
Dividing Protein Interaction Networks by

Growing Orthologous Articulations

Pavol Jancura1, Jaap Heringa2, and Elena Marchiori1,�

1Intelligent Systems, ICIS, Radboud Universiteit Nijmegen, The Netherlands
{jancura,elenam}@cs.ru.nl

2IBIVU, Vrije Universiteit Amsterdam, The Netherlands
{heringa}@few.vu.nl

Abstract. The increasing growth of data on protein-protein interaction
(PPI) networks has boosted research on their comparative analysis. In
particular, recent studies proposed models and algorithms for perform-
ing network alignment, the comparison of networks across species for
discovering conserved modules. Common approaches for this task con-
struct a merged representation of the considered networks, called align-
ment graph, and search the alignment graph for conserved networks of
interest using greedy techniques. In this paper we propose a modular ap-
proach to this task. First, each network to be compared is divided into
small subnets which are likely to contain conserved modules. To this
aim, we develop an algorithm for dividing PPI networks that combines
a graph theoretical property(articulation) with a biological one (orthol-
ogy). Next, network alignment is performed on pairs of resulting subnets
from different species. We tackle this task by means of a state-of-the-art
alignment graph model for constructing alignment graphs, and an exact
algorithm for searching in the alignment graph. Results of experiments
show the ability of this approach to discover accurate conserved mod-
ules, and substantiate the importance of the notions of orthology and
articulation for performing comparative network analysis in a modular
fashion.

Keywords: Protein network dividing, modular network alignment.

1 Introduction

With the exponential increase of data on protein interactions obtained from
advanced technologies, data on thousands of interactions in human and most
model species have become available (e.g. [1,2]). PPI networks offer a powerful
representation for better understanding modular organization of cells, for pre-
dicting biological functions and for providing insight into a variety of biochemical
processes.

Recent studies consider a comparative approach for the analysis of PPI net-
works from different species in order to discover common protein groups which
are likely to be related to shared relevant functional modules [3,4,5].
� Corresponding author.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 187–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 P. Jancura, J. Heringa, and E. Marchiori

This problem is also known as pairwise network alignment. Algorithms for
this task typically construct a merged graph representation of the networks to
be compared, called alignment (or orthology) graph, and model the problem as
an optimization problem on such graph. Due to the computational intractability
of such optimization problem, greedy algorithms are commonly used [6,7,8,9,10].

1.1 Problem Statement

Conserved modules, discovered by computational techniques such as [6], have
in general small size compared to the size of the PPI network they belong to.
Moreover, PPI networks are known to have a scale-free topology where most
proteins participate in a small number of interaction while a few proteins, called
hubs, contains a high number of interaction. As indicated by recent studies,
hubs whose removal disconnects the PPI network (articulation hubs) are likely
to appear in conserved interaction patterns [11,12]. These observations motivate
the focus of this paper on the problem of performing modular network alignment.
Specifically, we propose a two phases approach for this task: divide and align.
The divide phase transforms each PPI network into a set of small subnets which
are expected to cover conserved complexes. The align phase uses an existing
evolution-based alignment graph model to merge suitable pairs of subnets from
each species, and an exact search technique for extracting conserved modules
from each alignment graph.

1.2 Contributions

We introduce an heuristic algorithm for dividing a PPI network into subnets,
which combines biological (orthology) and graph theoretical (articulation) infor-
mation. The algorithm starts by identifying groups of orthologous articulations,
called centers, which are expanded into subsets consisting of orthologous nodes.

The algorithm automatically determines the number of subsets and has the
property of being parameterless.

We use this algorithm for performing network alignment, by merging pairs
of resulting subnets from different species, and applying exact optimization for
searching conserved modules across species. We introduce a new notion, modu-
lar alignment, because we align only particular PPI subnets achieving conserved
modules inside of them while current methods of global or local network align-
ment try to align whole PPI networks.

