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Abstract. The multi-relational data mining (MRDM) approach looks for 
patterns that involve multiple tables from a relational database made of 
complex/structured objects whose normalized representation does require 
multiple tables. We have applied MRDM methods (relational association rule 
discovery and probabilistic relational models) with hidden Markov models 
(HMMs) and Viterbi algorithm (VA) to mine tetratricopeptide repeat (TPR), 
pentatricopeptide (PPR) and half-a-TPR (HAT) in genomes of pathogenic 
protozoa Leishmania. TPR is a protein-protein interaction module and TPR-
containing proteins (TPRPs) act as scaffolds for the assembly of different 
multiprotein complexes. Our aim is to build a great panel of the TPR-like 
superfamily of Leishmania. Distributed relational state representations for 
complex stochastic processes were applied to identification, clustering and 
classification of Leishmania genes and we were able to detect putative 104 
TPRPs, 36 PPRPs and 08 HATPs, comprising the TPR-like superfamily. We 
have also compared currently available resources (Pfam, SMART, SUPER-
FAMILY and TPRpred) with our approach (MRDM/HMM/VA).  

Keywords: Multi-relational data mining; hidden Markov models, Viterbi algo-
rithm, tetratricopeptide repeat motif, Leishmania proteins. 

1   Introduction 

Early efforts in bioinformatics concentrated on finding the internal structure of 
individual genome-wide data sets; with the explosion of the 'omics' technologies, 
comprehensive coverage of the multiple aspects of cellular/organellar physiology is 
progressing rapidly, generating vast amounts of data on mRNA profiles, protein/ 
metabolic abundances, and protein interactions encompassing a systems-level 
approach that requires integrating all of the known properties of a given class of 
components (e.g., protein abundance, localization, physical interactions, etc.) with 
computational methods able to combine large and heterogeneous sets of data [1]. A 
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technique for generation of unified mechanistic models of cellular/organellar 
processes (a major challenge for all who seek to discover functions of many yet 
unknown genes) is the multi-relational data mining (MRDM) approach, which looks 
for patterns that involve multiple input tables (relations) from a relational database 
(db) made of complex/structured objects whose normalized representation requires 
multiple tables [2]. MRDM extends association rule mining to search for interesting 
patterns among data in multiple tables rather than in one input table [3]. We have 
applied MRDM methods (relational association rule discovery – RARD and 
probabilistic relational models - PRMs) combined with hidden Markov models 
(HMMs) [4-5] and the Viterbi algorithm (VA) [6] to mine the tetratricopeptide repeat 
(TPR) [7-9] and related motifs (pentatricopeptide repeat (PPR) [10-11] and half-a-
TPR (HAT) [12] in pathogenic protozoa Leishmania spp.. Our aim is to build a great 
panel of the TPR-like superfamily of proteins, whose members can be further 
assigned functional roles in terms of containing motifs. TPR motifs were originally 
identified in yeast as protein-protein interaction (PPI) modules [7], but now they are 
known to occur in a wide variety of proteins (over 12,000 as included in SMART 
nrdb) present in prokaryotic and eukaryotic organisms [8], being involved in protein-
protein and protein-lipid interactions in cell cycle regulation, chaperone function and 
post-translation modifications [7-9]. TPRs exhibit a large degree of sequence diversity 
and structural conservation (two antiparallel alpha-helices separated by a turn) that 
might act as scaffolds for the assembly of different multiprotein complexes [13] 
including the peroxisomal import receptor and the NADPH oxidase [14]. Similar to 
TPR, PPR and HAT motifs also have repetitive patterns characterized by tandem 
array of repeats, where the number of motifs seems to influence the affinity and 
specificity of the repeat-containing protein for RNA [12,15-16]. PPR-containing 
proteins (PPRPs) occur predominantly in eukaryotes [10] (particularly abundant in 
plants), while it has been suggested that each of the highly variable PPRPs is a gene-
specific regulator of plant organellar RNA metabolism. HAT repeats are less 
abundant and HAT-containing proteins (HATPs) appear to be components of 
macromolecular complexes that are required for RNA processing [10-12,15-16].  

