

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 198–208, 2008.
© IFIP International Federation for Information Processing 2008

Cost-Performance Tradeoff for Embedded Systems

Julie S. Fant and Robert G. Pettit

The Aerospace Corporation
Chantilly, Virginia USA

{julie.s.fant,robert.g.pettit}@aero.org

Abstract. Software engineering requires creativity, thorough design and analy-
sis, and sound design decisions. Design decisions often have tradeoffs and im-
plications associated with them. Therefore, it is important that design decisions
are based on sound analysis. With respect to embedded systems, key drivers are
often performance and cost. Thus the purpose of this paper is to describe an ap-
proach to aid in the design decision process on cost and performance tradeoffs
for embedded systems. Specifically, it presents a model-driven approach to un-
derstand and communicate the performance-cost tradeoff.

Keywords: software performance, cost, UML, embedded systems, model-
driven design, tradeoff.

1 Introduction

Software engineering, like other engineering disciplines, requires creativity, thorough
design and analysis, and sound design decisions. Design decisions often have trade-
offs and implications associated with them. Thus these decisions should be examined
with proper analysis to ensure the best overall decision is made.

Embedded systems are a special type of system where the computers and associ-
ated software are components embedded within a larger system such as mobile
phones, household appliances, automotive controls, etc. In these types of systems,
performance and cost are often key drivers. Many times the solution to achieving
better performance is simply to purchase more expensive hardware. This, however, is
not always a good solution since the additional cost of the high performance hardware
may not result in an equivalent performance gain. For example, one may spend a
large sum of money for the fastest central processor available but find that in-
put/output (I/O) constraints limit the benefits from the high-performance CPU. There-
fore it is critical to spend the time analyzing the different options to ensure the best
decision is made between cost and performance.

The purpose of this paper is to describe an approach to aid in the design decision
process by helping to understand and communicate the performance-cost tradeoff for
embedded systems. Specifically, it presents a model-driven approach that combines
software performance analysis techniques with techniques to analyze and compare the
cost-performance aspects of potential hardware implementations.

This paper is structured as follows: Section 2 describes the related works. Section 3
presents the approach to cost-performance analysis and its benefits. Section 4 de-
scribes a case study using the proposed approach. Finally, Section 5 contains the ma-
jor conclusions and future work.

 Cost-Performance Tradeoff for Embedded Systems 199

2 Related Work

Many approaches to analyze the performance of embedded and real-time systems have
been developed. For our purposes, these approaches can be broadly categorized as
those exploring performance through analytical techniques [1-6] or through simulation
[7-10]. The cost-performance analysis approach presented in this paper does not pre-
scribe the use of a particular performance analysis method. Rather, it attempts to illus-
trate how cost-performance tradeoff decisions can be compartmentalized and input to
analytical or simulation techniques that will assist the decision making process.

3 Analysis Approach and Benefits

The paper presents an approach to performing cost-performance tradeoff analysis for
embedded systems. The purpose of this approach is to help communicate and under-
stand the cost-performance tradeoffs associated with different hardware implementa-
tion options. It has five major steps, which are as follows: 1) Develop a platform
independent model; 2) Select the hardware configurations to analyze; 3) Conduct
performance analysis on each of the hardware configurations; 4) Perform cost-
performance tradeoff analysis; and 5) Make and document the design decision. Each
step is described below in more detail.

The first step in the proposed tradeoff approach is to build a platform independent
model of the software system. The purpose of this step is to show how the software is
meeting the functional requirements. Additionally the platform independent model
will serve as the foundation for predicting software performance. It is recommended
that the models be captured using the Unified Modeling Language (UML) since it is
the de facto object oriented modeling language in industry.

The next step is to select the hardware implementation options for the software
system. A good way to promote creativity and to enumerate the different potential
options is to develop morphological box. A morphological box is an existing systems
engineering technique that uses a two-dimensional table of components and physical
architecture options, as depicted in Table 1.

Table 1. Morphological Box Generic Example

Component A Component B Component C
Physical Option A1 Physical Option B1 Physical Option C1
Physical Option A2 Physical Option B2 Physical Option C2
Physical Option A3 Physical Option B3

Each column represents a component and each row in the column represents a
physical instantiation option. Different system physical architectures can be analyzed
by selecting one box from each column [11]. This same technique can be applied to
software for determining and selecting hardware implementation options. The col-
umns will represent hardware elements and the rows will represent different physical
hardware options for the elements. For example, one column may be the microcon-
troller with possible options being an H8 or an ARM 7 microcontroller. Once the

200 J.S. Fant and R.G. Pettit

morphological box is created, the engineers can select the hardware implementations
to analyze by selecting one row from each column. The morphological box will
likely produce a large number of potential options. However, not all of these options
need to be analyzed. Engineers should only select a subset that they are considering
for the end system. Selections can be made with certain characteristics in mind such
as lowest cost hardware or highest performance hardware.

