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Abstract. Identifying cancer molecular patterns robustly from large dimen-
sional protein expression data not only has significant impacts on clinical ontol-
ogy, but also presents a challenge for statistical learning. Principal component 
analysis (PCA) is a widely used feature selection algorithm and generally inte-
grated with classic classification algorithms to conduct cancer molecular pattern 
discovery. However, its holistic mechanism prevents local data characteristics 
capture in feature selection. This may lead to the increase of misclassification 
rates and affect robustness of cancer molecular diagnostics. In this study, we 
develop a nonnegative principal component analysis (NPCA) algorithm and 
propose a NPCA-based SVM algorithm with sparse coding in the cancer mo-
lecular pattern analysis of proteomics data. We report leading classification re-
sults from this novel algorithm in predicting cancer molecular patterns of three 
benchmark proteomics datasets, under 100 trials of 50% hold-out and leave one 
out cross validations, by directly comparing its performances with those of the 
PCA-SVM, NMF-SVM, SVM, k-NN and PCA-LDA classification algorithms 
with respect to classification rates, sensitivities and specificities. Our algorithm 
also overcomes the overfitting problem in the SVM and PCA-SVM classifica-
tions and provides exceptional sensitivities and specificities.  

Keywords: Nonnegative principle component analysis, sparse coding, support 
vector machine (SVM). 

1   Introduction 

Molecular diagnostics has been challenging traditional cancer diagnostics in oncology 
by generating gene/protein expression data from a patient’s tissue, serum or plasma 
samples through the DNA and protein array technologies. In clinical oncology, the 
gene/protein expressions are molecular patterns of cancers, reflecting gene/protein 
activity patterns in different types of cancerous or precancerous cells. However, 
robustly classifying cancer molecular patterns to support clinical decision making in 
early cancer diagnostics is still a challenge because of the special characteristics of 
gene and protein expression data. In this study, we focus on the mass spectrometry 
based protein expression data (MS data).    
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Similar to general gene expression data, MS data can have large or even huge di-
mensionalities. It can be represented by a n×m matrix, each row of which represents 
the intensity values of a measured data point at a mass charge ratio (m/z) across differ-
ent biological samples; each column of which represents the intensity values of all 
measured data points at different m/z values in a sample. Generally, the total number 

of measured data points is in the order of 5 610 ~ 10 and the total number of biological 
samples is in the magnitude of hundreds, i.e., the number of variables is much greater 
than the number of biological samples. Although there are a large number of variables 
in these data, only a small set of variables have meaningful contributions to the data 
variations. Actually, these high-dimensional data are not noise-free. This is because the 
raw data contains systematic noise and the preprocessing algorithms can not remove it 
completely. 

1.1   Principal Component Analysis Is a Holistic Feature Selection Algorithm 

Many feature selection algorithms are employed to reduce protein expression data 
dimensions and decrease data noise before further classification or clustering [1,2]. 
Principal component analysis (PCA) is a commonly used approach among them [3,4]. 
It projects data in an orthogonal subspace generated by the eigenvectors of the data 
covariance or correlation matrix. The data representation in the subspace is uncorre-
lated and the maximum variance direction-based subspace spanning guarantees the 
least information loss in the feature selection. However, as a holistic feature selection 
algorithm, PCA can only capture the global characteristics of data instead of local 
characteristics of data. This leads to difficulty in interpreting each principal compo-
nent (PC) intuitively, because each PC contains some levels of global characteristics 
of data. In the cancer pattern analysis of proteomics data, the holistic mechanism will 
prevent the following supervised/unsupervised learning algorithm from capturing the 
local behaviors of proteomics data in the clustering/classification. This would lead to 
the increase of misclassification rates and finally affect the robustness of the cancer 
molecular diagnostics.  

One main reason for the holistic mechanism of the PCA is that data representation 
in the classic PCA is not ‘purely additive’, i.e. the linear combination in the PCA 
contains both positive and negative weights and each PC consists of both negative and 
positive entries. The positive and negative weights are likely to cancel each other 
partially in the data representation. In fact, it is more likely that weights contributing 
from local features are partially cancelled out because of their frequencies. This di-
rectly leads to the holistic feature selection characteristics in the PCA. 