In order to test the performance of this approach, we consider an instance of
the method that uses a state-of-the-art evolution-based alignment graph model
[6]. Results of experiments show effectiveness of the proposed approach, which is
capable of detecting accurate conserved complexes. Furthermore, we show that
improved performance can be achieved by merging modules detected with our
algorithm with those identified by Koyuturk et al. algorithm [6]. In general,
these results substantiate the important role of the notions of orthology and
articulation in modular comparative PPI network analysis.

Dividing Protein Interaction Networks by Growing Orthologous 189

1.3 Related Work

Recent overviews of approaches and issues in comparative biological networks
analysis are presented in [4,5]. Based on the general formulation of network
alignment proposed in [3], a number of techniques for (local and global) network
alignment have been introduced [6,7,8,9,10,13].

Techniques for local network alignment commonly construct an orthology
graph, which provides a merged representation of the given PPI networks, and
search for conserved subnets using greedy techniques [6,7,8,9,10].

While the above algorithms focus on alignment of whole global networks, we
focus on ’modular’ network alignment. Modular network alignment is an align-
ment of particular subnets of given networks to be compared. To the best of our
knowledge, we propose the first algorithm which directly tackles the modularity
issue in network alignment in the meaning that dividing step achieves conserved
modules inside of particular subnets and therefore one can perform only modular
alignment for local network alignment problem.

Many papers have investigated the importance of hubs in PPI networks and
functional groups [12,14,15,16,17,18]. In particular, it has been shown that hubs
with a central role in the network architecture are three times more likely to
be essential than proteins with only a small number of links to other proteins
[16]. Moreover, if we take functional groups in PPI networks, then, amongst
all functional groups, cellular organization proteins have the largest presence
in hubs whose removal disconnects the network [12]. Computational techniques
for identifying functional modules in PPI networks generally search for clusters
of proteins forming dense components [19,20]. The scale-free topology of PPI
networks makes difficult to isolate modules hidden inside the central core [21].
In [22] several multi-level graph partitioning algorithms are described addressing
the difficulty of partitioning scale-free graphs.

The approach we propose differs from the above mentioned works because
it does not address (directly) the problem of identifying functional modules in
a PPI network, but uses homology information and articulations for dividing
PPI networks into subnets in order to perform network alignment in a modular
fashion.

2 Graph Theoretic Background

Given a graph G = (U, E), nodes joined by an edge are called adjacent. A
neighbor of a node u is a node adjacent to u. The degree of u is the number of
elements in E containing the vertex u.

Let G(U, E) be a connected undirected graph. A vertex u ∈ U is called artic-
ulation if the graph resulting by removing this vertex from G and all its edges,
is not connected.

A tree is a connected graph not containing any circle. A tree is called rooted
tree if one vertex of the tree has been designated as the root. Given a rooted tree
T (V, F), the depth of a vertex v ∈ V is the number of edges from the root to
v without repetition of edges. Leaves of the tree T are vertices which have only

190 P. Jancura, J. Heringa, and E. Marchiori

0

1

1

1

2

2

2

2

3

3
2

2

2

2

1

Spanning tree

0

0

0

0

1

1

1

1

2

2
1

1

1

1

0

Centered tree

Fig. 1. Examples of spanning and centered tree in the same graph. The dark grey
node in the left figure represents a root. Dark grey nodes in the right figure represent a
center. Numbers indicate depths of nodes in trees. Solid edges are edges of a spanning
tree. Dash edges are other edges of the graph.

one neighbor. The depth of a tree is the highest depth of its leaves. A spanning
tree T (V, F) of a connected undirected graph G(U, E) is a tree where V = U
and F ⊆ E.

Given an edge-weighted (or node-weighted) graph G(U, E) with a scoring
function w : e ∈ E → � (or w : u ∈ U → �). Total weight w(G) of G is the sum
of weights of all edges (or nodes) in the graph:

w(G) =
∑

∀e∈E

w(e) (or w(G) =
∑

∀u∈U

w(u)).

Suppose a connected undirected graph G(U, E) and a vertex u ∈ U are given.
Let N(u) a set of all neighbors of u and N ′(u) ⊆ N(u) be. A center of u is the
set C(u) ≡ N ′(u) ∪ {u}.

