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Abstract. Prediction of protein stability upon amino acid substitution and 
discrimination of thermophilic proteins from mesophilic ones are important 
problems in designing stable proteins. We have developed a classification rule 
generator using the information about wild-type, mutant, three neighboring 
residues and experimentally observed stability data. Utilizing the rules, we have 
developed a method based on decision tree for discriminating the stabilizing 
and destabilizing mutants and predicting protein stability changes upon single 
point mutations, which showed an accuracy of 82% and a correlation of 0.70, 
respectively. In addition, we have systematically analyzed the characteristic 
features of amino acid residues in 3075 mesophilic and 1609 thermophilic 
proteins belonging to 9 and 15 families, respectively, and developed methods 
for discriminating them. The method based on neural network could discrimi-
nate them at the 5-fold cross-validation accuracy of 89% in a dataset of 4684 
proteins and 91% in a test set of 707 proteins.  

Keywords: Protein stability, rule generator, discrimination, prediction, thermo-
philic proteins, neural network, machine learning techniques. 

1   Introduction 

One of the most important tasks in protein engineering is to understand the mecha-
nisms responsible for protein stability changes affected by single point mutations, 
which can be employed for constructing temperature sensitive mutants and used to 
identify a wide spectrum of drug resistance conferring mutations. Another related task 
is to understand the important factors for the extreme stability of thermophilic 
proteins and discriminating them from mesophilic ones.  
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Several methods have been proposed for predicting the stability of proteins upon 
amino acid substitutions. These methods are mainly based on distance and torsion 
potentials [1,2], multiple regression techniques [3], energy functions [4], contact 
potentials [5], neural networks [6], support vector machines, SVMs [7,8], average 
assignment [9], classification and regression tool [10], backbone flexibility [11] etc. 
Further, it has been reported that the discrimination of stabilizing and destabilizing 
mutants is more important than its magnitude in many cases [6]. Most of these 
methods used the information from the three-dimensional structures of proteins for 
discrimination/prediction. On the other hand, prediction accuracy using amino acid 
sequence is significantly lower than that with structural data [12]. 

Several attempts have been made to understand the factors influencing the stability 
of thermophilic proteins using three-dimensional structural information as well as 
from amino acid sequence. It has been reported that increase in number of salt bridges 
and side chain-side chain interactions [13], counterbalance between packing and 
solubility [14], aromatic clusters [15], contacts between the residues of hydrogen 
bond forming capability [16,17], ion pairs [18], cation-π interactions [19,20], non-
canonical interactions [21], electrostatic interactions of charged residues and the 
dielectric response [22,23], amino acid coupling patterns [24], main-chain 
hydrophobic free energy [25] and hydrophobic residues [26] in thermophilic proteins 
enhanced the stability. In addition, the amino acid sequences of genomes have been 
used for understanding the stability of thermophilic proteins. Das and Gerstein [27] 
reported that intra-helical salt bridges are prevalent in thermophiles. Fukuchi and 
Nishikawa [28] showed that the amino acid composition on protein surface may be an 
important factor for understanding the stability. Ding et al. [29] revealed the 
preferences of dipeptides in thermophilic proteins for extreme stability. Berezovsky  
et al. [30] found that the proteomes of thermophilic proteins are enriched in 
hydrophobic and charged amino acids at the expense of polar ones.  

In spite of these studies, it is necessary to build a system, which derives stability 
rules for any input data and convert them into prediction. In this work, we have 
developed a classification rule generator to provide an online service for relating 
protein stability changes from the information about the mutated residue, three 
neighboring residues and the mutant residue. The rules can be interpreted to 
understand and predict protein stability changes upon point mutations. We have 
developed a method based on decision tree for discriminating /predicting protein 
mutant stability just from amino acid sequence. Using the information of a short 
window of seven residues (three residues on both directions of the mutant site) our 
method discriminated the stabilizing and destabilizing mutants with an accuracy of 
82% and predicted the stability changes with a correlation of 0.70. Further, we have 
analyzed the performance of different algorithms, such as Bayes rules, neural 
network, SVM, decision trees etc for discriminating mesophilic and thermophilic 
proteins. We found that the 5-fold cross-validation accuracy is almost similar in most 
of the machine learning algorithms and the accuracy of discriminating mesophilic and 
thermophilic proteins using neural networks is marginally better than other methods. 
It could discriminate them at an accuracy of 93% and 89%, respectively, for self-
consistency and 5-fold cross-validation tests in a dataset of 4684 proteins.  
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2   Materials and Methods 