Imposing nonnegative constraints on the PCA can remove the likelihood of the 
partial cancellation and make data representation consists of only additive compo-
nents. In addition, it also contributes to sparse data representation. In the context of 
feature selection, adding nonnegative constraints on the PCA can improve the data 
locality in feature selection and make the data latent structure explicit.  

Adding nonnegativity on the PCA is also motivated by the cancer molecular pat-
tern discovery itself, i.e., protein expression data generally are represented as positive 
or nonnegative matrices naturally or after simple preprocessing. It is reasonable to 
require their corresponding dimension reduction data to be positive or at least  
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nonnegative to maintain data locality in order to catch more subtle or local behaviors 
in the following clustering or classification-based pattern discovery. 

In this study, we present the nonnegative principal component analysis (NPCA) al-
gorithm and demonstrate the superiority of the NPCA-based SVM classification algo-
rithm (NPCA-SVM) with sparse coding, for three benchmark mass spectral serum 
datasets, by directly comparing it with five other similar classification algorithms, i.e., 
SVM, PCA-SVM, NMF-SVM, k-NN and PCA-LDA. This paper is organized as 
follows. Section 2 presents the nonnegative principal component analysis (NPCA) 
and NPCA-based SVM classification. Section 3 gives the experimental results of the 
NPCA-based SVM algorithm with sparse coding under 100 trials of 50% holdout 
cross validations for each dataset. It also compares the NPCA-SVM algorithm with 
the other five classification algorithms for the same training and test datasets. Finally, 
Section 4 concludes the paper. 

2   Nonnegative PCA-Based Classification 

Nonnegative PCA can be viewed as an extension of classic PCA by imposing PCA 
with nonnegativity constraints to capture data locality in the feature selection. 

Let 1 2( , , )nX x x x= , d
ix ∈ℜ , be a zero mean dataset, i.e.,

1
0

n

ii
x

=
=∑ . Then, the 

nonnegative PCA can be formulated as a constrained optimization problem to find 
maximum variance directions under nonnegative constraints as follows. 
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norm for a matrix A is defined as
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In fact, the rigorous orthonormal constraint under non-negativity is too strict for the 
practical cancer molecular pattern analysis, because it requires only one nonnegative 
entry in each column of U. The quadratic programming problem with the orthonor-
mal-nonnegativity condition can be further relaxed as 

                                         
2 2
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where 0α ≥ is a parameter to control the orthonormal degree of each column of U. 

After relaxation, matrix U is a near-orthonormal nonnegative matrix, i.e., ~TU U I . 
Computing the gradient of the objective function with respective toU , we have 

                                       ( 1) ( ) ( ) ( ), 0UU t U t t J t Uη+ = − ∇ ≥                                 (3)  
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where ( , ) ( ) 2 ( )T T T
U J U U X X I U U Uα α∇ = + −  and ( )tη is the iteration step size in 

the t time level iteration. For convenience, we select the step size in the iteration as 1. 
In fact, this is equivalent to finding the local maximum of a function ( )slf u under the 

conditions: 0slu ≥ , 1, 2 ; 1, 2s d l n= = , in the scalar level. 

                                          4 2
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where 2c  and 1c  are the coefficients of the 2

slu and slu ; 0c is the sum of the constant 

items independent of slu . The local maximum finding of the equation (4) is actually a 

set of cubic polynomial nonnegative root finding. Computing the stationary points for 
the scalar function ( ),slf u we have a set of cubic function root finding prob-

lems: ( ) ( ) / 0sl sl slp u df u du= =  (see the appendix for details). The final U matrix is a 

set of nonnegative roots of the equation. By collecting the coefficients of slu  and 2
slu , 

we have 
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Actually, the constant term 0c kα= −  does not affect the entries of the matrix U. Only 

coefficients 1c and 2c are involved in the nonnegative root finding. The algorithm com-

plexity of NPCA is ( )O dkn N× , where N is the total iteration number used in the 

algorithm. The detailed parameter derivations about equation 5 and 6 can be found in 
the appendix. Some authors also proposed a similar approach to solve the nonlinear 
optimization problem induced by a nonnegative sparse PCA [5]. However, their re-
sults lack technical soundness in the key parameter derivations. 