TPR-containing proteins (TPRPs) have recently attracted interest because of their 
versatility as scaffolds for the engineering of PPIs [17-18] and, since they are 
characterized by homologous, repeating structural units, which stack together to form 
an open-ended superhelical structure, such an arrangement is in contrast to the 
structure of most proteins, which fold into a compact shape [19]. The curvature created 
by the superhelical nature predetermines the target proteins that can bind to them [20]. 
TPRs, PPRs and HAT (all together referred as TPR-like motifs), form a large 
superfamily or the clan TPR-like [7-16]. Homologous structural repeat units are often 
highly divergent at the sequence level, a feature that makes their prediction 
challenging. Currently, several web-based resources are available for the detection of 
TPRs, including Pfam [21], SMART [22], and SUPERFAMILY [23], which use 
HMM profiles constructed from the repeats trusted to belong to the family (from 
closely homologous repeats); therefore, divergent repeat units often get a negative 
score and are not considered in computing the overall statistical significance, even 
though they are individually significant [18]. For this reason Pfam, SMART, and 
SUPERFAMILY perform with limited accuracy in detecting remote homologs of 
known TPRPs and in delineating the individual repeats within a protein [18]. A new 
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profile-based method [18], TPRpred, uses a P-value- dependent score offset to include 
divergent repeat units and to exploit the tendency of repeats to occur in tandem. 
Although TPRpred indeed performs significantly better in detecting divergent repeats 
in TPRPs, and finds more individual repeats than the afore mentioned methods, we 
have noticed that it still fails to detect some particular groups of members of TPR-like 
superfamily, such as now we demonstrate for Leishmania spp. Since the 
characterization of proteins of a given family often relies on the detection of regions of 
their sequences shared by all family members, while computing the consensus of such 
regions provides a motif that is used to recognize new members of the family, our 
approach of HMMs/VA with MRDM was suitable to detect 104 TPRPs, 36 PPRPs and 
08 HATPs in Leishmania spp. genomes, a greater number than Pfam, SMART, 
SUPERFAMILY are able to yield (Table 1) and slightly higher than TPRpred.  

2   Methods 

2.1   Data Sources and Bioinformatics Tools  

We have used publicly available datasets of individual or clusters of gene/protein data 
on Leishmania spp., mainly L. major, L. braziliensis, L. infantum and related 
trypanosomatids (GeneDB [24] and NCBI/Entrez - www.ncbi.nlm.nih.gov/sites/ 
gquery). Variants of BLAST [25] and GlimmerHMM [26] were widely used for 
sequence similarity searches, comparisons and gene predictions. External db searches 
were performed against numerous collections of protein motifs and families. Gene 
ontology (GO) terms were assigned, based on top matches to proteins with GO 
annotations from Swiss-Prot/trEMBL (www.expasy.org/sprot) and AMIGO after 
GeneDB (www.genedb.org/amigo/perl) access. Functional assignment of genes/gene 
products was inferred using the RPS-BLAST search against conserved domain db 
(CDD) [27]. For protein domain identification and analysis of protein domain 
architectures, Simple Modular Architecture Research Tool (SMART) [22], Pfam [21], 
SUPERFAMILY [23] and TPRpred [18] were used. For multiple alignments we used 
MUSCLE [28].  