We have used different sets of data for predicting protein stability upon point 
mutations, and discriminating mesophilic and thermophilic proteins. Likewise, 
different methods have been used for these two studies. 

2.1   Datasets  

For the study on protein mutant stability, we have constructed a dataset of 1859 non-
redundant single mutants from 64 proteins using ProTherm, the thermodynamic 
database for proteins and mutants available on the web [31,32]. We have removed the 
duplicate mutants that have same mutated and mutant residues, residue number, 
experimental conditions (pH and temperature, T) and  ΔΔG values. Further, we 
retained only one data (the average value) for the mutants in which ΔΔG are reported 
with same T and pH, and different conditions (buffers/ions). We have used five 
variables for implementing the discrimination/prediction algorithm: (i) Md, mutated 
(deleted) residue, (ii) Mi, mutant (introduced) residue, (iii) pH, (iv) T (°C) at which 
the stability of the mutated protein was measured explicitly and (v) three neighboring 
residues of the central residue. These attributes have been selected with the balance 
between experimental conditions and sequence information. 

Zhang and Fang [33] used 4895 mesophilic and 3522 thermophilic proteins for 
discriminating them using dipeptide composition. The proteins in each set contain 
many redundant sequences and we removed the redundancy using CD-HIT algorithm, 
[34] as implemented by Holm and Sander [35]. The final dataset contains 3075 
mesophilic proteins and 1609 thermophilic proteins. Further, we have used a test set 
of 325 mesophilic and 382 thermophilic proteins belonging to Xylella fastidosa and 
Aquifex aeolicus families, respectively. These datasets have the proteins with less 
than 40% sequence identity. 

2.2   Computation of Amino Acid Composition 

The amino acid composition for each protein has been computed using the number of 
amino acids of each type and the total number of residues:  

Comp(i) = Σ ni/N,            (1) 

where i stands for the 20 amino acid residues; ni is the number of residues of each 
type and N is the total number of residues. The summation is through all the residues 
in the particular protein. 

2.3   Methods for Discrimination and Prediction 

We have used decision tree [36] along with adaptive boosting algorithm [37] for 
discriminating the stability of protein mutants, and classification and regression tree 
(CART) [38] for predicting the stability changes of proteins upon mutations. The 
decision tree algorithms can efficiently construct interpretable prediction models by 
measuring input variables directly from training data, which is suitable for large 
datasets and unknown data distribution. The decision tree has been selected with two 
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steps: in the first step, a recursive split procedure builds a tree, named maximum tree, 
which closely describes the training dataset and in the second step, the maximum tree 
is cut off for finding optimal sub tree. The adaptive boosting algorithm generates a set 
of classifiers from the data, each optimized to classify the correct ones that were 
misclassified in previous pass. Considering the exploitation of sets of hypotheses with 
independent errors it can improve the classification accuracy and reduce the variance 
as well as the bias.  

We have analyzed several machine learning techniques implemented in WEKA 
program [39] for discriminating mesophilic and thermophilic proteins. This program 
includes several methods based on Bayes functions, neural networks, logistic 
functions, support vector machines, regression analysis, nearest neighbor methods, 
meta learning, decision trees and rules. The details of these methods have been 
explained in our earlier article [40]. We have analyzed different classifiers and 
datasets to discriminate mesophilic and thermophilic proteins. 