Observe that a center can be expanded to a spanning tree of G(U, E). More-
over, the center as an initial set of expansion can be consider as a root if we
merge all vertices of center to one node. Such spanning tree created from a cen-
ter, called centered tree, has zero depth all vertices of center and the vertices of
i- depth are new nodes added in ith iteration of expansion to the spanning tree.
Therefore a centered tree , can be generated as follows:

– The 0-depth of the centered tree is the center
– The i-th depth of the centred tree consists of all neighbors of (i−1)-th depth

which are not yet in any lower depth of the centered tree yet.

Examples of a spanning and centered tree are on Figure 1.
A PPI network is represented by an undirected graph G(U, E). U denotes the

set of proteins and E denotes set of edges, where an edge uu′ ∈ E represents
the interaction between u ∈ U and u′ ∈ U . Given PPI networks G(U, E) and

Dividing Protein Interaction Networks by Growing Orthologous 191

H(V, F). A vertex u ∈ U is orthologous if there exists at least one vertex v ∈ V
such that uv is an orthologous pair. Orthologous articulation is an orthologous
vertex which is an articulation. An orthology path is a path containing only
orthologous vertices.

3 From Orthologous Articulations through Centers to
Trees

Given a PPI network G(U, E) and the set of vertices O ⊆ U , which are orthol-
ogous w.r.t. the vertices of the other PPI network to be compared with G. Let
n = |O|. We generate centers from orthologous articulations, and expand them
into centered subtrees containing only orthologous proteins. The resulting algo-
rithm, called Divide, is sketched in pseudo-code in Algorithm 1, and described
in more detail below.

Computing Articulations (Line 1). Computation of articulations can be per-
formed in linear time by using, e.g., Tarjan’s algorithm described in [23] or [24].

Greedy Construction of Centers (Lines 3-10). The degree (in G) of all or-
thologous articulations is then used for selecting seeds for the construction of
centers. Networks with scale-free topology appear to have edges between hubs
systematically suppressed, while those between a hub and a low-connected pro-
tein seem favored [25]. Guided by this observation, we greedily construct centers
by joining one orthologous articulation hub with its orthologous articulation
neighbors, which will more likely have low degree.

Specifically, let A be the set of orthologous articulations of G. The first cen-
ter consists of the element of A with highest degree and all its neighbors in A.
The other centers are generated iteratively by considering, at each iteration, the
element of A with highest degree among those which do not occur in any of
the centers constructed so far, together with all its neighbors in A which do not
already occur in any other center. The process terminates when all elements of A
are in at least one center. Then an unambiguous label is assigned to each center.

Initial Expansion (Lines 11-16). By construction, centers cover all orthologous
articulations. Articulation hubs are often present in conserved subnets detected
by means of comparative methods such as [6]. Therefore, assuming that the
majority of the remaining nodes belonging to conserved modules are neighbors
of articulation hubs, we add to each center all its neighboring ortholog proteins,
regardless whether they are or not articulations. We perform this step for all
centers in parallel.

We mark these new added proteins with the label of the centers to which they
have been added. These new added proteins form the first depth centered trees.

Observe that there may be a non-empty overlap between first depth centered
trees (as illustrated in the right part of Figure 2).

192 P. Jancura, J. Heringa, and E. Marchiori

Fig. 2. Examples of centers of centered trees (left figure) and of their initial expansion
(right figure). Seeds of centers are solid nodes. Dark grey nodes are the rest of centers
connected to a seed by solid edges. Light grey nodes are orthologous proteins which are
not articulations. Empty nodes are non-orthologous proteins. Dot edges are the rest
of edges in the graph. In the second (right) graph dash edges indicate the expansion
and connect nodes of centers (zero depth centered trees) with nodes of the first depth
centered trees. Nodes on the grey background indicate the overlap among centered
trees.

Parallel Expanding of Trees (Lines 17-27). Successive depths of trees are
generated by expanding all nodes with only one label which occur in the last
depth of each (actual) centered tree. We add to the corresponding trees all
orthologous neighbors of these nodes which are not yet labelled. Then we assign
to the newly added nodes the labels of the centered trees they belong to. This
process is repeated until it is impossible to add unlabeled orthologous proteins
to at least one centered tree.