2.2   Finding a TPR-Like Regular Expression  

TPR motif sequence is loosely based around the consensus residues -W-LG-Y-A-F-
A-P-. TPRs are minimally conserved (degenerate and variable) regions of 34-residue 
long extension (with exceptions accepted to the range of 31 residues [14]). Three-
dimensional structural data have shown that tandem arrays of 3-16 TPR motifs 
generate a right-handed helical structure with an amphipathic channel that might 
accommodate the complementary region of a target protein [7, 9, 14]. The PPR motif 
is a degenerate 35-residue sequence, closely related to the 34-residue TPR motif. On 
the basis of the solved structure of a TPR domain [9] as well as modeling approaches 
[10], each PPR domain is though to be configured also as two distinct antiparallel 
alpha-helices, helices A and B. In PRPPs, 2-26 tandem repeats of these alpha-helical 
pairs are predicted to form a superhelix that encloses a central spiral groove with a 
positively charged ligand-binding surface [10]. Although there exists no position 
characterized by an invariant residue, a consensus sequence pattern of small and large 
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hydrophobic residues has been defined: small hydrophobic residues are commonly 
observed at positions 8, 20, and 27, while large ones are at 4, 17, and 24 [14]. The 
consensus sequence for TPR-like motif is given below (1) and it has been used as a 
regular expression, which defines the most probable amino acid (aa) at each position 
within this core, to fully exploit the TPR motif finding in Leishmania spp. genomes. 
As reported in [29], we systematically solved inconsistencies in the motif annotation 

by manual expertise. Since motif occurrences are adjacent in sequences, we could 
define the motif sequence of a protein as the succession of motifs read from the N 
toward the C terminus. 

 
(1) 

2.3   Definition of a TPR-Like Protein  

We have defined a TPR-like protein as any protein sequence containing a TPR-like 
motif that fits in our regular expression (1), which also, by reference, confirms to a set 
of known bona fide domains contained in TPR-like superfamily [a.118.8] of SCOP 
(v.1.69) [18,30], SMART (v.5.0) [22], TPRpred [18] and SUPERFAMILY [23]. 
Classification criteria are supported by structural/sequence similarity, plus searches 
with remote homology prediction.  

2.4   Profile Generation After Querying TPR-Like Motifs  

Aware that performance dependence on any sequence profiles relies on either the 
selectivity or sensitivity of its regime, respectively depending on the number of close 
or remote homologs used [18], we have established a fixed threshold value to include 
a minimum number of remote homologs (to avoid having too many false positives). 
Initial profiles were generated by iterative searches against non-redundant dbs (nrdbs) 
at NCBI and GeneDB, filtered to a maximum pairwise sequence identity of 60% (nr-
60) by CD-HIT [31-32], slightly modified after [18] in a sense that we have extracted 
sequences conservatively with PSI-BLAST through multiple iterations using the TPR-
like regular expression (1) as a query sequence. We, then, performed iterative 
searches to convergence on nr-60 minus TPRPs (detected by Pfam, SMART, 
SUPERFAMILY and TPRPred) with various threshold parameters to test the 
resulting profiles on a positive (TPR-like) or negative set (non TPR-like). Best 
profiles were selected based on its performance on a predicted family assignment, as 
illustrated on Figure 1a.  

2.5   TPR-Like Superfamily Assignment  

To provide structural (and hence implied functional) assignments to TPR-like proteins 
at the superfamily level, structured sequences from available Leishmania genomes 
were randomly selected and parsed into unique 24,708 sequences. Each sequence was 
a labeled input to a multi-class motif classifier. To pick the best method to represent 
one or more of the three target motifs, we compared the results of motif classifiers 
when the sequence was presented as a (I) TPR-containing, (II) PPR-containing (III) 
HAT-containing, (IV) combination of any two or three motifs, and (V) not-containing 
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target motifs. Performance was measured by classification precision, recall and F1 
measure (a composite measure of classification precision and recall).  

