Skip to main content

The Role of Spin-Polarized Tunneling on Transport Properties of (1–x)La0.7Ca0.3MnO3 + xAl2O3 Nanocomposites (x = 0 ÷ 5wt%)

  • Conference paper
Physics and Engineering of New Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 127))

  • 1790 Accesses

Abstract

We have investigated the effect of artificial grain boundaries on the electromagnetic properties of (1–x)La0.7Ca0.3MnO3 + xAl2O3 nanocomposites (x x= 0 x÷ 5wt%). Based upon a spin-polarized tunneling mechanism we have proposed a phenomenological model to explain the observed electrical transport behavior over the whole temperature range (70 ÷ 300K), especially the gradual drop of metal-insulator transition temperature (Tp) as a function of increasing Al2O3 content, while the feromagnetic-paramagnetic transition temperature (TC) remains almost constant (TC x= 250K). A large low-field magneto-resistance was observed for all the composite samples and the largest magnetoresistance ratio was recorded for a composition with x x=0.01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77 (1996) 2041

    Article  PubMed  ADS  CAS  Google Scholar 

  2. C. Zener, Phys. Rev. 82 (1951) 403

    Article  ADS  CAS  Google Scholar 

  3. Gupta, J.Z. Sun, J.Magn. Magn. Mater. 200 (1999) 24

    Article  ADS  CAS  Google Scholar 

  4. S.P. Issac, N.D. Mathur, J.E. Events, M.G. Blamire, Appl. Phys. Lett. 72 (1998) 2038

    Article  ADS  Google Scholar 

  5. S. Jin, T.H. Tiefel, M. McCormack, H.M. O'Bryan, L.H. Chen, R. Ramesh, D. Schurig, Appl. Phys. Lett. 67 (1995) 557

    Article  ADS  CAS  Google Scholar 

  6. L.l. Balcells, A.E. Carrilo, B. Martnez, J. Fontcuberta, Appl. Phys. Lett. 74 (1999) 4014

    Article  ADS  CAS  Google Scholar 

  7. S. Gupta, R. Ranjit, C. Mitra, P. Raychaudhury, R. Pinto, Appl. Phys. Lett. 78 (2001) 362

    Article  ADS  CAS  Google Scholar 

  8. Gaur, G.D. Varma, Solid State Common. 139 (2006) 310

    Article  ADS  CAS  Google Scholar 

  9. Z.C. Zia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zhang, J. Tang, L. Liu, S. Liu, G. Peng, D.W. Niu, L. Chen, Q.H. Zheng, Z.H. Fang, C.Q. Tang, Solid State Common. 128 (2003) 291

    Article  CAS  Google Scholar 

  10. S.N. Sadakale, R.J. Choudhary, M.S. Sahasrabhdhe, A.G. Banpurkar, K.P. Adhi, S.I. Patil, S.K. Date, J. Magn. Magn. Matter 286 (2005) 450

    Article  ADS  CAS  Google Scholar 

  11. Jitendra Kumar, Rajiv K. Singh, P.K. Siwach, H.K. Singh, Ramadhar Singh, O.N. Srivastava, J. Magn. Magn. Matter 299 (2006) 155

    Article  ADS  CAS  Google Scholar 

  12. R. Bath, S.R. Shide, K.M. Gapchup, K.P. Adhi, S.I. Patil, J. Magn. Magn. Matter 256 (2003) 425

    Article  ADS  Google Scholar 

  13. J. Blasco, J. Garci, J.M. Teresa, M.R. Ibarra, J. Perez, D.A. Algarabel, C Marquina, Phys. Rev. B 55 (1997) 8905

    Article  ADS  CAS  Google Scholar 

  14. Vazquez, M.C. Blanco, M.A. Lopez-Quintela, R.D. Sanchez, J. Rivas and S.B. Oseroff, J. Mater. Chem. 8(4) (1998), 991

    Article  Google Scholar 

  15. S.L. Yuan, Y.P. Yang, Z.C. Xin, G. Peng, G.H. Zhang, J. Tang, Solid State Commun. 123 (2002) 55

    Article  ADS  CAS  Google Scholar 

  16. L.W. Lei, Z.Y. Fu, J.Y. Zhang, H. Wang, Solid State Commun. 140 (2006) 261

    Article  ADS  CAS  Google Scholar 

  17. L.W. Lei, Z.Y. Fu, J.Y. Zhang, H. Wang, Matee. Sci. Eng. B (2006) 128, 70

    Article  CAS  Google Scholar 

  18. A.de Andres, M. Garcia-Hernandez, J.L. Martinez, Phys. Rev. B 60 (1999) 7328

    Article  ADS  Google Scholar 

  19. J.M. Rubinstein, J. Appl. Phys. 87 (2000) 5019.

    Article  ADS  CAS  Google Scholar 

  20. D.D. Srivastava, D. Bahadur, A.K. Nigam. and S.K. Malik, J. Phys.: Condens Matter 16(2004)4089

    Article  ADS  CAS  Google Scholar 

  21. J.S. Helman and B. Abeles, Phys. Rev. Lett. 37 (1976) 1429

    Article  ADS  CAS  Google Scholar 

  22. M. Viret, M. Drouet, J. Nassar, J.P. Contour, C. Fermon and A. Fert, Europhys. Lett. 39 (1997) 545

    Article  ADS  CAS  Google Scholar 

  23. S.L. Yuan, J. Tang, L. Liu, W. Chen, W. Chen, L.F. Zhao, Y. Tian, H. Cao, G.H. Zhang, L.J. Zhang, W. Feng, S. Liu and Z.C. Xia, Europhys. Lett. 63 (2003) 433

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phong, P.T., Khiem, N.V., Phuc, N.X., Hong, L.V. (2009). The Role of Spin-Polarized Tunneling on Transport Properties of (1–x)La0.7Ca0.3MnO3 + xAl2O3 Nanocomposites (x = 0 ÷ 5wt%). In: Cat, D.T., Pucci, A., Wandelt, K. (eds) Physics and Engineering of New Materials. Springer Proceedings in Physics, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88201-5_15

Download citation

Publish with us

Policies and ethics