Observe that each iteration yields to possible overlap between newly created
depths (see the left part of Figure 3).

Assigning Remaining Nodes to Trees (Lines 28-42). The remaining or-
thologous nodes, that is, those not yet labelled, are processed as follows. First,
unlabeled nodes which are neighbors of multi-labelled nodes are added to the
corresponding centered trees. Then the newly added nodes are marked with
these labels. This process is iterated until there are no unlabeled neighbors of
multi-labelled nodes.

Nodes which are not neighbors of any labelled protein are still unlabeled.
We assume that they may possibly be part of conserved complexes which do
not contain articulations. Hence we create new subtrees by joining together all
unlabeled orthologous neighbor proteins.

An example of these final steps is shown on the right part of Figure 3.

Complexity. The algorithm divides only orthologs of a given PPI network where
the number of all orthologs is n = |O|. It performs a parallel breadth-first search
(BFS). It general, BFS has O(|V | + |E|) complexity, where V and E denote

Dividing Protein Interaction Networks by Growing Orthologous 193

1

2

2

2

1,2

1,2

1,2

2

1,2
1

1

1

1

1 2

2

4
4

4

33

1

2

2

2

1,2

1,2

1,2

2

1,2
1

1

1

1

1 2

2

1,2

1,2

1,2

1,2

Fig. 3. Examples of parallel expansion of trees (left figure) and of the final assigning
remaining nodes (right figure). Seeds of centers are solid nodes. Dark grey nodes are
the rest of centers connected to a seed by solid edges. Light grey nodes are orthologous
proteins which are not articulations. Empty nodes are non-orthologous proteins. Dash
edges indicate the process of expansion. Dot edges are the rest of edges in the graph.
Nodes on the grey background create the overlap. Numbers are labels of trees assigned
to nodes during expansion.

the number of nodes and edges, respectively. However, Divide constructs trees
considering only orthologous nodes, so the number of edges, which are traversed,
is |O′| − 1, where |O′| is the number of orthologs vertices of the constructed
subtree. The possible overlap between trees can increase the number of traversed
edges and visited vertices. In the worse case all orthologous vertices are visited
by each center (all nodes are in the overlap). So, if the number of centers is k,
the complexity of Divide is O(kn).

4 Divide and Align Algorithm

The Divide algorithm divides orthologous proteins of the PPI network into over-
lapping subtrees. We separately apply this algorithm to each of the two PPI
networks from the distinct species to be compared. Nodes of each constructed
subtree induce a PPI subnetwork. Pairs of such induced subnetworks from dif-
ferent species are merged into small orthology graphs if at least two orthologous
pairs exist between proteins of those subnetworks.

To this aim we use a common approach, based on the construction of a
weighted metagraph between two PPI networks of different species. In this meta-
graph each node corresponds to an homologous pair of proteins, one from each
of the two PPI networks. The metagraph is called alignment or orthology graph.
Weights are assigned either to edges, like in [6], or to nodes, like in [7], of the
alignment graph using a scoring function. The function transforms conservation
and eventually also evolution information to one real value for each edge or node.

In our experiments we use the evolution-based alignment graph model intro-
duced in [6]. In that model, a weighted alignment graph is constructed from a

194 P. Jancura, J. Heringa, and E. Marchiori

Algorithm 1 Divide algorithm
Input: G: PPI network, O: orthologous nodes of G
Output: S: list of subsets of O
1: A = { orthologous articulations of G}
2: S =<>
3: repeat {Construction of centers}
4: root = element of A with highest degree not already occurring in S
5: s = {root} ∪ { neighbors of root in A not already occurring in S}
6: S =< s, S >
7: until all members of A occur in S
8: d = 0
9: Assign depth d to all elements of S

