contains exactly 127 nonzero
output differences for a given nonzero input difference. Only one of these val-
ues has probability of 2−6 while the other 126 remaining nonzero values have
probability of 2−7.

The following definitions are used for observing the propagation of any nonzero
input difference to the other rounds. In [9], it is not clearly stated to what these
sets refer, and the formulas contain typos. Thus, the reader may find the original
terminology confusing. Therefore, we rewrite the equations defining these sets,
using the same names for the sets (but with a clearer representation).

Given the input difference (0, eΛ, eΛ, eΛ) to the n-th round, where Λ is an
arbitrary but nonempty subset of {0, 1, . . . , 31}, the set θ(eΛ) is composed of all
the 32-bit differences that an input difference eΛ to the T function can cause:

θ(eΛ) = {x|x = L(Δd1), Pr[S(eΛ) → Δd1] > 0 for x, eΛ ∈ Z32
2 }

Now, the input difference to the (n + 1)-th round is (eΛ, eΛ, eΛ, X) where X ∈
θ(eΛ). The Υ (eΛ, X) is the set of all 32-bit differences, that an input difference
X to the T function may cause after an xor with eΛ.

Υ (eΛ, X) = {y|y = L(Δd2) ⊕ eΛ, Pr[S(X) → Δd2] > 0 for X ∈ θ(eΛ), y, eΛ ∈ Z32
2 }

Similarly, the input difference to the (n+2)-th round is of the form (eΛ, eΛ, X, Y )
where X ∈ θ(eΛ) and Y ∈ Υ (eΛ, X). The corresponding 32-bit output differ-
ences, caused by an input difference eΛ ⊕ X ⊕ Y to T are denoted by the set
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Π(eΛ, X, Y ).

Π(eΛ, X, Y ) = {z|z = L(Δd3) ⊕ eΛ, Pr[S(eΛ ⊕ X ⊕ Y ) → Δd3] > 0 for z, eΛ ∈ Z32
2 }

Finally, the input difference to the (n + 3)-th round is of the form (eΛ, X, Y, Z)
where X ∈ θ(eΛ), Y ∈ Υ (eΛ, X), and Z ∈ Π(eΛ, X, Y ) . The set of 32-bit
differences after the XOR operation in the (n+3)-th round by an input difference
X ⊕ Y ⊕ Z to T is denoted by the set Ω(X, Y, Z).

Ω(X, Y, Z) = {w|w = L(Δd4) ⊕ eΛ, Pr[S(X ⊕ Y ⊕ Z) → Δd4] > 0 for w ∈ Z32
2 }

3 The Rectangle Attack

The amplified boomerang and rectangle attacks [2] are a chosen plaintext at-
tacks, which evolved from the boomerang attack [10]. The main idea in these
attacks is to use two short differential characteristics with high probabilities in-
stead of one long characteristic with a lower probability. The only difference is
that the boomerang attack generates a quartet at an intermediate value halfway
through the cipher, whereas the rectangle attack looks for quartets within a
given set of pairs.

For this purpose, the block cipher E is treated as a cascade of two sub-ciphers
E0 and E1 (i.e, E = E1 ◦E0). Assume that a differential characteristics Δ → Δ∗

with probability p for E0, and ∇∗ → ∇ with probability q for E1 are known. The
boomerang attack is based on generating right quartets (P1, P2, P3, P4) which
satisfy a set of relations:

1. P1 ⊕ P2 = Δ = P3 ⊕ P4.
2. E0(P1) ⊕ E0(P2) = Δ∗ = E0(P3) ⊕ E0(P4).
3. E0(P1) ⊕ E0(P3) = ∇∗ = E0(P2) ⊕ E0(P4).
4. C1 ⊕ C3 = ∇ = C2 ⊕ C4 where Ci = E1(E0(Pi)).

A right quartet which satisfies the above equations is formed as follows:

1. Choose a random plaintext P1 and compute P2 = P1 ⊕ Δ.
2. Ask for the encryptions of P1 and P2 to obtain C1 = E(P1) and C2 = E(P2).
3. Calculate C3 = C1 ⊕∇ and C4 = C2 ⊕∇.
4. Ask for the decryptions of C3 and C4 to obtain P3 = D(C3) and P4 = D(C4).
5. Check whether P3 ⊕ P4 = Δ.