2.6   Hidden Markov Models (HMMs) and the Viterbi Algorithm (VA)  

A HMM is a probabilistic network of nodes, so called states. One state qi is connected 
to another state qj by a transition probability ij. Non-silent states are able to emit an 
alphabet of symbols [4-5]. A special topology of HMMs, termed pHMM, is frequently 
used in homology detection of protein families [33]. Transition and emission 
probabilities are estimated by a maximum likelihood approach combined with a 
standard dynamic programming algorithm for decoding HMMs, the Viterbi (VA) [6]) 
to get site and path dependent probabilities for every hidden state in the posterior 
decoding. In a first validation step we used the feature of trained HMMs to emit 
domain-specific sequences according to their model parameters. Sequences were 
compared with generated state paths in the same way as described earlier [29]. The 
process of generation was repeated 10 times for every TPR-like motif. To fully 
exploit the sequential ordering of motifs in a set, we used pHMMs to label motif 
types. We have transformed the motif categorization problem into a HMM sequence 
alignment problem. The HMM states correspond to the motif types. Labeling motifs 
in a sequence is equivalent to aligning the sequences to HMM states. There are five 
states in our HMM model: (I) TPR-containing, (II) PPR-containing (II) HAT-
containing, (IV) combination of any two or all motifs, and (V) not-containing target 
motifs. Transition probabilities between these states were estimated from the training 
data by dividing the number of times each transition occurs in the training set by the 
sum of all the transitions. The state emission probabilities were calculated from the 
score output reported by the multi-class classifiers. Given the HMM model [33], state 
emission probabilities and state transition probabilities, VA was used to compute 
most-likely sequence of states that emit (any of the target) motifs in sequences. 
Subsequently, the state associated with the motif was extracted from the most-likely 
sequence of states [34].  

2.7   Multi-relational Data Mining (MRDM) Method  

Algorithms for RARD are well suited for exploratory data mining due to the 
flexibility required to experiment with examples more complex than feature vectors 
and patterns more complex than item sets [35], such as the case with TPR-like motifs. 
An adequate approach of machine learning [36] focuses on learning a complex web of 
relationships among a collection of diverse objects rather than supervised learning 
from independent and identically distributed training examples (a classifier f that 
given an object x would produce as output a classification label y = f(x)). Such 
formalism, developed as PRMs [36-37], can represent these webs of relationships and 
support learning and reasoning with them [38]. PRMs are a multi-relational form of 
Bayesian networks that allow descriptions of a template for a probability distribution. 
This, together with a set of motif objects, defines a distribution over the attributes of 
the objects. Such a model can then be used for reasoning about an entity using the 
entire rich structure of knowledge encoded by the relational representation [37,39]. 
For each PRM, we were interested in constructing a model whose trades off fit to data 
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with the TPR-like motif model complexity. This tradeoff allows us to avoid fitting the 
training data too closely, which would reduce our ability to predict unseen data.  

3   Results and Discussion 

3.1   TPR-Like Motif Localization Task 

As illustrated on Fig. 1, we have applied two MRDM methods (RARD and PRMs) 
after HMMs/VA to mine TPR, PPR and HAT repeats in protein sequences of 
Leishmania spp. Provided six variants of the data set for the TPR-like motif 
localization task (considering four TPRs, one PPR and one HAT in the TPR-like 
clan), the first version consisted of a single table with 24,708 attributes and the second 
consisted of two tables with 26 attributes in total. We used a normalized version of 
the data set with two tables. The names of the two original tables are motifs_relation 
and interactions_relation. The motifs_relation table contained 120 different motifs 
but there could be more than one row in the table for each motif. The attribute 
motif_id identifies a motif is uniquely. Since our current implementation of MRDM 
requires that the target table must have a primary key, it was necessary to normalize 
the motifs_relation table before we could use it as the target table. This normalization 
was achieved by creating the tables named motif, interaction, and composition as 
follows: Attributes in the motifs_relation table that did not have unique values for 
each motif were placed in composition table and the rest of attributes were placed in 
motif table. The motif_id attribute is a primary key in the motif table and as a foreign  
key in composition table. The interaction table is identical to the original 
interactions_relation table. This represents one of several ways of normalizing the 
original table and renormalization of the relational db has an impact on the entity-
relation diagram for the renormalized version of Motif Localization db. Thus, for  
 

 

