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Abstract. Home automation has recently gained a new momentum
thanks to the ever-increasing commercial availability of domotic com-
ponents. In this context, researchers are working to provide interopera-
tion mechanisms and to add intelligence on top of them. For supporting
intelligent behaviors, house modeling is an essential requirement to un-
derstand current and future house states and to possibly drive more
complex actions. In this paper we propose a new house modeling on-
tology designed to fit real world domotic system capabilities and to
support interoperation between currently available and future solutions.
Taking advantage of technologies developed in the context of the Se-
mantic Web, the DogOnt ontology supports device/network independent
description of houses, including both “controllable” and architectural el-
ements. States and functionalities are automatically associated to the
modeled elements through proper inheritance mechanisms and by means
of properly defined SWRL auto-completion rules which ease the mod-
eling process, while automatic device recognition is achieved through
classification reasoning.

1 Introduction

Domotic systems, also known as “home automation” systems, have been around
on the market for several years, however only few years ago they started to
spread over residential buildings, thanks to the increasing availability of low
cost devices and driven by new emerging needs on house comfort, energy saving,
security, communication and multimedia services.

Current domotic solutions suffer from two main drawbacks: they are produced
and distributed by various electric component manufacturers, each having differ-
ent functional goals and marketing policies; and they are mainly designed as an
evolution of traditional electric components (such as switches and relays), thus
being unable to natively provide intelligence beyond simple automation scenar-
ios. The first drawback causes an evident interoperation problem that prevents
different domotic plants or components to interact with each other, unless specific
gateways or adapters are used. While this was acceptable in the first evolution
phase, where installations were few and isolated, now it becomes a very strong
issue as many large buildings such as hospitals, hotels and universities are mix-
ing different domotic components, possibly realized with different technologies,
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and need to coordinate them as a single system. On the other hand, the roots of
domotic systems in simple electric automation prevent satisfying the current re-
quirements of home inhabitants, who are becoming more and more accustomed
to technology, requiring more complex interaction possibilities.

In the literature, solutions to these issues are usually proposed by defining
smart homes, i.e., homes pervaded by sensors and actuators and equipped with
dedicated hardware and software tools that implement intelligent behaviors.
Smart homes have been actively researched since the late 90’s, pursuing a rev-
olutionary approach to the home concept, from the design phase to the final
deployment. Involved costs are very high and prevented, until now, a real diffu-
sion of such systems, that still retain an experimental and futuristic connotation.

The approach proposed in this paper lies somewhat outside the smart home
concept, and is based on extending domotic systems, by adding devices and
agents for supporting interoperation and intelligence. Our solution takes an evo-
lutionary approach, where commercial domotic systems are extended with a low
cost device (embedded PC) allowing interoperation and supporting more so-
phisticated automation scenarios. In this case, the domotic system in the home
evolves into a more powerful integrated system, that we call Intelligent Domotic
Environment (IDE), that is able to learn user habits, to provide automatic and
proactive security, to implement comfort and energy saving policies and can be
immediately exploited, as technologies are low cost and commercially available.
IDEs promise to achieve intelligent behaviors comparable to smart homes, at a
fraction of the cost, by reusing and exploiting available technology, and providing
solutions that may be deployed even today.

A key step towards the definition of IDEs is abstract and formal modeling of
domotic device capabilities and functionalities, independently from technology
specific aspects. For example a lamp is an object that can be electrically lit
and that emits light, independently from the technology with which it is built,
provided it is controllable in some way by the domotic system. Abstraction allows
to bridge different technologies by associating real devices with their abstract
counterparts and by translating low level information into a common, shared
language.

This paper introduces DogOnt, a novel modeling language for IDEs, based
on Semantic Web technologies. By adopting well known representations such as
ontologies and by providing suitable reasoning facilities, DogOnt is able to face
interoperation issues allowing to describe:

– where a domotic device is located;
– the set of capabilities of a domotic device;
– the technology-specific features needed to interface the device;
– the possible configurations that the device can assume;
– how the home environment is composed;
– what kind of architectural elements and furniture are placed inside the home.