The amplified boomerang attack is a chosen plaintext attack in which the same
differential conditions have to be satisfied. But instead of generating quartets as
given above, a set of plaintext pairs with input difference Δ is generated. Then
the aim is to find quartets ((P1, P2), (P3, P4)) such that C1 ⊕C3 = ∇ = C2 ⊕C4

when P1 ⊕ P2 = Δ = P3 ⊕ P4 by using birthday paradox.
By a more careful analysis and a better key recovery algorithm, the ampli-

fied boomerang attack was evolved into the rectangle attack. For an optimized
method of finding the right rectangle quartet, one may refer to [3].
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In [2,10], it is shown that it is possible to use all possible Δ∗’s and ∇∗’s
simultaneously. In [2], it is also stated that, if N plaintext pairs with input
difference Δ, then the number of expected right quartets is N22−128p̂2q̂2 for
128-bit block ciphers, where

p̂ =
√∑

Δ∗
Pr2[Δ → Δ∗] and q̂ =

√∑
∇

Pr2[∇∗ → ∇]

3.1 The Rectangle Attack on 14-Round SMS4 from [9]

The 14-round rectangle attack in [9] uses 12-round rectangle distinguishers with
probability3 2−230.71 and requires 2121.82 chosen plaintexts to attack 14-round
SMS4. Let E0 denote rounds 0 to 7 and let E1 denote rounds 8 to 11 of SMS4.
The differentials used for the 12-round distinguishers of [9] are as follows:

1. For E0: All 8-round differentials of the form (eψ1 , eψ, eψ, eψ) → (eψ2 , eψ3 , eψ4 , eψ5)
where only one byte of eψ is nonzero and eψ1 , eψ2 ∈ θ(eψ), eψ3 ∈ Υ (eψ, eψ2),
eψ4 ∈ Π(eψ, eψ2 , eψ3), eψ5 ∈ Ω(eψ2 , eψ3 , eψ4), and eψ1 is fixed.

2. For E1: All 4-round differentials of the form (eΦ, eΦ, eΦ, 0) → (eΦ, eΦ, eΦ, eΦ2)
where only one byte of eΦ is nonzero and eΦ2 ∈ θ(eΦ).

To calculate the overall probability, the sum of the squares of the probabil-
ities of all used differentials is needed. As there are many 8-round differential
characteristics, we list the ones that follow the path in Table 1. In Table 2, we
list how many differential characteristics of a given probability follow this path.

Therefore, the lower bound can be calculated as:

p̂2 = (2−6)2 · [(2−6)2 + 126 · (2−7)2] · [(2−24)2 + (43) · 126 · (2−25)2

+ (42) · 1262 · (2−26)2 + (41) · 1263 · (2−27)2 + 1264 · (2−28)2]3

= 2−102.71

We note that the second differential is a truncated differential with 127 possible
output differences and probability one. Therefore:

q̂2 = 1

Thus, the expected number of right rectangle quartets generated by N plaintext
pairs is:

N2 · 2−128 · p̂2 · q̂2 = N2 · 2−230.71

Attack Procedure: The above 12-round distinguishers are used to mount a
rectangle attack on 14-round SMS4. Given the 127 input differences4 (eΦ, eΦ,

3 In [9] the probability of these 12-round distinguishers is calculated as 2−237.64 due
to a miscalculation of q̂.

4 This is the output difference of the distinguisher, and eΦ2 can take any value (of
the 127 possible ones). Thus, the probability of the last step is one. In [9], proba-
bility is also calculated for this step, leading to a faulty, lower, probability for the
distinguisher.
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Table 1. The number of differences and their probabilities for the 8-round characteristic

eψ1 eψ2 eψ3 eψ4 eψ5

(for a fixed eψ) (for a given eψ2) (for a given eψ2 , eψ3) (for a given eψ2 , eψ3 , eψ4)