2.1   NPCA-Based Classifications 

The NPCA-based cancer molecular pattern classification employs the nonnegative 
principal component analysis (NPCA) to obtain a nonnegative representation of each 
sample in a low-dimensional, purely additive subspace spanned by the meta-variables 
first. A meta-variable is a linear combination of the intensity values of the measured 
data points for the MS data. The nonnegative representation for each sample is called 
a meta-sample, which is the prototype of the original sample with small dimensional-
ities. Then, a classification algorithm aπ , which is the SVM algorithm in this study, is 

applied to the meta-samples to gain classification information. 
Theoretically, NPCA-based classification is rooted from a special nonnegative ma-

trix factorization (NMF) [6] that we propose in this study: the nonnegative principal 
component induced NMF. We brief the principle of the NPCA-induced NMF as  
follows. 
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Let ,d nX d n×∈ℜ , be a nonnegative matrix, which is a protein expression data-

set with d number of samples for n number of measured points. Let d dU ×∈ℜ be the 
nonnegative PCs, a near-orthogonal matrix for X before any further dimension selec-

tion. Projecting TX into the purely additive subspace generated by U, we obtain the 

nonnegative projection .TX U P=  Alternatively, considering the PC matrix U is a 
near-orthogonal matrix, we can view it as an orthogonal matrix to decompose the data 

matrix, i.e., ~T TX PU , where the nonnegative matrix P is equivalent to the basis 

matrix W and matrix TU is equivalent to the feature matrix H in the classic NMF: 
X~WH. Similarly, the decomposition rank r in the NMF is the corresponding selected 
dimensionality in the nonnegative principal component analysis.  

The NPCA-induced NMF can be also explained as follows. Each row of U is the 
corresponding meta-sample of each sample of X in the meta-variable space: 

~T T
i iX PU . The meta-variable space is a subspace generated by columns of the basis 

matrix P , where each column/basis is a meta-variable. The meta-variable space is a 
purely additive space where each variable can be represented as the nonnegative lin-
ear combination of meta-variables as shown below. 

                                                 
1

, 1
r

T T
i ij j

j

X U P r d
=

= ≤ ≤∑                                            (7)  

Based on the observation that proteomics data are nonnegative data or can be con-
verted to corresponding nonnegative data easily, we have the NPCA-based SVM 
classification algorithm for proteomics data, i.e., starting from the NPCA-induced 
NMF for the protein expression dataset X, we input the corresponding normalized 
meta-samples

2
/U U U= to the SVM algorithm to conduct classification. 

2.2   Sparse-Coding 

To improve the generality of the NPCA-SVM classification algorithm, we conduct a 
sparse coding for the nonnegative PC matrix U. The sparseness of a nonnegative 
vector v with n tuples is a ratio between 0 and 1, which is defined in the equation (8) 
according to the relationship of two norms [7].  

                                       1 2
/

( )
1

n v v
sparseness v

n

−
=

−
                                           (8) 

The sparse coding of the nonnegative PC matrix U finds the corresponding non-
negative vector satisfying the specified sparseness degree for each row 

, 1,2 .T
iU i k=  In other words, for each row vector 0x ≥ , the nearest vector 0v ≥  in 

the Euclidean sense is found that achieves a specified sparseness s . For convenience, 

we first normalize the nonnegative vector x such that
2

1x =  before the sparse cod-

ing. Then, we project x into the hyperplane:
1iv x=∑ and compute the nonnegative 
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intersection point with the hypersphere 2 1iv =∑  under the condition 

1
( ) / ( 1)s n x n= − −  in real time to finish its sparse coding. 

2.3   Cross Validations  

Since different training sets will affect classification results of a classification algo-
rithm, we conducted the NPCA-SVM classification under the 50% holdout cross 
validation 100 times, i.e., 100 sets of training and test datasets are generated randomly 
for each cancer dataset in the classification, to evaluate the expected classification 
performances. To improve computing efficiency, the PC matrix U in the nonnegative 
principal component analysis (NPCA) is cached from the previous trial and used as 
the initial point to compute the next principal component matrix in the computation.  

3   Experimental Results 

Our experimental data consists of three mass spectral serum profiles: Ovarian, Ovar-
ian-qaqc (quality assurance/quality control) and Liver [8,9]. These datasets include 
one low resolution dataset and two high resolution datasets. They are generated from 
the Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) and 
SELDI-QaTOF (a hybrid quadrupole time-of-flight mass spectrometry) technologies 
respectively. The detailed information about the datasets is given in the Table 1. 