Fig. 1. Overall schema for multi-relational data mining (MRDM) approach (C) comprising the 
search for TPR, PPR and HAT motifs in available Leishmania genomes after (A) hidden 
Markov models (HMMs) powered by (B) the Viterbi algorithm (VA), a combined method for 
superfamily assignment on searches among Leishmania fully sequenced species and 
trypanosomes [24]. The input to VA is a HMM in sequences of length L. The output is the 
highest probability path through the HMM that could generate the input sequence. 
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TPR-like motif localization task, the target table is motif and the target attribute is 
localization. From this point of view, the training set consists of 120 motifs and the 
test set 68. The experiments described here focused on building a classifier for 
predicting the localization of motif-containing proteins by assigning the 
corresponding instance to one of six possible localizations. For this motif localization 
task, we have chosen to construct a classifier using all training data and test the 
resulting classifier on the test set provided by Leishmania sequences. This task 
presents significant challenges because many attribute values in training instances 
corresponding to the 120 training motifs are missing. Initial experiments using a 
special value to encode a missing value for an attribute resulted in classifiers whose 
accuracy is around 40% on the test data. This prompted us to investigate 
incorporation of other approaches to handling missing values. Replacing missing 
values by the most common value of the attribute for the class during training resulted 
in an accuracy of around 68%. This shows that providing reasonable guesses for 
missing values can significantly enhance the performance of MRDM on our data sets. 
However, in practice, since class labels for test data are unknown, it is not possible to 
replace a missing attribute value by the most frequent value for the class during 
testing. Hence, there is a need for better ways of handling missing values (e.g., 
predicting missing values based on values of which attributes?). 

3.2   Identification of the TPR-Like Superfamily in Leishmania spp. Genomes 

The percentage of repeat-containing proteins, such as TPR-like, grows with the 
complexity of the organism, with repeat proteins being particularly abundant in 

multicellular organisms [40]. Genomes of unicellular eukaryotes, as Leishmania, 
usually possess a relatively high number of putative encoding genes (around 8,000 
genes in L. major, e.g.) [24]. Analyses of such a large number of coded proteins 
require that the characterization of a given family of proteins be dependent on 
detection of regions of their sequences shared by all family members. Computing the 
consensus of such regions provides a motif that is used to recognize new members of 
the family [41]. With the sequencing completion of 03 Leishmania and several 
trypanosomes genomes [24], we were able to search for all TPR-like genes in 
Leishmania using the defining characteristic of a TPR-like protein. As depicted by 
Tab. 1, numbers of members detected through different tools (GeneDB, Pfam and  
 

Table 1. Comparative results of TPR-like motif finding in Leishmania genes obtained with 
three standard tools (Superfamily, GeneDB and Pfam) and with our method (MRDM/ 
HMM/VA). Numbers are shown in terms of TPR, PPR and HAT-containing proteins in three 
species (L. major, L. infantum and L. braziliensis). 
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Fig. 2. Schematic diagram of TPR-containing genes in genomes of Leishmania major, L. 
infantum and L. braziliensis, detected after a multi-relational data mining and hidden Markov 
model/Viterbi algorithm approach (MRDM/HMM/VA). Shared ortologues among the three 
species are illustrated as colored circles intersections and individual identifiers (GeneDB IDs) 
for putative TPRPs are given as lateral tables. 

Superfamily) are shown in comparison to our method (MRDM/HMM/VA), which is 
able to assign a significantly larger number of TPR-like motif-containing proteins in 
Leishmania: 104 TPRs and 36 PPRs at the most and 08 HATs in total. These 
members are elements putatively involved in several key cellular processes, such as 
glycosome biogenesis (PEX5 and PEX14) and flagellar pathways (IFT subunits, 
cyclophilins, phosphatases), besides binding partners of either motor or cargo proteins 
(kidins220/ARMS and other members of the KAP family of P-loop NTPases) or those 
involved with assembly/disassembly of protein complexes. The resulting descriptions 
of the families and its members, a good example of relevant patterns found along with 
reasonable assignment of family members with our approach, should provide a solid 
and unified platform on which future genetic and functional studies regarding 
Leishmania TPRPs can be based. 