No Pr No Pr No Pr No Pr No Pr

1 2−6 1 2−6 1 2−24 1 2−24 1 2−24

126 2−7 (43) · 126 2−25 (43) · 126 2−25 (43) · 126 2−25

(42) · 1262 2−25 (42) · 1262 2−25 (42) · 1262 2−25

(41) · 1263 2−27 (41) · 1263 2−27 (41) · 1263 2−27

1264 2−28 1264 2−28 1264 2−28

Table 2. The number of characteristics and their probabilities for E0

Probability 2−84 2−85 2−86 2−87 2−88 2−89 2−90

Number 1 210.678 220.312 229.217 237.514 245.277 252.561

Probability 2−91 2−92 2−93 2−94 2−95 2−96 2−97

Number 259.411 265.872 271.972 277.692 282.920 287.428 290.704

eΦ, eΦ2) to round 12, there are 1275 possible output differences (eΦ, eΦ, eΦ2 , eΦ3)
just after round 12, where eΦ3 ∈ Υ (eΦ, eΦ2) and 1279 possible output differences
(eΦ, eΦ2 , eΦ3, eΦ4), where eΦ4 ∈ Π(eΦ, eΦ2 , eΦ3). For sake of clarity, we define all
these output differences by the set Φ:

Φ = {(eΦ, eΦ2, eΦ3 , eΦ4)|eΦ2 ∈ Θ(eΦ), eΦ3 ∈ Υ (eΦ, eΦ2), eΦ4 ∈ Π(eΦ, eΦ2 , eΦ3)}

The proposed attack uses an early abort technique, which allows partially
determining whether or not a candidate quartet is a right one by guessing only
a small fraction of the subkey, and if not discarding the quartet.

The attack procedure of [9] is as follows:

1. Choose 2120.82 pairs of plaintexts5 (Pi, P ′
i ) with input difference (eψ1 , eψ,

eψ, eψ)

(a) Obtain the corresponding ciphertext pairs (Ci, C′
i).

(b) Generate all candidate quartets ((Ci1 , C
′
i1 ), (Ci2 , C

′
i2)).

(c) Check whether Ci1 ⊕ Ci2 ∈ Φ and C′
i1
⊕ C′

i2
∈ Φ.

2. For each remaining quartet ((Ci1 , C′
i1

), (Ci2 , C′
i2

)):

(a) For each pair ((Ci1 , C′
i1 ) and (Ci2 , C′

i2)) compute the differences in the
4 bytes of their intermediate values just before the L transformation
in round 13, and denote them by Δ13

i1,i2
and Δ

′13
i1,i2

, respectively. (i.e,
compute Δ13

i1,i2 = L−1(Ci1 ⊕ Ci2 ) and Δ
′13
i1,i2 = L−1(C′

i1 ⊕ C′
i2 ).

(b) For j=0 to 3:

5 The required number of plaintext pairs is not adapted for the new probability, since
it has no effect on our findings.
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i. Guess the j-th byte of the subkey RK13 and partially decrypt ev-
ery remaining quartet to obtain the j-th byte of their intermediate
values just after the S transformation in round 13. Denote them by
((Xi1,j, Xi2,j), (X ′

i1,j
, X ′

i2,j
)).

ii. Check if Xi1,j⊕Xi2,j = Δ13
i1.i2,j and X ′

i1,j⊕X ′
i2,j = Δ

′13
i1.i2,j and keep

only the quartets for which both equalities are satisfied.
3. For each remaining quartet ((Ti1 , T ′

i1
), (Ti2 , T ′

i2
)) repeat Step 2, for round 12

and RK12.
4. If for a subkey guess (RK12, RK13), there are 6 (or more) remaining quartets

try all possible (RK10, RK11) values and perform a trial encryption with
one known plaintext/ciphertext pair. If the correct key is not found for all
checked (RK12, RK13) values output “failure”.

3.2 Improving the 14-Round Attack

By a simple observation, one can conclude that E0 in the 14-round attack has too
many rounds. After round 3, each additional round comes with a cost (in terms
of probability) increasing exponentially. Therefore, the attack can be improved
by using a shorter characteristic for E0 with higher probability in exchange for
making E1 longer. We suggest the use of following differential characteristics:

1. For E0: The 6-round differentials (eψ1 , eψ, eψ, eψ) → (eψ, eψ, eψ2 , eψ3) where
only one byte of eψ is nonzero, eψ1 , eψ2 ∈ θ(eψ), eψ3 ∈ Υ (eψ, eψ2), and eψ1

is fixed.
2. For E1: The 6-round differentials (eΦ6 , eΦ5 , eΦ, eΦ) → (eΦ, eΦ, eΦ, eΦ2) where

only one byte of eΦ is nonzero and eΦ5 , eΦ2 ∈ θ(eΦ), eΦ6 ∈ Υ (eΦ, eΦ5).