Table 1. Three Mass Spectral Serum Profiles. 

Dataset Data type #M/Z #Samples 
 
Ovarian 

SELDI-TOF 
Low resolution 

 
15142 

91 controls 
162 cancers 
 

 
Ovarian-qaqc 

SELDI-TOF 
High resolution 

 
15000 

95 controls 
121 cancers 
 

Liver SELDI-QqTOF 
High resolution 

 
6710 

181 controls 
176 cancers 

3.1   Preprocessing and Basic Feature Selection  

We conducted the basic preprocessing steps for each mass spectrometry dataset: spec-
trum calibration, baseline correction, smoothing, peak identification, intensity nor-
malization, and peak alignments. In addition, we employed the two-sided t-test to 
conduct basic feature selection for the three proteomics datasets before classifications. 
After the basic feature selection, 3780, 2000 and 3000 most significant features are 
selected for the 1st, 2nd and 3rd dataset respectively, before further classifications. 

3.2   Classifications 

We compared the classification results from the NPCA-SVM algorithm under the 
sparse coding (α=10, sparseness=0.20) with the PCA-SVM and SVM algorithm under  
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Table 2. Average classification performance of three algorithms 

Average 
Sensitivity 

Average 
Specificity 

Average 
Classifying rates 

Ovarian    
npca-svm-linear 98.35±1.03 99.98±0.24 98.94±0.65 
npca-svm-rbf 100.0±0.0 99.42±0.99 99.79±0.35 
svm-linear 100.0±0.0 98.63±2.21 99.50±0.83 
svm-rbf 100.0±0.0 0.0±0.0 64.13±2.88 
pca-svm-linear 99.98±0.17 99.93±0.51 99.96±0.26 
pca-svm-rbf 100.0±0.0 0.0±0.0 64.13±2.88 
Ovarian-qaqc    
npca-svm-linear 98.01±1.94 99.27±0.90 98.70±0.89 
npca-svm-rbf 98.11±2.25 99.57±0.82 98.91±0.98 
svm-linear 96.16±3.52 96.97±2.19 96.57±1.99 
svm-rbf 97.00±17.18 3.00±17.18 54.92±44.8 
pca-svm-linear 97.14±2.16 97.94±1.57 97.12±1.17 
pca-svm-rbf 3.20±17.22 96.80±17.22 54.95±44.7 
Liver    
npca-svm-linear 97.68±1.71 94.40±2.22 96.02±1.35 
npca-svm-rbf 98.35±1.67 96.20±2.01 97.25±1.30 
svm-linear 92.57±3.84 91.04±3.76 91.78±2.27 
svm-rbf 38.00±48.78 62.00±48.78 47.92±2.00 
pca-svm-linear 90.96±3.69 89.57±3.56 90.21±1.99 
pca-svm-rbf 38.00±48.78 62.00±48.78 47.92±2.00 

 

linear and Gaussian kernels, for each proteomics dataset under the same 100 sets of 
training and test data (trials). The 100 trials of training/test data for each dataset are 
generated under the 50% holdout cross validations. The average classification rates, 
sensitivities and specificities and their corresponding standard deviations from each 
classification algorithm are given in the Table 2. 