2.4   Assessment of Predictive Ability 

We have used different measures to assess the accuracy of discriminating mesophilic 
and thermophilic proteins, and stabilizing and destabilizing mutants. The term, 
sensitivity shows the correct prediction of thermophiles (stabilizing mutants), specificity 
about the mesophilies (destabilizing mutants) and accuracy indicates the overall 
assessment. The agreement between experimental and predicted stability changes has 
been assessed with correlation coefficient. These terms are defined as follows: 

 Sensitivity = TP/(TP+FN)       (2) 

 Specificity = TN/(TN+FP)       (3) 

 Accuracy = (TP+TN)/(TP+TN+FP+FN)                    (4) 

r = [N ΣXY – (ΣX ΣY)]/{[N ΣX2 – (ΣX)2] [N ΣY2 – (ΣY)2]}1/2  (5) 

where, TP, FP, TN and FN refer to the number of true positives, false positives, true 
negatives, and false negatives respectively; r is the correlation coefficient, N, X, and 
Y are the number of data, experimental and predicted stability, respectively.  

We have performed n-fold cross-validation test for assessing the validity of the 
present work. In this method, the data set is divided into n groups, n-1 of them are used 
for training and the rest is used for testing the method. The same procedure is repeated 
for n times and the average is computed for obtaining the accuracy of the method. We 
have carried out 2-fold, 3-fold, 4-fold, 5-fold and 10-fold cross validation tests. 

3   Results and Discussion 

3.1   Development of Classification Rules 

We have developed a system composed of three components, which can sequentially 
develop protein sequence information to classification rules along with related 
analysis (Figure 1). 
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Fig. 1. Flowsheet of the learning process for depicting the relationship between components 
and data 

The first component constructs a decision tree from the information about the 
mutated residue with three neighboring residues and the mutant residue. The mutation 
and neighboring residues information have been obtained from ProTherm database 
[31,32] and Protein Data Bank [41], respectively. Then the second one converts the 
learned tree into an equivalent set of rules, which may discriminate the stabilizing and 
destabilizing mutants as well as to explore the underlying concept of experimental 
data. The third provides further analyses from different viewpoints to clarify the 
characteristics of generated rules.  

From the dataset of 1859 mutants, a total of 104 rules were generated. The rule size 
of the rule set being about 2 indicates the antecedent of these rules consist of about 
two statements on average. Generally, a shorter rule may make the rule easier to 
understand and to be examined. We further observed that 1535 samples of the dataset 
can match the antecedent of these rules with 175 errors, which showed the accuracy 
of 88.6%. It reveals that most samples in the dataset can be correctly inferred by using 
the rule set. In Table 1, we have given few examples of rules and their details: (i) if 
the mutated residue is Asp, its third neighbor at N-terminal is Glu, and its second 
neighbor at C-terminal is Leu, then the predicted stability change will be positive 
(stabilizing); we obtained an accuracy 96% in a set of 25 data; (ii) if the deleted 
residue is Ser and its first neighbor at N-terminal is Pro, then the predicted stability 
change will be negative (destabilizing), which correctly predicted all the 29 data with 
an accuracy of 100%; (iii) if the deleted residue is Leu, then the protein will be 
destabilizing; this rule is applied to 122 mutants and 115 are predicted correctly 
(accuracy 94%).  
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Table 1. Confidence measure for 5 rules with high accuracy and sufficient number of data from 
a dataset of 1859 non-redundant single mutants 

Rule Rule
size

Number
of 

data 

Percentage
of 

data (%) 

Correctly 
predicted

Accuracy 
(%) 

Predicted 
class 

Mutated residue=D, N3=E, C2=L 3 25 1.34 24 96 Stabilizing 

Mutated residue=T, C1=V 2 29 1.56 24 83 Stabilizing 

Mutated residue=S, N1=P 2 29 1.56 29 100 Destabilizing 

Mutated residue=L 1 122 6.56 115 94 Destabilizing 

Mutant residue=G 1 66 3.55 62 94 Destabilizing 

 
We have developed a web interface for generating rules for any set of stability data 

using wild type, mutant and three neighboring residue information. We have also 
provided the related dataset for different tests along with the generated rules on the 
web server. 