The details of the rectangle distinguishers for the original attack and the
proposed improvement are given in Table 3.

The probability of the new proposed distinguisher can be calculated as follows:
As mentioned earlier in Section 3.1, there exists one possible eψ2 with prob-

ability 2−6 and 126 possible eψ2 values with probability 2−7 in round 4. And in
round 5, for each of the eψ2 values, we have one possible eψ3 with probability
2−24, (41) × 126 possible values with probability 2−25, (42) × 1262 possible values
with probability 2−26, (41)× 1263 possible values with probability 2−27 and 1264

possible values with probability 2−28. Hence for E0, we have:

p̂2 = (2−6)2 · [(2−6)2 + 126 · (2−7)2] · [(2−24)2 + (43) · 126 · (2−25)2

+ (42) · 1262 · (2−26)2 + (41) · 1263 · (2−27)2 + 1264 · (2−28)2]
= 2−46.8881

Similarly, for E1, in round 7, we have one possible eΦ5 with probability 2−6

and 126 possible eΦ5 with probability 2−7. In round 6, for each of the eΦ5 values,
there is one possible eΦ6 with probability 2−24, (41) × 126 possible values with
probability 2−25, (42) × 1262 possible values with probability 2−26, (41) × 1263
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Table 3. The rectangle attack distinguishers

Previous Attack Improved Attack
Round ΔXi,0 ΔXi,1 ΔXi,2 ΔXi.3 Prob Round ΔXi,0 ΔXi,1 ΔXi,2 ΔXi,3 Prob

0 eψ1 eψ eψ eψ 2−6 0 eψ1 eψ eψ eψ 2−6

1 eψ eψ eψ 0 1 1 eψ eψ eψ 0 1
2 eψ eψ 0 eψ 1 2 eψ eψ 0 eψ 1
3 eψ 0 eψ eψ 1 3 eψ 0 eψ eψ 1
4 0 eψ eψ eψ †a 4 0 eψ eψ eψ †
5 eψ eψ eψ eψ2 † 5 eψ eψ eψ eψ2 †
6 eψ eψ eψ2 eψ3 † output eψ eψ eψ2 eψ3

7 eψ eψ2 eψ3 eψ4 † 6 eΦ6 eΦ5 eΦ eΦ ‡b
output eψ2 eψ3 eψ4 eψ5 7 eΦ5 eΦ eΦ eΦ ‡

8 eΦ eΦ eΦ 0 1 8 eΦ eΦ eΦ 0 1
9 eΦ eΦ 0 eΦ 1 9 eΦ eΦ 0 eΦ 1
10 eΦ 0 eΦ eΦ 1 10 eΦ 0 eΦ eΦ 1
11 0 eΦ eΦ eΦ 1 11 0 eΦ eΦ eΦ 1

output eΦ eΦ eΦ eΦ2 output eΦ eΦ eΦ eΦ2

a The probabilities given with dagger are stated in Table 1.
b The probability of eΦ5 is equal to the probability of eψ2 , since they both belong to

the same set. Similarly eΦ6 and eψ3 have the same probability.

possible values with probability 2−27 and 1264 possible values with probability
2−28. Therefore:

q̂2 = [(2−6)2 + 126 · (2−7)2] · [(2−24)2 + (43) · 126 · (2−25)2 + (42) · 1262 · (2−26)2

+ (41) · 1263 · (2−27)2 + 1264 · (2−28)2]
= 2−34.8881

Thus, the expected number of right quartets generated by N plaintext pairs is:

N2 · 2−128 · p̂2 · q̂2 = N2 · 2−209.78

In order to have sufficient pairs to perform the improved attack N = 2106.89 and
from this point on we use this figure throughout the analysis.

A flaw in the preliminary elimination: In the original attack of [9], the
time complexity is calculated only for candidates of right quartets after the
preliminary elimination (the pairs which enter Step 2), and it does not include the
time-complexity of the first elimination itself. However, due to the large amount
of data, it is impossible to take all the possible pairs and detect candidates for
right quartets immediately. We propose the following algorithm for the detection
of right quartet candidates:
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A more efficient algorithm for the preliminary elimination:

1. Let Ci = (Ci,0, Ci,1, Ci,2, Ci,3) and C′
i = (C′

i,0, C
′
i,1, C

′
i,2, C

′
i,3) denote a ci-

phertext pair.
2. For each ciphertext pair (Ci, C′

i), insert the following entries into a hash
table:

(a) Ci||C′
i to the bin indexed by Ci,0Ci,1||C′

i,0C
′
i,1.