10: Assign label ls to each s in S and to all its elements
11: for s in S do
12: s = s ∪ { all neighbors of s in O}
13: Assign label ls to all neighbors of s in O
14: end for
15: d = 1
16: Assign depth d to all elements of S having yet no depth assigned
17: repeat {Expand one depth centered trees from nodes with one label}
18: N = { unlabeled neighbors in O of elements in s of depth d having only one label }
19: for n in N do
20: Assign to n all labels of its neighbors of depth d having only one label
21: for ls ∈ n do
22: s = s ∪ {n}
23: end for
24: end for
25: d = d + 1
26: Assign depth d to all elements of S having yet no depth assigned
27: until S does not change
28: repeat {Expand centered trees from nodes multiple labels}
29: R = { unlabeled proteins in O with at least one multi-labelled protein as neighbor }
30: for r in R do
31: Assign to r all labels of its neighbors
32: for ls ∈ r do
33: s = s ∪ {r}
34: end for
35: end for
36: until S does not change
37: repeat
38: choose an unlabeled element u of O
39: t = {u} ∪ {all elements of O which can be reached alongside an orthology path from u}
40: Assign label lt to t and to all its elements
41: S =< t, S >
42: until O does not contain any unlabeled node

pair of PPI networks and a similarity score S, which quantifies the likelihood
that two proteins are orthologous. A node in the alignment graph is a pair of
ortholog proteins. Each edge in the alignment graph is assigned a weight that is
the sum of three scoring terms: for protein duplication, mismatches for possible
divergence in function, and match of a conserved pair of orthologous interactions.
We refer to [6] for a detailed description of these terms. Induced subgraphs of
the resulting weighted alignment graph with total weight greater than a given
threshold are considered as relevant alignments. This problem is reduced to the
optimization problem of finding a maximal induced subgraph. In [6], an approx-
imation greedy algorithm based on local search is used because the maximum
induced subgraph problem is NP-complete. This greedy algorithm selects at first

Dividing Protein Interaction Networks by Growing Orthologous 195

one seed which can likely contribute at most to the overall weight of a poten-
tial subgraph. Such seed is expanded by adding (removing) nodes to (from) the
subgraph while the actual subgraph weight increases.

In this study, after the diving step and aligning possible pairs of PPI subnet-
works a set of small alignment graphs is produced. We use exact optimization
[26] for searching in those graphs. We call the resulting algorithm DivA (Divide
and Align).

Finally, redundant alignments are filtered out as done, e.g., in [6]. A subgraph
G1 is said to be redundant if there exists another subgraph G2 which contains r%
of its nodes, where r is a threshold value that determines the extent of allowed
overlap between discovered protein complexes. In such a case we say that G1 is
redundant for G2.

5 Experimental Results

In order to assess the performance of our approach, we use the state-of-the-art
framework for comparative network analysis proposed in [6], called MaWish. The
two following PPI networks, already compared in [6], are considered: Saccha-
romyces cerevisiae and Caenorhabditis elegans, which were obtained from BIND
[1] and DIP [2] molecular interaction databases. The corresponding networks
consist of 5157 proteins and 18192 interactions, and 3345 proteins and 5988 in-
teractions, respectively. All these data are available at the webpage of MaWish1.
Moreover, the data already contain the list of potential orthologous and paralo-
gous pairs, which are derived using BLAST E-values (for more details see [11]).
2746 potential orthologous pairs created by 792 proteins in S. cerevisiae and 633
proteins in C. elegans are identified.

5.1 Divide Phase

Results of application of the Divide algorithm to these networks are summarized
as follows.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, and
83 centers are identified. Expansion of these centers into centered trees results
in 639 covered orthologs. The algorithm assigns the remaining 153 orthologous
proteins to 152 new subtrees.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, are com-
puted, and 112 centers are constructed from them. Expansion of these centers
into centered trees results in 339 covered orthologs. The algorithm assigns the
remaining orthologous 294 proteins to 288 new subtrees.

We observe that the last remaining orthologs assigned to subtrees are ’isolated’
nodes, in the sense that they are rather distant from each other and not reachable
from ortholog paths stemming from centers.

The divide part of algorithm run only less than half of a second on a desktop
machine (AMD Athlon 64 Processor 3500+, 2 GB RAM) in practical.
1 www.cs.purdue.edu/homes/koyuturk/mawish/.