3.3   TPR-Encoding Genes in Leishmania spp. Genomes 

We first used the alignment of 275 sequences previously identified as putative strict 
TPR-containing motifs (obtained from Superfamily, SMART, Pfam and TPRpred) to 
obtain the consensus model (Fig. 3). This TPR signature matrix was subsequently 

used to search for TPR motifs in the six reading frames of whole Leishmania 
genomes. Multiple alignment of Leishmania TPRP sequences revealed that most of 
substitutions in the TPRs occur at nonconsensus positions; consensus residues are 
selectively conserved between ortologues (particularly in Trypanosoma spp). Because 
TPR motifs are highly degenerate, a fairly large number of false positive hits were 
expected. However, because TPR motifs appear usually as tandem repeats, we could 
remove most random uninteresting matches by omitting all orphan TPR motifs that  
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Fig. 3. Multiple sequence alignment of typical TPR motifs present in IFT88, CDC27 and PEX5 
proteins of Leishmania (LmjF27.1130, LmjF05.0410 and LmjF35.1420). TPR motif residues 
are shown with dark and light gray shaded boxes for small and large hydrophobic residues, 
respectively. Small hydrophobic residues are commonly observed at positions 1, 8, 20 and 27. 
Position 32 is frequently proline (bold underlined), located at the C terminus of helix B, and 
large hydrophobic residues are also located at particular positions, especially 4, 17, and 24. 
Schematic consensus for TPR is illustrated.  

were found farther than 200 nucleotides from any other TPR motif. The 465 TPR 

motifs retained formed 132 clusters, each of which comprised a putative TPR gene. 
Each TPR motif cluster was then investigated in detail by manually analyzing the 
positions and reading frames of the TPR motifs compared with available Leishmania 
genomes (1) open reading frame (ORF) models and (2) predicted protein sequences 

within potential coding sequences. From this analysis, 104 putative TPR ORF models 
were constructed (i.e., 28 motif clusters were discarded or fused with other clusters). 
TPR genes are fairly evenly distributed throughout the 36 mini-chromosomes of L. 
major, with little in the way of obvious clusters. The densest grouping of TPR genes 
lies on chromosomes 30, 32 and 36, the latter which contains 13 genes, the maximum 
number found in any isolate chromosome of L. major. 

3.4   Functional Features of TPR-Like Motifs 

The preliminary functional predictions of a range of family members performed here, 
together with the sparse data on these proteins in Leishmania published so far, allows 
us to propose putative models in which TPR-like proteins might play the role of 
sequence-specific adaptors for a variety of other RNA-associated proteins. Such 
models, yet requiring further testable hypothesis, can surround a testable prediction: 
that TPR-like proteins in Leishmania might be directly or indirectly associated with 
specific RNA sequences and with defined effector proteins, as previously suggested in 
Arabidopsis [15]. Future work needs to be directed toward the identification of these 
factors to elucidate the precise functions of one of the largest and least understood 
protein families in Leishmania, the TPR-like. For now, our MRDM approach may be 
also relevant for other families of proteins with repeated motifs, in a similar way to 
what was reported by [42]. We must recall that the L. major genome contains 708 
predicted proteins annotated with the term repeat in their descriptions [24], including 
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only 62 out of the 104 TPRPs and 12 out of the 36 PPRPs that we have identified 
here. For instance, there are 18 proteins containing repeats of the Kelch motif often 

associated to a F-box domain, 169 WD40 repeat-containing proteins and 121 proteins 
with Leu-rich repeats frequently associated to a protein kinase domain. Others cases 
are armadillo (61) and ankyrin (45) repeats-containing proteins. In some of these 
protein families, the region containing the repeats is a large part of the proteins that 
can, and should be, a valuable target for applying MRDM methods. 

3.5   PPR- and HAT-Encoding Genes in Leishmania spp. Genomes 

The name PPR was coined based on its similarity to the better-known TPR motif [10]. 
PPRPs make up a significant proportion of the unknown function proteins in many 
organisms, but only few of them have functional roles ascribed, although a putative 
RNA-binding function is widely accepted [15] and one PPRP is involved in RNA 
editing [11]. The existence of a large family of PRPPs only became apparent with the 
Arabidopsis Genome Initiative that revealed 446 PPR coding genes – 6% of its entire 
genome [15]. The PPRP family has been divided, on the basis of their motif content 