3.2   Prediction of Protein Stability  

We have utilized the rules for discriminating the stabilizing and destabilizing mutants 
and predicting the stability change upon mutation along with the information about 
pH and T. The validity of our approach has been assessed with 4-fold, 10-fold and 20-
fold cross-validation procedures. The 4-fold and 20-fold cross-validation tests yielded 
the accuracy of 81.4% and 82.1% for discriminating the stability of protein mutants. 
The sensitivity and specificity are 75.3% and 84.5%, respectively [42]. Further, our 
method could predict the stability of protein mutants with the correlation coefficient 
of 0.70.  

The main features of the present method are: (i) it is based on the neighboring 
residues of short window length, (ii) it can predict the stability from amino acid 
sequence alone, (iii) developed different servers for discrimination and prediction, and 
integrated them together, (iv) utilized the information about experimental conditions, 
pH and T, and (v) implemented several rules for discrimination and prediction from the 
knowledge of experimental stability and input conditions: (i) if the deleted residue is 
Ala and the neighboring residues contain Gln, then the predicted stability change will 
be negative (accuracy = 97.1%), (ii) if the deleted residue is Glu and its second 
neighbor at N-terminal is Met, the mutation stabilizes the protein (accuracy = 100%) 
and (iii) if the deleted-residue belongs to Y, W, V, R, P, M, L, I, G, F or C, and the 
introduced-residue belongs to T, S, P, K, H, G or A, then the predicted stability change 
will be -2.05 kcal/mol (mean absolute error = 1.57 kcal/mol).  

We have developed a web server for discriminating the stabilizing and destabilizing 
mutants and predicting the stability of proteins upon mutations. The program takes the 
information about the mutant and mutated residues, three neighboring residues on both 
sides of the mutant residue along with pH and T. In the output, we display the predicted 
protein stability change upon mutation along with input conditions (Figure 2). In the case  
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Fig. 2. The results obtained for predicting the stability change along with the related informa-
tion of neighboring residues 

of discrimination, we show the effect of the mutation to protein stability, whether 
stabilizing or destabilizing. Both discrimination and prediction services offer an option for 
additional sequence composition information of neighboring residues (Figure 2). The bar 
chart shows the number of amino acids of each type. The two pie charts below represent 
the percentage of residues according to polarity and the metabolic role of amino acids. The 
prediction/discrimination results are available at http://bioinformatics.myweb.hinet.net/ 
iptree.htm. 

In our method, we have used the balance between experimental conditions and 
sequence information as features for prediction. These features are different from 
other methods, which mainly used contact potentials, 40 different combinations of 
mutations, solvent accessibility, secondary structure, average stability value for each 
mutation, experimental conditions etc. for predicting the stability. In addition, we 
have used different features including the variation of window length along the 
sequence and we observed the best performance with the information about mutant 
and mutated residues as well as three neighboring residues along the sequence. 

We have compared the performance of CART with neural networks (NN) and 
support vector machines (SVM) using same features. The ROC curve obtained for the 
three methods with 20-fold cross-validation test is shown in Figure 3. We observed  
 

 

Fig. 3. ROC curves for CART (thick line), SVM (thin line) and NN (broken line) 
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that the performance of CART is the best among all the three methods. The areas under 
the curve (AUC) for CART, SVM and NN are 0.83, 0.75 and 0.66, respectively. 