From the classification results, we can make the following observations. 1. It is clear 
that the PCA-SVM, SVM classification algorithms suffer from overfitting under a 
Gaussian (‘rbf’) kernel. This is due to the complementary results of the sensitivities 
and specificities for the three proteomics datasets. For instance, under a ‘rbf’ kernel, 
the PCA-SVM and SVM classification for the Ovarian cancer dataset can only classify 
the positive (cancer) targets. Both of them have an average classification rate of 
64.13%, which is approximately the ratio of the positive targets among the total sam-
ples: 162/253=64.03%. 2. There is no overfitting problem under a ‘rbf’ kernel, for the 
NPCA-SVM algorithm with sparse coding. On the other hand, the NPCA-SVM has the 
best classification performance among all the algorithms for the three protein expres-
sion datasets. 3. Under a linear kernel, the PCA-SVM achieves slightly better or  
comparable results than the SVM for the two ovarian datasets. Similarly, the SVM 
classification also has slightly better average classification rates, sensitivities and 
specificities than the PCA-SVM for the Liver dataset. Thus, we can say that their clas-
sification performances for the experimental datasets are comparable. 4. The classifica-
tion results of the NPCA-SVM have leading advantages for the three datasets, com-
pared with those of the PCA-SVM and SVM classifications. Actually, the average 
specificities for the two ovarian cancer datasets reach 99%+ under the NPCA-SVM  
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Fig. 1. Comparison on the SVM classification under a linear kernel and the NPCA-SVM 
classification under a ‘rbf’ kernel. For the first dataset, NPCA-SVM (‘rbf’) has slightly better 
classification performance than the SVM (‘linear’). For the 2nd and 3rd datasets, the NPCA-
SVM (‘rbf’) classification has obvious leading advantages over the SVM (‘linear’) 
classification. 

classification. The 99%+ specificity level is the population screening requirement 
ratio in general clinical diagnostics. Figure 1 shows the performances of the SVM 
algorithm under a linear kernel and the NPCA-SVM algorithm under a ‘rbf’ kernel for 
three datasets.     

3.3   Compare Classification Results with Those of Other Algorithms  

We also compare the classification performance of the NPCA-SVM algorithm with 
those of three other classification algorithms: k-NN, PCA-LDA and NMF-SVM. For 
each dataset, we still use the previous 100 trials of training/test datasets generated 
under the 50% holdout cross validations in the classifications.  

The k-NN and PCA-LDA are widely used algorithms in proteomics data classifica-
tions. The k-NN is a simple Bayesian inference method. It determines the class type 
of a sample based on the class belonging to its nearest neighbors, which are measured 
by correlation, Euclidean or other distances. The PCA-LDA conducts the PCA proc-
essing for the training samples and projects the test samples in the subspace spanned 
by the principal components of the training data. Then, linear discriminant analysis 
(LDA) is used to classify the projections of the test data, which is equivalent to solv-
ing a generalized eigenvalue problem [10].  

The NMF-SVM algorithm is similar to the NPCA-SVM classification algorithm. It 
conducts the SVM classification for the meta-samples of a proteomics dataset, which 
are the columns of the feature matrix H in the NMF. We briefly describe the  
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NMF-SVM algorithm as follows. The NMF-SVM classification decomposes the 
nonnegative protein expression data mnX ×ℜ∈ into the product of two nonnegative 
matrices: WHX ~ , under a rank r with the least reconstruction error in the Euclidean 
sense. The matrix rnW ×ℜ∈ is termed a basis matrix. Its column space sets up a new 
coordinate system for X. The matrix mrH ×ℜ∈ is called a feature matrix. It stores the 
new coordinate values for each variable of X in the new space. Then, the SVM algo-
rithm is employed to classify the corresponding meta-sample of each sample in the 
protein expression matrix X. Each meta-sample is just the corresponding column in 
the feature matrix H. 

In the k-NN, the distance measures are chosen as the correlation and Euclidean dis-
tances. The number of nearest neighbors for each test sample is selected from 2 to 7; 
In the NMF-SVM, the matrix decomposition rank in the NMF is selected from 2 to 18 
for each dataset under the linear and Gaussian kernel. The final average classification 
rate for each dataset under the k-NN and NMF-SVM is selected as the best average 
classification rate of the 100 trials of training and test data among all cases. Table 3 
shows the expected classification rates, sensitivities and specificities of the three algo-
rithms and corresponding standard deviations for each of the three datasets, under the 
100 trials of training/test datasets generated from 50% holdout cross validations.  

Actually, we have found the k-NN algorithm achieves better classification per-
formances under the correlation distance than the Euclidean distance. The NMF-SVM 
algorithm achieves better classification performances under the correlation distance 
than the Euclidean distance. For the three protein expression datasets, the NMF-SVM 
and k-NN classification results are comparable. However, it is obvious that the PCA-
LDA algorithm achieves the best performances among the three algorithms.  