(b) C′
i||Ci to the bin indexed by C′

i,0C
′
i,1||Ci,0Ci,1.

3. For every (eΦ2 , e
′
Φ2

) pair, where eΦ2 , e
′
Φ2

∈ Θ(eΦ):

(a) initialize for each bin a flag to the state of “active”.
(b) For every “active”bin satisfying Ci,0Ci,1 ≤ C′

i,0C
′
i,1, go to the corre-

sponding bin Ci,0Ci,1||C′
i,0C

′
i,1 ⊕ eΦeΦ2 ||eΦe′Φ2

= Cj,0Cj,1||C′
j,0C

′
j,1.

i. For all possible combinations of entries ((Ci, C′
i), (Cj , C

′
j)), check

whether:
A. Ci,2 ⊕ Cj,2 ∈ Υ (eΦ, eΦ2) and C′

i,2 ⊕ C′
j,2 ∈ Υ (eΦ, e′Φ2

)
B. Ci,3 ⊕ Cj,3 ∈ Π(eΦ, eΦ2 , eΦ3) and C′

i,2 ⊕ C′
j,2 ∈ Π(eΦ, e′Φ2

, e′Φ3
)

(Once a condition fails, do not check the remaining conditions.)
ii. Flag the bins Cj,0Cj,1||C′

j,0C
′
j,1 and C′

j,0C
′
j,1||Cj,0Cj,1 as “analyzed”.

4. If two pairs satisfying (i)-(ii) are found, keep them as candidates for right
quartets, and apply steps 2–4 of the attack in Section 3.1.

If we have N pairs of ciphertexts, the expected number of entries in each of
the 2128 bins is 2 · N/2128 = N · 2−127 after Step 2. Therefore, we can form
1272 · (N/2127)2 = N2/2240.02 candidate quartets for each pair of bins. Since we
are only forming quartets for the bins whose first two words is smaller than its
last two words, we analyze 2127 pairs of bins. Flagging in Step (b) also prevents
analyzing the same quartet twice. So the number of candidate quartets entering
Step (i) is 2127/2 · N2/2240.02 = N2/2114.02. Now, the probability of passing
Step (A) is (1274/232)2 ≈ 2−8.08 and 2−8.08 · N2/2114.02 = N2/2122.1 quartets
remain. The probabilities of Step (A) and (B) are same, thus we have N2/2130.18

candidates for right quartets in Step 3.
The time complexity of the preliminary elimination is as follows: In Step 2,

we have 2N memory accesses. In step 4, the number of analyzed quartets, which
is the number of required memory access is N2/2114.02. Note that there is no
need to go over all bins. In total 2N + N2/2114.02 memory accesses is required,
and thus for N = 2106.89, the total running time of the preliminary elimination
is expected to be 2107.89 + 299.76 memory accesses.

For N = 2106.89, we have (2106.89)2/2130.18 = 283.6 candidates of right quar-
tets. The time complexity of the attack is dominated by the partial decryptions
in Step 2(b) for j=0 in [9]. Therefore, the running time of steps 2-4 of the attack
is 28 · 283.6 · 1/14 = 287.69. The total running time is dominated by Step 1, i.e.
2107.89 memory accesses.
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4 Impossible Differential Attack on 16-Round SMS4

4.1 Impossible Differential Attack

Unlike traditional differential cryptanalysis which tracks differences that propa-
gate through the cipher with high probability, impossible differential cryptanal-
ysis exploits differentials with probability zero.

The attack used in [9] is a combination of the general technique called miss
in the middle, which is used to construct impossible differential, and the early
abort technique which partially determines whether or not a candidate pair is
useful. The main idea is to find two characteristics with probability one, whose
conditions cannot be met together [4]. Then, the key can be found by analyzing
the rounds surrounding the impossible event, and guessing the subkeys of these
rounds. If the impossible event occurs when a candidate key is used, it is obvious
that the suggested key is not the right key.