This information can then be leveraged by inference-based intelligent systems
to provide advanced functionality required in Intelligent Domotic Environments.
DogOnt is composed of two elements: the DogOnt ontology, expressed in OWL,
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which allows to formalize all the aspects of a IDE, and the DogOnt rules, which
ease the modeling process by automatically generating proper states and func-
tionalities for domotic devices, and by automatically associating them to the
corresponding device instances through semantic relationships. DogOnt is cur-
rently adopted to provide house modeling and reasoning capabilities to a domotic
gateway called DOG (Domotic OSGi Gateway), which is under development in
the authors’ research group and that will be distributed as open source toolkit
for building IDEs running on low cost PCs. In this context, a third component of
DogOnt, namely DogOnt queries, not presented in this paper, supports runtime
control of the IDE.

The paper is organized as follows: Section 2 introduces relevant related works,
while Section 3 describes the DogOnt ontology, starting from the initial assump-
tions and including the most interesting modeling aspects. Section 4 shows Do-
gOnt rules, i.e., how reasoning mechanisms can be used to ease device modeling
and to decouple modeled environments from model evolutions. Section 5 finally
provides final remarks and proposes future works.

2 Related Works

Modeling domotic environments through ontologies or taxonomies is an inter-
esting field, but the amount of available literature is very limited. The main
contributions are the EHS taxonomy1 and DomoML [1]. Besides, interesting and
complementary works have been done on pervasive and ubiquitous computing
modeling [2] and for context representation in ambient intelligence environments
[3,4,5].

The EHS taxonomy is a home appliance classification system designed by
the EHS (European Home System) consortium (now evolved in the Konnex al-
liance2) that mainly describes so-called white and brown goods located in a
domestic environment. It is deployed along four main classes: Meter Reading,
which groups all measurement tools, House Keeping, which groups all house-
hold appliances and systems, Audio and Video, which encompasses multimedia
appliances, and Telecommunication, grouping all tools able to establish a com-
munication. This simple taxonomy has several drawbacks that prevent effective
house modeling: first, it takes a somewhat incoherent modeling approach, as
overlapping classes are represented as different branches in the taxonomy (thus
implying un-existent disjointness unless classification under multiple branches is
allowed). Second, it doesn’t support non-taxonomic relationships between ob-
jects and does not address function and state modeling. Third, it does not deal
with representation of appliance functions, capabilities and type of permitted op-
erations, only allowing simple, static description of environments, without any
formal notion on operating capabilities of modeled entities.

DomoML [1,6] provides a full, modular ontology for representing household
environments. It describes operational and functional aspects together with some
1 The European Home System, http://www.ehsa.com
2 http://www.konnex.org

http://www.ehsa.com
http://www.konnex.org
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preliminary architectural and positioning information and is based on three core
ontologies: DomoML-env, DomoML-fun and DomoML-core. DomoML-env pro-
vides primitives for the description of all “fixed” elements inside the house such as
walls, furniture elements, doors, etc., and also supports the definition of the house
layout by means of neighborhood and composition relationships. DomoML-fun
provides means for describing the functionalities of each house device, in a tech-
nology independent manner. DomoML-core provides support for the correlation
of elements described by DomoML-env and DomoML-fun constructs, including
the definition of proper physical quantities. DomoML shows some shortcomings
when applied to real-world domotic systems. As first, it mixes too different lev-
els of detail in modeling. This implies, on one side, over-specification, e.g., to
define that a lamp can be lit, a modeler has to describe the lamp, the attached
switch button, down to the single lever. On the other side, it does not address
state modeling and doesn’t provide facilities to query or auto-complete models,
thus requiring a cumbersome modeling effort whenever a new house must be
described.

In the context of pervasive computing, the SOUPA ontology [2] provides a
modular modeling structure that encompasses vocabularies for representing in-
telligent agents, time, space, events, user profiles, actions and policies for security
and privacy. SOUPA is organized into a core set of vocabularies, and a set of
optional extensions. Core vocabularies describe concepts associated with per-
son, agent, belief-desire-intention, action policy, time, space and event. These
concepts are expressed as 9 distinct ontologies aligned to well known vocabu-
laries such as FOAF [7], DAML Time [8], OpenCyc [9] and RCC [10]. SOUPA
cannot be directly applied to support interoperability and intelligence for do-
motic systems as many domain-specific concepts are lacking (e.g., no primitives
are provided for modeling devices, functionalities, etc.), however it can be useful
in a multilayered approach, where DogOnt provides domain-specific, operative
knowledge and SOUPA allows modeling high level, pervasive concepts, easing
the implementation of intelligent behaviors on top of it.