196 P. Jancura, J. Heringa, and E. Marchiori

5.2 Alignment Phase

We obtain 235 subtrees for Saccharomyces cerevisiae and 400 subtrees of Caenor-
habditis elegans. Nodes of each such tree induce a PPI subnetwork.By constructing
alignment graphs between each two PPI subnetworks containing more than one
ortholog pair, we obtain 884 alignment graphs, where the biggest one consists of
only 31 nodes. For each of such alignment graphs, the maximum weighted induced
subgraph is computed by exact optimization. Zero weight threshold is used for
considering an induced subgraph a legal alignment. Redundant graphs are filtered
using r = 80% as the threshold for redundancy. In this way DivA discovers 72
alignments.

The computation of induced subgraphs by an exact search took a few minutes
compared to around a second in MaWish on a desktop machine (AMD Athlon
64 Processor 3500+, 2 GB RAM).

10
0

10
1

10
0

10
1

DivA weight

M
aW

is
h

w
ei

gh
t

 DivA vs MaWish
 redundant alignments between S. cerevisiae and C. elegans

refined by MaWish
refined by DivA
identical results

(0.0, 0.5] (0.5, 1.0] (1.0, 1.5] (1.5, 2.0] 2.0 <
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

weight

nu
m

be
r

of
 a

lig
nm

en
ts

 DivA vs MaWish
 nonredundant alignments between S. cerevisiae and C. elegans

MaWish results
DivA results

Fig. 4. Left figure: Distribution of pairs of weights of paired redundant alignments,
one obtained from MaWish and one from DivA. Weights of alignments found by DivA

are on the x-axis, those found by MaWish on the y-axis. Right figure: Interval weight
distributions of non-redundant alignments discovered by MaWish (solid bars) and DivA

(empty bars). The x-axis show weight intervals, the y-axis the number of alignments
in each interval.

5.3 Comparison between DivA and MaWish

We performed network alignment with MaWish using parameter values as re-
ported in [11]. The algorithm discovered 83 conserved subnets.

A paired redundant alignment is a pair (G1, G2) of alignments, with G1 dis-
covered by DivA and G2 discovered by MaWish, such that either G1 is redundant
for G2 or vice versa. For a paired redundant alignment (G1, G2) we say that G1

refines G2 if the total weight of G1 is bigger than the total weight of G2.
DivA finds 14 new alignments not detected by MaWish. Figure 5 shows the

best new alignment found by DivA (left) and the alignment of DivA which best
refines an alignment of MaWish.

Dividing Protein Interaction Networks by Growing Orthologous 197

Caenorhabditis elegansSaccharomyces cerevisiae

PRE8

PRE6

PRE9

PUP2

F25H2.9

C36B1.4

D1054.2

Saccharomyces cerevisiae

UNC−43

T01H8.1

MPK−1

F32D1.1
YTA7Cdc28

DBF20

DBF2

gi|0|dip|6427|name|

Pkh2p

lpl1

Kin2

Cdc5

Gin4 Pkc1
Caenorhabditis elegans

Fig. 5. Left: The best new alignment. Dash lines mark orthologous pairs. Solid line
is protein-protein interaction. Right: The refined alignment with the greatest weight.
Dash lines mark orthologous pairs. Solid line is protein-protein interaction. A loop on
a protein means duplication.

There are 58 paired redundant alignments, whose total weights are plotted
in the left part of Figure 4. Among these, 40 (55.6%) are equal (crosses in the
diagonal), and 18 (25%) different. 5 (6.9%) (diamonds below the diagonal) with
better DivA alignment weight, and 12 (16.7%) (circles above the diagonal) with
better MaWish alignment weight (for 1 pair it is undecidable because of rounding
errors during computation).

The right plot of Figure 4 shows the binned distribution of total weights of
the 14 (19.4%) found by DivA but not MaWish, and 28 found by MaWish and
not by DivA. The overall weight average of the DivA ones (1.197) is greater than
the overall average of the MaWish ones (0.7501), indicating the ability of DivA
to find high score subnets, possibly due to the exact search strategy used.