4.2 The Previous Attack on 16-Round SMS4

The attack uses a set of 12-round impossible differentials of the form (eΓ , eΓ ,
eΓ , 0) 	→ (0, eΓ , eΓ , eΓ ). Two 6-round differentials with probability one are con-
catenated for the attack. The first differential used in the construction of the
impossible differential is (eΓ , eΓ , eΓ , 0) → (eΓ , x1, y1, z1) and the second differ-
ential is (z2, y2, x2, eΓ ) → (0, eΓ , eΓ , eΓ ), where xi ∈ Θ(eΓ ), yi ∈ Υ (eΓ , xi),
zi ∈ Π(eΓ , xi, yi) for i = 1, 2. These 12-round differentials are used to conduct
an impossible differential attack on SMS4 reduced to 16 rounds by adding two
additional rounds before and after the differentials.

The attack uses Γ ⊆ {0, 1, . . . , 15}. Hence, in round 1, for every Γ , there are
1272 input differences that may lead to eΓ as the output difference of T, and
they can be generated by 1276 input differences in round 0, which is denoted by
the set Σ1(Γ ) for each Γ . Similarly, there are 1272 output differences after round
14, that can be generated by eΓ , and they cause 1276 possible output differences
after round 15 which, is denoted by the set Σ2(Γ ) for each Γ .6

The attack procedure of [9] is as follows:

1. Choose 29 structures of 296 plaintexts each where the most significant 2 bytes
of the two rightmost words of the plaintexts in each structure is fixed. (Thus,
each structure generates (296)2/2 = 2191 plaintext pairs7 (Pi, Pj) with the
desired input difference (∗, ∗, eΓ , eΓ )).
(a) Obtain the corresponding ciphertext pairs of the structures.
(b) Choose the pairs that satisfy both Pi⊕Pj ∈ Σ1(Γ ) and Ci⊕Cj ∈ Σ2(Γ )

simultaneously for the same Γ , for all possible Γ ’s.
2. For all the remaining ciphertext pairs (Ci, Cj):

6 In [9], these sets are denoted by Σ1 and Σ2. But actually they are not independent
of the choice of Γ . Since the attack procedure runs over all possible such Γ ’s, it is
more clear and more accurate to denote these sets as a function of Γ .

7 In [9], it was claimed that each structure proposes only 2190 plaintext pairs.
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Table 4. The two 6-round differentials

Round ΔXi.0 ΔXi.1 ΔXi.2 ΔXi.3

0 eΓ eΓ eΓ 0
1 eΓ eΓ 0 eΓ

2 eΓ 0 eΓ eΓ

3 0 eΓ eΓ eΓ

4 eΓ eΓ eΓ x1

5 eΓ eΓ x1 y1

6 eΓ x1 y1 z1

6 ez2 y2 x2 eΓ

7 y2 x2 eΓ eΓ

8 x2 eΓ eΓ eΓ

9 eΓ eΓ eΓ 0
10 eΓ eΓ 0 eΓ

11 eΓ 0 eΓ eΓ

12 0 eΓ eΓ eΓ

(a) Compute the 4-byte difference just before the L transformation in round
15, and denote it by Δ15

i,j (i.e., Δ15
i,j = L−1(Ci,3 ⊕ Cj,3)).

(b) For l=0 to 3:
i. Guess the l-th byte of the subkey RK15 and partially decrypt (Ci, Cj)

to get the l-th byte of the difference just after the S transformation
in round 15, denote them by (Ti,l, Tj,l).

ii. Check if Ti,l⊕Tj,l = Δ15
i,j,l and keep the pairs that satisfy the equality.

3. For all the remaining pairs (Ti, Tj):
(a) Compute the 4-byte difference just before the L transformation in round

14 and denote it by Δ14
i,j .

(b) For l=0 to 1:
i. Guess the l-th byte of the subkey RK14 and partially decrypt (Ti, Tj)

to get the l-th byte of their intermediate values just after the S
transformation in round 14, denote them by (Qi,l, Qj,l).

ii. Check if Qi,l ⊕ Qj,l = Δ14
i,j,l and keep the pairs that satisfy the

equality.
4. For all plaintext pairs (Pi, Pj) corresponding to the remaining ciphertexts

after Step 3:
(a) Compute the 4-byte difference just before the L transformation in round

0 and denote by it Δ0
i,j .