3.3   Discrimination of Mesophilic and Thermophilic Proteins 

We have computed the amino acid composition of mesophilic and thermophilic 
proteins and the results are shown in Figure 4. From this figure, we observed that the 
composition of Ala, Leu, Gln and Thr are higher in mesophiles than thermophiles an 
opposite trend is observed for Glu, Lys, Arg and Val [43]. These preferences and the 
higher occurrence of other amino acids in thermophilic proteins reveal the implica-
tions for protein stability.  
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Fig. 4. Amino acid composition in mesophilic (■) and thermophilic (□) proteins 

The comparative analysis on the occurrence of Cys, Ile and Val in the structural 
homologues of 23 mesophilic and thermophilic proteins [25] showed that the 
occurrence of Cys is less in thermophiles than mesophiles. On the other hand, the 
occurrence of Val/Ile is higher in thermophiles than mesophiles. In addition, it has 
been reported that Cys can be replaced by Val/Ile to enhance the stability [14]. 
Interestingly, these trends were reflected in the analysis of amino acid composition. 
Further, the charged residues, Lys, Arg and Glu have significantly higher occurrence in 
thermophilic proteins than mesophilic ones and the composition of Asp showed a 
moderate difference (Figure 4). We have analyzed the composition of charged residues 
in the structural homologues of thermophilic and mesophilic proteins and observed that 
the thermophiles have more number of charged residues than mesophiles. This result 
supports our observation obtained with amino acid sequence analysis.  

We have analyzed the performance of different machine learning techniques for 
discriminating mesophilic and thermophilic proteins. In this discrimination, we have 
used the amino acid composition as the main attributes. We observed that most of the 
machine learning methods discriminated the mesophilic and thermophilic proteins 
with the accuracy in the range of 84-89% in a set of 4684 proteins. This analysis 
showed that there is no significant difference in performance between different  
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Fig. 5. Discrimination accuracy in different mesophilic and thermophilic organisms 

machine learning methods. Interestingly, the methods neural networks, support vector 
machines and logistic functions discriminated mesophilic and thermophilic proteins at 
similar accuracy of 89%. The accuracy of identifying thermophilic proteins is 87% 
where as that of excluding mesophilic proteins is 96%. The overall accuracy is 89.4% 
for distinguishing mesophilic and thermophilic proteins. 

The accuracy of discriminating mesophilic and thermophilic proteins in different 
families has been analyzed and the results are depicted in Figure 5.  

We observed that the proteins in most of the mesophilic families are discriminated 
with the accuracy of more than 90%. On the other hand, the accuracy of 
discriminating thermophilic proteins showed a vide variation of 65 to 96%. Further 
analysis on this family of proteins revealed that the number of proteins in this family 
is significantly less (20 proteins) and most of the proteins are showing high sequence 
identity with mesophilic proteins.  In addition, we have analyzed the discrimination 
accuracy of thermophilic (moderate) and hyper (extreme) thermophilic proteins from 
mesophilic proteins. Interestingly, we observed that hyper-thermophilic proteins are 
discriminated with higher accuracy than moderate thermophilic proteins. The 
accuracies of discriminating hyper-thermophilic and thermophilic proteins from 
mesophilic ones are, 90% and 73%, respectively. 

We have assessed the reliability of the present method by discriminating 
mesophilic and thermophilic proteins from different families that are not considered 
in the work for training/ testing. We have collected the data of 325 mesophilic and 
382 thermophilic proteins from Xylella fastidosa and Aquifex aeolicus families, 
respectively. We observed that the present method based on neural networks correctly 
identified the thermophilic proteins with the sensitivity of 87.6%. Further, the 
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mesophilic proteins are excluded with the specificity of 95.7% and the overall 
accuracy is 91.3%. These results demonstrated that our method is performing 
extremely well in distinguishing mesophilic and thermophilic proteins. 

4   Conclusions 

We have developed a rule generator for classifying the stabilizing and destabilizing 
protein mutants based on wild type, mutant and three neighboring residue 
information. These rules have been effectively used to discriminate the stabilizing and 
destabilizing mutants, and predicting the stability of a protein upon point mutation. 
Our method could achieve the accuracy of 82% and a correlation of 0.70 for 
discrimination and prediction, respectively, just from amino acid sequence. Further, 
different machine learning techniques have been analyzed for discriminating the 
mesophilic and thermophilic proteins and showed that these proteins are 
discriminated with the accuracy of 89%. Our method used simple features and 
achieved high accuracy and hence it is suitable for prediction. We suggest that our 
method could be effectively used in protein design. 
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