3 DogOnt Ontology

The DogOnt ontology is designed with a particular focus on interoperation be-
tween domotic systems. Base assumptions are directly driven by real-world case
studies [11], mainly focusing on device, state and functionality modeling. DogOnt
(whose features are reported in Table 1) is deployed along 5 main hierarchy trees
(Figure 1):

– Building Thing: modeling available things (either controllable or not);
– Building Environment : modeling where things are located;
– State: modeling the stable configurations that controllable things can

assume;
– Functionality: modeling what controllable things can do;
– Domotic Network Component : modeling features peculiar of each domotic

plant (or network).
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Table 1. DogOnt ontology statistics

Feature Value

Expressivity ALCHOIN(D)
Named Classes 167
Number of Siblings per Node (mean) 5
Restrictions 126
Universal restrictions 21
Cardinality restrictions 54
hasValue restrictions 41
Object properties 18
Datatype properties 26

3.1 Environment Modeling

Environment modeling is achieved by means of the DogOnt concepts inheriting
from Building Environment and from Building Thing (Figure 1), both already
defined in DomoML [1] but differently formalized in DogOnt to overcome the
limitations in IDE modeling described in section 2. Modeling detail is limited to
the minimal set of primitives needed to locate domotic components, furniture
elements and appliances inside a single flat or living unit. Entire buildings can
be represented by extending this section of the ontology through subclassing of
Building Environment and through the definition of proper relationships (e.g.
by introducing principles from spatial modeling and reasoning [12,13]).

The BuildingEnvironment tree supports a coarse representation of domestic
environments, as whole architectural units, including: several types of Room,
the Garage and the Garden. The BuildingThing tree, instead, represents all
the elements that can be located or that can take part in the definition of a
BuildingEnvironment. DogOnt defines a clear separation between objects that
can be controlled by a domotic system (Controllable class) and all the other
objects that can be found in a home (UnControllable class); they are explicitly
modeled as disjoint classes.

Controllable objects can be appliances or can belong to house plants such
as the HVAC3 plant. Appliances are modeled through the homonymous class
and are further subdivided in White Goods and Brown Goods, according to
the EHS taxonomy. House plants include HVAC systems, electric systems and
security systems. They differ from appliances as they are usually installed in fixed
positions, and they encompass several components that must be coordinated to
reach a specific goal (e.g., delivering electrical power).

Uncontrollable objects are all the home components that cannot be directly
controlled by a domotic system. They are mainly subdivided in Furniture and
Architectural elements. Furniture models all the elements usually adopted as
furniture like chairs, cupboards, desks, etc. Instead, Architectural objects model
all the elements that define a living environment such as Walls, Floors, etc.
They are mainly grouped in Vertical and Horizontal elements, which are further
3 Heating, Ventilating, and Air Conditioning
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Fig. 1. An overview of the DogOnt ontology

subdivided in subclasses. Architectural modeling is somewhat limited to simple
partitions (walls, floors) and openings (windows, doors) and may be extended
for implementing advanced modeling, e.g., to support architectural design.

3.2 Device Modeling

All the objects referred to as “device,” in this paper, are objects belonging to
the Controllable sub-tree. A controllable object differs from an uncontrollable
one as it must satisfy several restrictions on Functionalities and States. It must
possess at least the functionality of being queried about its operative condition
(QueryFunctionality) and it must possess a state, intended as the ability of
reaching a stable configuration identifiable in some way: a lamp is able to be
steadily on or off, a flashing light can be on, off or flashing, a shutter can be
moving up, down or being steady, etc.

Example (part 1): We consider a dimmer lamp connected to a KNX network,
and located in the living room, as sample device. On the basis of formalization
defined until now, our dimmer lamp is an instance of the class Dimmer Lamp,
which in turn is a Lamp, a Lighting, an Electric System, a HousePlant and a
Controllable object. The corresponding OWL formalization fragment is reported
in Figure 2. As can be easily noticed, while the position inside the house is
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<DimmerLamp rdf:ID="sample_dimmer_lamp">

<isIn rdf:resource="#sample_living_room"/>

<rdf:type rdf:resource="#KNXNetworkComponent"/>

<individualAddress>101</individualAddress>

<groupAddress>12</groupAddress>

<hasControl rdf:resource="#switch_sample_dimmer_lamp"/>

</DimmerLamp>

Fig. 2. Example (part 1) - representation of a sample DimmerLamp instance

explicitly modeled, as well as the fact that our dimmer lamp is actually con-
nected to a KNX network, and can be controlled by a switch. The inheritance of
characteristics from ancestors such as Lighting or Controllable is left to a sim-
ple reasoning step, where the transitive closure of the model is computed and
properties are propagated along the ontology isA relations.