Table 3. Average classification performances of the NMF-SVM, k-NN, PCA-LDA algorithms 

 Average 
Sensitivity 

Average 
Specificity 

Average 
Classifying rates 

Ovarian    
nmf-svm-linear 99.91±0.31 92.92±2.50 97.41±0.94 
nmf-svm-rbf 96.27±3.35 90.83±4.48 94.29±2.72 
knn-correlation 99.28±1.34 91.67±3.67 96.53±1.57 
knn-euclidean 99.58±0.76 90.77±3.19 96.41±1.29 
pca-lda 99.93±0.38 99.21±2.00 99.67±0.87 
Ovarian-qaqc    
nmf-svm-linear 92.02±5.01 86.24±5.67 88.69±3.47 
nmf-svm-rbf 76.18±9.12 78.57±6.38 77.30±3.67 
knn-correlation 89.99±4.68 91.82±4.43 90.87±2.92 
knn-euclidean 82.03±6.86 87.71±5.86 85.03±3.71 
pca-lda 98.81±1.68 96.99±0.03 97.69±0.65 
Liver    
nmf-svm-linear 84.58±5.14 71.30±5.12 77.76±2.48 
nmf-svm-rbf 80.69±6.01 69.21±5.57 74.79±2.25 
knn-correlation 72.27±4.60 80.80±4.57 76.48±2.20 
knn-euclidean 77.04±5.81 75.38±5.33 76.11±2.51 
pca-lda 91.39±5.81 88.87±3.95 90.08±2.13 
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Fig. 2. Comparison on the classification performances of four algorithms for three proteomics 
datasets: ‘O1’ (Ovarian), ‘O2’ (Ovarian-qaqc), ‘L’ (Liver). The NPCA-SVM has the best 
performances among the four algorithms with respect to average classification rates, sensitivi-
ties and specificities for all three datasets, though the PCA-LDA and SVM algorithms both 
achieve comparable classification performances for the first ovarian dataset. 

Figure 2 compares the classification performances of the NPCA-SVM algorithm 
with sparse coding to those of the PCA-LDA, PCA-SVM and SVM with respect to 
average classification rates, sensitivities and specificities. For all three proteomics 
datasets, it is obvious that the NPCA-SVM algorithm with sparse coding under the 
‘rbf’ and ‘linear’ kernel has generally achieved the best or second-best classification 
results among all these algorithms respectively. The NPCA-SVM algorithm with 
sparse coding also gives the same leading results under the leave-one-out cross vali-
dation (LOOCV) according to our experimental results. 

4   Conclusion and Discussions 

In this study, we develop a novel feature selection algorithm: nonnegative principal 
component analysis (NPCA) and propose the NPCA-SVM algorithm under sparse 
coding for the cancer molecular pattern discovery of protein expression data. We also 
demonstrate the superiority of this novel algorithm over the NMF/PCA-SVM, SVM, 
k-NN and PCA-LDA classification algorithms for three benchmark proteomics data-
sets. Our algorithm also overcomes the overfitting problem of the SVM and PCA-
SVM classifications under a Gaussian kernel.  

With nonnegative principal component analysis, we can develop a family of 
NPCA-based statistical learning algorithms by applying NPCA as a feature selection 
algorithm before a classification or clustering algorithm, e.g., NPCA-based Fisher 
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discriminant analysis (NPCA-FDA), NPCA-based K-means or hierarchical clustering. 
In future work, we plan to investigate the NPCA-based classifications, such as 
NPCA-FDA, NPCA-SVM in the protein folding, gene, microRNA profiles data clas-
sification and biomarker discovery.  
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Appendix: Nonnegative Principal Component Analysis Parameter 
Derivations    

In this section, we give the detailed parameter derivation for equations (5) and (6).  
Computing the stationary points for the objective function ( )slf u in equation (4), we 

have a cubic root finding problem. The final U matrix consists of a set of nonnegative 
roots of equation (9). 

                                        3
2 1( ) ( ) / 4 2 0sl sl sl sl slp u df u du u c u cα= = − + + =                                (9) 

We derive coefficients 2c , 1c in equation (9) as follows. For convenience, we rewrite 

the terms in equation (2) as 
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matrix TI U U− to its Frobenius norm respectively, where 2
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compute the parameters 2c , 1c by checking the coefficients of slu and 2
slu  in equation 

(2). From the equation, we have following results: 
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By substituting for the coefficients of slu and 2
slu , we have  
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