(b) For l=0 to 3:
i. Guess the l-th byte of the subkey RK0 and partially encrypt (Pi, Pj)

to get the l-th byte of their intermediate values just after the S
transformation in round 0, denote them by (Ri,l, Rj,l).

ii. Check if Ri,l⊕Rj,l = Δ0
i,j,l and keep the pairs that satisfy the equality.

5. For all the remaining pairs (Ri, Rj):
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(a) Compute the 4-byte difference just before the L transformation in round
1 and denote by Δ1

i,j .
(b) For l=0 to 1:

i. Guess the l-th byte of the subkey RK1 and partially encrypt (Ri, Rj)
to get the l-th byte of their intermediate values just after the S
transformation in round 1. Denote them by (Si,l, Sj,l).

ii. Check if Si,l⊕Sj,l = Δ1
i,j,l. If there exists a qualified pair then discard

the guess of 96 subkey bits and try another, otherwise proceed to the
next step.

6. Guess the user key from the known subkey values, and perform a trial en-
cryption. If a key is suggested then output it. Otherwise, continue with a
new guess of RK15 (i.e., go to Step 2).

The claimed time complexity of this attack is of 2107 16-round SMS4 computa-
tions in [9] and it requires 2105 chosen plaintexts.

4.3 Fixing and Improving the 16-Round Attack

Like in the rectangle attack of [9], in the impossible differential attack of [9], the
time complexity analysis is also calculated only for candidates of right pairs after
preliminary elimination (the pairs which enter Step 2), and it does not include
the time complexity of the first elimination itself. Also, the data complexity
suggested in [9] is too low.

Data Complexity Issues: Each structure is composed of 296 plaintexts of the
form (∗, ∗, (a, bi), (c, di)) where ∗ denotes all possible values and a, c denote the
chosen constants of the structure, i.e., each structure suggests (296)2/2 = 2191

pairs. In order to have the desired input difference (∗, ∗, eΓ , eΓ ), we must have
bi ⊕ bj = di ⊕ dj = ẽΓ where ẽΓ is the least significant two bytes of eΓ for
each Γ .

In a structure, for each (bi, bj , di, dj), there are 264 · 264 = 2128 possible pairs
of plaintexts. There are 216 · 216/2 = 231 possible (bi, bj) pairs, and for each pair
there exists 216 possible di’s. Given (bi, bj) and di, there exists a unique dj value
satisfying the above condition. Hence, only 2128 ·231 ·216 = 2175 of the 2191 pairs
satisfy the desired input difference.

Σ1(Γ ) is composed of 1276 � 242 possible input differences for each Γ . There-
fore, the probability of a pair to have P1 ⊕ P2 ∈ Σ1(Γ ) is 242/264 = 2−22, and
2175 · 2−22 = 2153 pairs pass this step. Note that once the plaintext pair is fixed,
Γ is also fixed, so does Σ1(Γ ) and Σ2(Γ ). Similar to Σ1(Γ ), Σ2(Γ ) is composed
of 1276 � 242 possible output differences for each Γ . Therefore, the probability
of a pair to have C1 ⊕ C2 ∈ Σ2(Γ ) is 242/2128 = 2−84 and the number of pairs
for a given structure passing the Step 1 of the algorithm is 2153 · 2−84 = 269.

Starting with S such structures, the number of plaintext pairs passing the pre-
liminary elimination is S · 269. The probability that a given subkey is discarded
by a given structure is thus, 269 · (2−7)12 = 2−15, and that it is not discarded by
all S structures is (1 − 2−15)S . In order to discard all wrong subkeys, we need



154 D. Toz and O. Dunkelman

to make sure that the probability of a wrong key to remain is about 2−96, i.e.,
2−96 = 1 − (1 − 2−15)S . Thus for S = 29, it is not probable to discard most of
the subkey guesses.

The number of required structures can be calculated as follows: There are
296 possible subkeys, and S · 2−15 pairs are expected for each subkey. In order
to have all wrong subkeys with one pair (i.e., suggested by some pair and thus
identified as wrong ones), the probability of a wrong key to have no pairs should
be less than 2−96. The probability of having no pairs is e−S·2

−15
. Solving this,

we obtain that S = 221.06 structures are needed for the attack.
Algorithm for the detection of candidate pairs: Denote a plaintext by
Pi = (Pi,0, Pi,1, (ai, bi), (ci, di)), a ciphertext by Ci = ((wi, xi), (yi, zi), Ci,2, Ci,3).
1. Insert every plaintext-ciphertext pair (Pi, Ci) of each structure, indexed by

the least significant 2 bytes of the rightmost two words of the plaintext
and the most significant two words of the corresponding ciphertext (i.e,
bi||di||wi||xi||yi||zi) into a hash table.