Of the 14 new alignments detected by DivA, 8 of them have a intersection
with a true MIPS complex (cf. Table 1). Three of these alignments (6., 12. and
14.) have equal (sub)module in their true S. cerevisiae complex.

Table 1. HG= hypergeometric, Size = number of alignment nodes of an alignment, N
= number of proteins of alignment nodes which are annotated in the best (according
to hypergeometric score) true S. cerevisiae’s MIPS complex of the alignment. M =
number of proteins of alignment nodes in S. cerevisiae. Intersection = |N |/|M |.

Align. Score Size |M | MIPS category Intersection −log(HG)

1. 4.28 8 4 20S proteasome 100(%) 7.25
4. 1.65 5 2 19/22S regulator 100(%) 3.45
6. 1.41 5 2 19/22S regulator 50(%) 1.71
7. 0.62 2 2 20S proteasome 100(%) 3.56
8. 0.61 2 2 Replication fork complexes 100(%) 3.22
9. 0.53 2 2 19/22S regulator 100(%) 3.45
12. 0.43 2 2 19/22S regulator 50(%) 1.71
14. 0.39 2 2 19/22S regulator 50(%) 1.71

198 P. Jancura, J. Heringa, and E. Marchiori

Table 2. True complexes associated to MaWish refined alignments

Align. Score Size |M | MIPS category Intersection −log(HG)

1. 4.46 10 10 Cdc28p complexes 10(%) 1.47
2. 0.62 2 2 Casein kinase II 100(%) 4.81
3. 0.38 2 2 SNF1 complex 50(%) 2.16

Table 3. True complexes associated to DivA refined alignments

Align. Score Size |M | MIPS category Intersection −log(HG)

1. 6.35 15 11 Cdc28p complexes 9(%) 1.47
2. 1.26 4 4 Casein kinase II 100(%) 10.39
3. 0.81 3 2 SNF1 complex 50(%) 2.16

From the refined alignments, three of them have intersection with a true MIPS
complex.

Note that alignments 1. and 3. in both Table 2 and 3 have equal hypergeo-
metric score, showing that the coverage, that is, number of proteins of an align-
ment contained in its best true MIPS module, does not change. Alignment 2. in
Table 2 covers 50% of the true complex, while its refinement in Table 3 covers
the entire true complex (Casein kinase II, consisting of 4 proteins).

Three of these alignments have equal (sub)module in their true S. cerevisiae
complex.

By considering the union of all alignments of MaWish and DivA and by filtering
out the redundant ones, 97 alignments are obtained, from which 26% consist of
new or refined DivA ones. In particular, conserved modules of three new true
MIPS classes are detected: replication fork complexes, mRNA splicing, SCF-
MET30 complex. Moreover, the alignment by MaWish which covers 50% of the
true complex Casein kinase II (this complex consists of 4 proteins) is refined by
DivA in such a way that the entire true complex is covered (all four proteins).

In this experiment we searched for the best solution in each orthology graph
only. A full-search, where all possible solutions are found for each orthology
graph, has been used in [27]. This yielded to a considerable increase of the
number of results. Statistical evaluation of those results indicated their biological
relevance. In general, the results show that DivA can be successfully applied to
’refine’ state-of-the-art algorithms for network alignment.

6 Conclusion

The comparative experimental analysis with MaWish indicates that DivA is able
to discover new alignments which seem to be on average more conserved because
of higher weight than those discovered by MaWish but not by DivA. Improved
performance is shown to be achieved by combining results of MaWish and DivA,
yielding new and refined alignments.

Dividing Protein Interaction Networks by Growing Orthologous 199

The selection of centers is biased on the orthology information but it can
be changed for another property. Hence the divide algorithm can be applied to
perform modular network alignment of other type of networks.

Finally, we considered here an instance of our approach based on the evolution-
based alignment graph model by Koyuturk et al. [11]. We intend to analyze
instances of our approach based on other methods, such as [7].

Acknowledgments

We would like to thank Mehmet Koyuturk for discussion on the MaWish code.