3.3 Functionality Modeling

Each device class, in DogOnt, is associated to a set of different functionalities,
by means of the hasFunctionality relationship. Several approaches can be chosen
for functionality modeling: a compositional approach, as in DomoML, where the
functionalities of a given object derive from the composition of functionalities
provided by its components, or a descriptive model, where functionalities are
described apart and then associated to the single devices. DogOnt takes this last
approach and models functionalities by objectives and by variation modality.
This allows to use only one instance per functionality, as device capabilities are
modeled independently from device classes.

Each functionality defines the commands to modify a given device property
(e.g., light intensity) and the values they can assume. Functionalities are divided
in different classes on the basis of their goals: Control Functionalities model the
ability to control a device or a part of it, e.g., to open up a shutter. Notification
Functionalities represent the ability of a device to autonomously advertise its in-
ternal state and in particular the ability of detecting and signaling state changes.
Query Functionalities encompass the capabilities of a device to be queried, or
polled, about its condition, e.g., failure, internal state values, etc.

Functionalities are also modeled according to the way they modify the inter-
nal state of a given device; two main variation families are provided: Continuous
Functionalities that allow to change device characteristics (e.g., the light in-
tensity) in a continuous manner, between a minimum and a maximum value,
and Discrete Functionalities that only allow abrupt changes of device proper-
ties, e.g., to switch a light on. Most domotic devices such as switches, plugs and
lights can be controlled by means of only 2 or 3 different commands (e.g., on-
off, open-close, up-down-rest, etc.) while functionalities controlled by more than
3 commands are rare. Reflecting this situation, the DogOnt ontology explicitly
models Discrete Functionalities as mono-, double- and triple-valued functional-
ities. Clearly, these 3 subclasses do not define the complete universe of possible
discrete functionalities, therefore multi-valued capabilities can be modeled by
directly instantiating the Discrete Functionality class.
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<owl:Class rdf:ID="DimmerLamp">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Lamp that varies the level of illumination</rdfs:comment>

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:hasValue>

<LightRegulationFunctionality

rdf:ID="LightRegulationFunctionalityInstance"/>

</owl:hasValue>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasFunctionality"/>

</owl:onProperty>

</owl:Restriction>

<owl:Class rdf:about="#Lamp"/>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

DimmerLamp</rdfs:label>

</owl:Class>

Fig. 3. The definition of DimmerLamp with associated functionalities

Example (part 2): Let us re-consider the sample dimmer lamp definition started
in section 3.2; the capabilities of the lamp can be modeled by means of proper
functionalities. Our dimmer lamp, being an instance of the class Dimmer Lamp,
is connected to the unique LightRegulationFunctionalityInstance (continuous)
defined in DogOnt, which models the ability to dim the emitted light. As Dim-
merLamp is a subclass of Lamp, it inherits the related OnOffFunctionalityIn-
stance (discrete) modeling the capability to switch on and off the lamp. Finally,
a Lamp is a specific subtype of Controllable to which is associated the Query-
FunctionalityInstance representing the capability of the lamp to be queried about
its characteristics (e.g., the dimming level). Figure 3 shows the corresponding
OWL excerpt.

3.4 State Modeling

States are modeled following the same descriptive approach adopted for function-
alities; they must be instantiated for each home device instance since different
devices belonging to the same conceptual class, e.g., Lamp, can be in different
conditions, e.g., on or off.

States are classified according to the kind of values they can assume: contin-
uously changing qualities are modeled as Continuous States with an associated
continuousValue datatype property of type xsd:float. Instead, qualities that
can only assume discrete values (e.g., On/Off, Up/Down, etc.) are classified
as Discrete States. Discrete states are subdivided in double- and triple-valued
states, while states having more than 3 stable configurations are modeled by
directly instantiating the Discrete State concept (see Figure 1 for the complete
hierarchy).

Discrete states are characterized by the valueDiscrete datatype property that
describes the current state and by a variable set of possibleStates (datatype
property) that models all the possible values that valueDiscrete can assume
for the current state type. Figure 4 reports the definition of the OnOffState
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<owl:Class rdf:about="#OnOffState">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

State: on - off</rdfs:comment>

<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

OnOffState</rdfs:label>

<rdfs:subClassOf rdf:resource="#DoubleValuedState"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#possibleStates"/>

</owl:onProperty>

<owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

On</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Off</owl:hasValue>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#possibleStates"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Fig. 4. The definition of the OnOffState

typically associated to all Lamp instances, the valueDiscrete property is defined
in the Discrete State class and inherited by all subclasses.