2. For each ẽΓ :
(a) For every non-empty bin satisfying bi < bj :

i. go to the corresponding bin:
bi||di||wi||xi||yi||zi ⊕ ẽΓ ||ẽΓ ||eΓ ||eΓ = bj||dj ||wj ||xj ||yj||zj
(i.e. wi = wj and yi = yj).

ii. For all possible combinations of entries, pick the plaintext pairs for
which:
A. Pi,1 ⊕ Pj,1 ∈ θ(eΓ )
B. Ci,2 ⊕ Cj,2 ∈ θ(eΓ )
C. Pi,0 ⊕ Pj,0 ∈ Υ (eΓ , Pi,1 ⊕ Pj,1)
D. Ci,3 ⊕ Cj,3 ∈ Υ (eΓ , Ci,2 ⊕ Cj,2)
is satisfied. (If one of them fails, do not check the remaining condi-
tions.)

3. If any pair satisfying (A)-(D) is found, analyze it in Steps 2-6 of the attack.
The time complexity of the preliminary elimination is as follows: In Step 1, we

have 296 memory accesses for each structure. There are 296 plaintext-ciphertext
pairs in a structure, therefore, the expected number of entries in each of the
296 bins is 1. The resulting number of required memory accesses for Step 2 is
216 · 296/2 = 2111 for a given structure. Therefore, the total number of memory
accesses of the algorithm is S · 2111 = 2132.06.

As mentioned earlier in data complexity issues, the number of pairs pass-
ing the preliminary elimination is 269 per structure. Therefore, starting with
S = 221.06 structures, which results in 2117.06 chosen plaintexts, the number of
plaintext pairs passing the preliminary elimination is 221.06 · 269 = 290.06. The
time complexity of the partial encryptions/decryptions in Steps 2(b), 3(b), 4(b)
and 5(b) of the algorithm is:

12∑
i=1

(
291.06 · 1

127i−1
· 28

)
· 1
16

= 295.07

However, the time complexity of the attack is dominated by the 2117.06 partial
encryptions required to obtain the ciphertext pairs in Step 1, and by the 2132.06

memory accesses performed for the preliminary elimination.
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5 Summary

In this paper, we reviewed the rectangle attack on 14-rounds and impossible
differential attack on 16-rounds SMS4 presented by Lu. We identified some flaws
in the attack algorithms and in the time and data complexity analysis of these
attacks. We then followed by correcting and improving these attacks.

We first showed that a better 12-round rectangle distinguisher with probability
2−209.78 can be found, reducing the amount of required chosen plaintexts to
perform the attack from 2121.82 to 2107.89. Then, we presented a more efficient
algorithm to perform the preliminary elimination.

We also identified some flaws in the previous impossible differential attack
of [9]. We first showed that more data is needed for the analysis, and we also
presented a more efficient algorithm for the preliminary elimination. The results
are summarized in Table 5.

Table 5. Comparison of the Results for the Existing Attacks

Attack Type #of Rounds Complexity Source
Data Timea

Integral Attack 13 216 2114 Enc [7]
Rectangle Attack 14 2121.82,b 2116.66 ,b Enc [9]

Impossible Differential Attack 16 2105,b 2107,b Enc [9]

Rectangle Attack [New] 14 2107.89 2107.89 MA Section 3.2
Impossible Differential Attack [New] 16 2117.06 2132.06 MA Section 4.3

Rectangle Attack 16 2125 2116 Enc [12]
Boomerang Attack 18 2120 2116.83 Enc [6]
Rectangle Attack 18 2124 2112.83 Enc [6]
Differential Attack 21 2118 2126.6 Enc [12]
Linear Attack 22 2117 2109.86 Enc [6]
Differential Attack 22 2118 2125.71 Enc [6]

Enc - Encryptions, MA - Memory Accesses.

a Time complexities are calculated only for the given algorithms, and they do not
include the complexity of obtaining the required data for the attack, which may be
higher.

b As noted in Sections 3.1 and 4.3, these figures are underestimated.
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