and organization, into two subfamilies: the PPRP-P and the exclusive plant 
combinatorial and modular proteins (PCMPs). PPR motifs have been found in all 
eukaryotes analyzed to date, but with an extraordinary discrepancy in numbers 
between plant and nonplant organisms (the human genome encodes only six putative 
PPRPs). Trypanosomatids and other flagellated organisms are expected to have an 
intermediate number (around one hundred PPR genes), a number still far from the 36 
PPR-encoding genes we have found here (12 of them annotated at GeneDB as 
conserved hypothetical proteins of L. major). Recent reports [43-44] mention more 
than twenty (respectively 23 and 28) PPRPs identified in Trypanosoma brucei (with 
at least 25 ortologues found in L. major) and with a predicted indication that most of 
these proteins are targeted to mitochondria. As of Release 2.1 of GeneDB [24] with 
curated annotations of Leishmania genes, 13 of the GeneDB ORFs are annotated as 
conserved hypothetical proteins that contain PPR motifs based on matches with the 
PFAM profile PF01535 or SMART profile IPR002885. None of Leishmania GeneDB 
models are annotated as homologs of known PPRPs. Of the two sets of ORF models 
(ours and GeneDB’s), 12 are identical (i.e., our analysis agreed with the GeneDB 
model). The 13th GeneDB model does not have an equivalent in our set because we 
did not consider it to be a PPRP by our criteria (lacking tandem motifs matching our 
HMM profiles) Twenty-one of our models have no GeneDB equivalent and 
correspond to genes apparently overlooked during annotation or considered to be 
pseudogenes. In all, 22 of our 34 models differ in at least some respects from the 
corresponding GeneDB model, but correspond quite well to the 28 PPRPs identified 
in T brucei [44], what reinforces how well conserved PPR genes seem to be in 
trypanosomatids. It should be noted that in very few of these cases are molecular data 
available that can be used to decide between discordant models. Our choice has been 
generally made by comparison with other genes in the family and a general familiarity 

with these proteins. A noticeable characteristic of PPR genes is that they rarely 
contain introns within coding sequences even in higher eukaryotes (more than 80% of 
known PPR genes of plants unexpectedly do not contain introns), what is also true for 
Leishmania ORF models (an obvious extension for trypanosomatid genes that usually 
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do not contain introns anyway). This characteristic might explain why PPR genes are 
relatively short (on average <2 kb) despite the fact that PPRPs are comparatively large 
proteins (680 aa on average).  

HAT repeats have three aromatic residues with a conserved spacing, being 
structurally and sequentially similar to TPRs/PPRs, although they lack the highly 
conserved alanine and glycine residues found in TPRs. The number of HAT repeats 
found in different proteins varies between 9 to 12. HATPs appear to be components of 
macromolecular complexes that are required for RNA processing and the HAT motif 
has striking structural similarities to HEAT repeats (IPR000357), being of a similar 
length and consisting of two short helices connected by a loop domain, as in HEAT 
repeats [10-12, 15-16]. Our survey identified a total of 08 putative HATPs (Table 1) 
in the three species of Leishmania analyzed, but the lack of general information on 
HATPs does not allow any further indication on their definite significance on the 
protozoan genome. The detection of such a small, but significant, presence of HATPs 
in Leishmania is certainly an issue for future investigation.  

4   Conclusions 

We have performed bioinformatics analyses of Leishmania TPR, PPR and HAT 
proteins with an integrated MRDM/HMM/VA approach that, in contrast to other 
currently available resources (PFAM, SMART, SUPERFAMILY, TPRpred), seeks to 
capture as much model information as possible in the pattern matching heuristic, 
without resorting to more standard motif discovery methods. TPR genes are 
ubiquitous, whereas PPRs and HATs are mostly found in eukaryotes, but, in common, 
they have the fact of being largely unexplored in Leishmania parasites. Diffusion of 
new developments and applications of MRDM techniques to data-driven knowledge 
discovery problems in bioinformatics is a future direction towards better power of 
biological inference after sequence and structural analyses.  
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