Example (part 3): Having defined state modeling, the sample dimmer lamp
instance can now be completely defined (Figure 5). As can easily be noticed,
many properties of this simple object are not explictly modeled, e.g., its asso-
ciated functionalities and the relative commands, but need to be deduced by
performing a simple reasoning step that computes the transitive closure of the
model, turning implicit knowledge into explicit information (Figure 6).

3.5 Network Modeling

Interoperation between domotic systems requires the definition of a technology
independent formalization that allows to operate seamlessly with different de-
vices, produced by different manufacturers and operating in plants with different
technologies. A minimum set of plant-dependent knowledge must, however, be
available for enabling interoperation systems (gateways) to interact with phys-
ical devices. DogOnt models such information by means of an ontology branch
stemming from the Domotic Network Component concept.

<DimmerLamp rdf:ID="sample_dimmer_lamp">

<isIn rdf:resource="#sample_living_room"/>

<rdf:type rdf:resource="#KNXNetworkComponent"/>

<individualAddress>101</individualAddress>

<groupAddress>12</groupAddress>

<hasControl rdf:resource="#switch_sample_dimmer_lamp"/>

<hasState>

<LightIntensityState

rdf:ID="DimmerLamp_Livingroom1_LightIntensityState"/>

</hasState>

</DimmerLamp>

Fig. 5. The OWL definition of the sample DimmerLamp instance
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Fig. 6. The complete definition of the sample DimmerLamp instance, with inherited
properties

Table 2. Specific features of network-level gateways

Gateway-specific property BTicino KNX

connection timeout x x
connection trials before failure x x
IP address x x
port x x
sleeptime x x
multicast address - x
UDP port - x
polling interval - x

Every controllable object belonging to a domotic plant is modeled as an instance
of a specific controllable concept (e.g., aLamp) and, at the same time, as an instance
of a properNetworkComponent.Currently 2network components are alreadymod-
eled: the KNXNetworkComponent, representing KNX-compliant devices and the
BTicinoNetworkComponent, representing BTicino MyHome devices.

No subclasses are required except for network-level gateways that need more
fine grained descriptions to model features such as IP addresses, polling inter-
vals, etc. (see Table 2 for a complete reference). These features are needed by
integration systems to interface domotic networks, thus enabling interoperation.

4 DogOnt - Rules

DogOnt provides different reasoning mechanisms responding to different goals: to
ease model instantiation, to verify the formal correctness of model instantiations
(consistency checking) and to support automatic recognition of device instances
from their features (i.e., to support scalability and model evolution):
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Model instantiation is a relatively complex task that requires generating de-
vice, and state, instances, and to properly link them by means of relation-
ships. Due to the many modeling aspects considered in DogOnt, this process
can be quite difficult and error prone. Therefore, a suitable set of auto-
completion rules has been defined, which allows, with a single deduction
step, to automatically create states and relationships associated to specific
type of devices.

Consistency checking allows to verify the formal correctness of generated
model instantiations, ensuring correct operation of systems built on top of
them.

Classification reasoning is used to automatically recognize device classes,
starting from device functional descriptions. This allows to decouple the
DogOnt model evolution from model instantiation, thus enabling systems
to operate with unknown device classes, on one side, and to automatically
re-classify existing devices with respect to new classes defined in forecoming
DogOnt model versions, on the other side.

4.1 Rule-Based Model Instantiation

DogOnt represents each device as an object having a given set of functionalities
and states (Section 3). Functionalities are automatically added to every device
instance by means of suitable restrictions defined at the class level. They are
shared by all devices of the same class. On the contrary, states are peculiar of
each device.

Manually creating and associating states and devices is absolutely tedious for
designers as it is repetitive and can lead to modeling errors and/or inconsistencies
(this also happens in the approach taken by DomoML). Thanks to the repeti-
tive nature of the operation, the process can be easily automated. Rule-based
reasoning can, in fact, generate the needed instances and links in an automatic
and verified manner.