References

1. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue,
C.W.V.: Bind–the biomolecular interaction network database. Nucleic Acids
Res. 29(1), 242–245 (2001)

2. Xenarios, I., Salẃınski, �L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: Dip,
the database of interacting proteins: a research tool for studying cellular networks
of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)

3. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,
Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proceedings of the National Academy of Science 100,
11394–11399 (2003)

4. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24(4), 427–433 (2006)

5. Srinivasan, B.S., Shah, N.H., Flannick, J., Abeliuk, E., Novak, A., Batzoglou, S.:
Current Progress in Network Research: toward Reference Networks for kKey Model
Organisms. Brief. in Bioinformatics (Advance access, 2007)

6. Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein
interaction networks guided by models of evolution. In: Miyano, S., Mesirov, J.,
Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS
(LNBI), vol. 3500, pp. 48–65. Springer, Heidelberg (2005)

7. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of pro-
tein complexes by comparative analysis of yeast and bacterial protein interaction
data. Journal of Computional Biology 12(6), 835–846 (2005)

8. Hirsh, E., Sharan, R.: Identification of conserved protein complexes based on a
model of protein network evolution. Bioinformatics 23(2), 170–176 (2007)

9. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T.,
Karp, R.M., Ideker, T.: From the Cover: Conserved patterns of protein interaction
in multiple species. Proceedings of the National Academy of Sciences 102(6), 1974–
1979 (2005)

10. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graem-
lin: General and robust alignment of multiple large interaction networks. Genome
Res. 16(9), 1169–1181 (2006)

11. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Grama, A., Szpankowski,
W.: Pairwise alignment of protein interaction networks. Journal of Computional
Biology 13(2), 182–199 (2006)

200 P. Jancura, J. Heringa, and E. Marchiori

12. Pržulj, N.: Knowledge Discovery in Proteomics: Graph Theory Analysis of Protein-
Protein Interactions. CRC Press, Boca Raton (2005)

13. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction
networks by matching neighborhood topology, pp. 16–31 (2007)

14. Pržulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein
interactions. Bioinformatics 20(3), 340–384 (2004)

15. Rathod, A.J., Fukami, C.: Mathematical properties of networks of protein inter-
actions. CS374 Fall 2005 Lecture 9, Computer Science Department, Stanford Uni-
versity (2005)

16. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in
protein networks. NATURE v 411, 41 (2001)

17. Ekman, D., Light, S., Björklund, A.K., Elofsson, A.: What properties character-
ize the hub proteins of the protein-protein interaction network of saccharomyces
cerevisiae? Genome Biology 7(6), R45 (2006)

18. Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving functional mod-
ularity in protein-protein interactions graphs using hub-induced subgraphs. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 371–382. Springer, Heidelberg (2006)

19. Bader, G.D., Lssig, M., Wagner, A.: Structure and evolution of protein interac-
tion networks: a statistical model for link dynamics and gene duplications. BMC
Evolutionary Biology 4(51) (2004)

20. Li, X.L., Tan, S.H., Foo, C.S., Ng, S.K.: Interaction graph mining for protein
complexes using local clique merging. Genome Informatics 16(2), 260–269 (2005)

21. Yook, S.H., Oltvai, Z.N., Barabsi, A.L.: Functional and topological characterization
of protein interaction networks. PROTEOMICS 4, 928–942 (2004)

22. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law
graphs. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS) (2006)

23. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

24. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

25. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296, 910–913 (2002)

26. Wolsey, L.A.: Integer Programming, 1st edn. Wiley, Chichester (1998)
27. Jancura, P., Heringa, J., Marchiori, E.: Divide, align and full-search for discovering

conserved protein complexes. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008.
LNCS, vol. 4973, pp. 71–82. Springer, Heidelberg (2008)

	Dividing Protein Interaction Networks by Growing Orthologous Articulations
	Introduction
	Problem Statement
	Contributions
	Related Work

	Graph Theoretic Background
	From Orthologous Articulations through Centers to Trees
	Divide and Align Algorithm
	Experimental Results
	Divide Phase
	Alignment Phase
	Comparison between DivA and MaWish

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