Several rule languages can be applied to the DogOnt ontology; among them,
SWRL [14] appears the most suitable solution as it allows to directly embed rules
in the DogOnt ontology (SWRL constructs can, in fact, be expressed in OWL).
SWRL is a powerful rule language based on Horn-like rules [15], that guarantees
decidability in finite time. The most interesting feature of SWRL is the ability
to provide/define so-called built-in operators, that can implement non-logic op-
erations such as mathematic calculations, string functions, etc. Built-ins [14] can
either be customly built or can belong to standard sets defined in SWRL-B4 and
SWRL-X5 libraries. SWRL-X, in particular, provides class/instance generation
built-ins that, combined with string elaboration built-ins and proper model-
ing, allow to autocomplete states for device instances. Figure 7 shows a sample
SWRL rule for attaching state instances to SimpleLamp instances. It must be

4 http://www.daml.org/rules/proposal/builtins.html
5 http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl

http://www.daml.org/rules/proposal/builtins.html
http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl
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SimpleLamp(?x)^rdfs:label(?x,?y)^

swrlb:stringConcat(?z,?y,"_OnOffState")^

swrlx:createOWLThing(?w,?z)->

OnOffState(?w)^rdfs:label(?w,?z)^hasState(?x,?w)

Fig. 7. The auto-completion rule for SimpleLamp states

noticed that to generate human-readable labels and identifiers for SWRL-created
states, instances must have a human-readable rdfs:label.

SWRL rules can be executed by any SWRL-compliant rule engine. In
Protégé [16], for example, the SWRLTab allows to use the Jess6 rule engine
to execute SWRL statements, embedding the newly generated knowledge in the
active model. In this way, during house modeling, a domotic designer can in-
stantiate the needed devices without caring of states. Then, she can run the
Jess engine with the DogOnt SWRL rules obtaining as result a complete model.
Consistency problems are completely avoided for state modeling as rules are
predefined and a priori validated.

4.2 Classification Reasoning

Classification reasoning is a type of automated inference that allows to infer the
class(es) to which an instance belongs, by checking its properties against the set
of necessary and sufficient conditions that define class membership. These condi-
tions are usually adopted in consistency checking to ensure that class instances
respect the restrictions defined on properties for individuals belonging to a given
class. For example, a DimmerLamp instance must have a LightRegulationFunc-
tionality, must only possess one LightIntensityState and must be a Lamp. Every
asserted DimmerLamp instance respecting these constraints is valid. This kind
of reasoning can also be used to discover new class memberships, i.e., to infer in-
stance types: in a sample scenario a given domotic system provides a device able
to variate light intensity. The home modeler does not know the existence of the
DimmerLamp class, and decides to model the device as a Lamp instance, with a
LightIntensityState and a LightRegulationFunctionality. Classification reasoning
allows to discover that the modeled device is actually a DimmerLamp, and can
therefore be treated in the way asserted DimmerLamps are.

Classification reasoning is a fundamental part of formal modeling of home
environments for domotic interoperability. In fact, as manufacturers are always
adding new features to their networks and new technologies are emerging too,
house models frequently become un-synchronized with the actual environment
configuration or capabilities. Being able to automatically discover new classes for
already defined instances allows to easily extend/amend the DogOnt ontology
without risking to disrupt existing models.

6 The Jess rule engine, http://www.jessrules.com/

http://www.jessrules.com/
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5 Conclusions

In this paper we introduce DogOnt, a new modeling approach for domotic envi-
ronments composed of the DogOnt ontology and a set of DogOnt rules. DogOnt
provides functionality and state auto-completion, and supports model evolution
through classification reasoning. Modeling is done at a detail level that reflects
the actual needs of interoperation between real-world domotic systems and sup-
ports the development of Intelligent Domotic Environments. Architectural mod-
eling is also provided, although in a very limited, but extensible form. Novelty
points include the descriptive modeling approach, more flexible than approaches
available in the literature, and the definition of auto-completion mechanisms
through reasoning, which eases the house modeling process.

Formal modeling of house environments through ontology-based technologies
is a promising research stream for domotic systems and smart homes. Ontologies
allow, on one side, to achieve a natural abstraction of networks and devices that
can be used for supporting interoperability. On the other hand, well studied
reasoning techniques can both ease the modeling process and provide support
for the implementation of complex, intelligent behaviors inside domotic homes.

The authors are currently working on the design and implementation of DOG,
a domotic gateway based on DogOnt and OSGi, on structural checks, and on
verification of safety properties through rule-based reasoning on DogOnt.
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