Once the potential hardware implementations have been identified, the third step is
to perform software performance analysis for each implementation. Any software
performance analysis technique can be used in the proposed approach. For example,
the UML platform independent model can be annotated with platform specific infor-
mation using a UML profile and then subsequently analyzed. Alternatively, the UML
platform independent model can be converted into a Petri-net model and subse-
quently analyzed for performance. The performance metrics produced in the software
performance analysis should coincide with the software performance requirements.
For example, if the system has a requirement for a maximum latency, then latency
should be calculated in the performance analysis.

The fourth step in the proposed tradeoff approach is to compare the different hard-
ware implementations against cost and performance. This should be done by develop-
ing tradeoff x-y scatter plots of performance and cost. The plots should again be based
on the performance requirements. This will clearly show the tradeoff of different
hardware configuration options on one graph. For example, if there is a performance
requirement on the maximum latency, then the tradeoff x-y scatter plot should plot
latency versus cost. Additionally, the performance requirements can also be added to
the graph to show the system’s threshold. To illustrate this point, consider Figure 1.

0

5

10

15

20

25

30

3 3.5 4 4.5 5 5.5 6 6.5

Cost ($1000)

L
at

en
cy

 (
m

s)

A

B
C

Fig. 1. Example Tradeoff Plot

This is an tradeoff x-y scatter plot of worst case latency versus cost for three hard-
ware options and the performance requirement for maximum latency is denoted with
a red-dotted line. In this example, all the options meet the performance requirement
since they are below the maximum latency threshold. It can be clearly seen that there
is a 28% increase in performance and a 14% cost increase between options A and B.
Between options B and C there is an 11% performance increase, however the cost is

 Cost-Performance Tradeoff for Embedded Systems 201

50% more. In this case, since option B provides the best balance between cost and
performance, it is the best choice for the example system.

Finally, after the different options have been analyzed and a decision has been
made, the design decision should be documented so that future maintainers of the
system will understand why this decision was made.

The proposed tradeoff analysis approach has several benefits. First, the proposed
tradeoff approach does not prescribe any particular performance analysis technique.
This is good because it enables organizations to leverage their currently existing
performance analysis techniques. Another benefit of the proposed tradeoff approach is
that it provides an easy means to understand and communicate tradeoff decisions.
The scatter plots present the data from all the potential hardware options on a single
graph while illustrating the cost-performance impacts of each option. Finally, the
proposed tradeoff approach helps directly link design decisions to performance
requirements.

4 Case Study

In this section, we illustrate the cost-performance tradeoff approach using a robot
controller case study. The robot controller is an autonomous robot with an infrared
light sensor and two motors (actuators). The goal of the robot is to search an area for
colored discs while staying within a course boundary and avoiding obstacles. In this
case study, a light sensor is used as the sole input sensor, responsible for detecting
boundaries, obstacles, and discs according to different color schemes. In order to
avoid hitting obstacles and boundaries, the robot controller must process the light
sensor inputs in a timely manner. For our purposes, the rover has a requirement to
react to a light sensor event within a travel distance of 0.5 cm, which corresponds to
50ms in the configurations used for this study. The following subsections details each
step in the proposed tradeoff approach.

4.1 Platform Independent Model

The first step in the tradeoff approach is to build a platform independent model of the
robot controller to show how the system will meet its functional requirements. We
designed the case study following the COMET method and stereotypes [5]. The sys-
tem is divided into three active, concurrently executing objects (detect, rover, and
nav), one passive object (map), and three external I/O objects for receiving light sen-
sor input and for modeling output to the two motors. Figure 2 depicts a UML
sequence diagram for how the different objects interact. The detect, rover, and nav
objects all operate asynchronously and all messages between the active objects have
synchronous, buffered communication.

4.2 Hardware Configuration Selection

The next step in the tradeoff approach is to develop the different hardware implemen-
tation options. In this example there are four hardware elements which are the two
motors, the light sensor, and the microcontroller platform. In this configuration, the
microcontroller platform performs all of the processing and the light sensor is the sole

202 J.S. Fant and R.G. Pettit

Fig. 2. Platform Independent Sequence Diagram

input for determining discs and obstacles. The microcontroller platform uses two
motors which are used to maneuver the robot. Turning is achieved by rotating the left
(Motor A) and right (Motor C) motors in opposite directions. These four elements
become the columns in our morphological box and each element was given at least
one hardware option.

The final morphological box for the robot controller is depicted in Table 2. In this
example, we consider two types of motors, three different light detectors, and three
different microcontrollers. These platform specific performance characteristics and
costs were also listed in the morphological box. The performance characteristics were
selected based on the notational embedded system framework described in [9]. This
framework shows which platform characteristics need to be included in the design of
concurrent software. We determined the platform specific characteristics and costs
using online pricing, historical data, hardware specifications, and published bench-
marks for the different systems [12-16].

After the morphological box is populated, it is time to select the hardware imple-
mentations that will be considered. In this example, we chose to analyze the cheapest
option which is referred to as RP: two RCX interactive servo motors, the CDS photo-
resister, and the RCX Intelligent Brick. The second option we selected uses the high-
est performance hardware which is called JN: two NXT interactive servo motors, the
NXT light sensor, and JOP. The third option we picked was the standard RCX con-
figuration which is referred to as RR: two RCX interactive servo motors, the RCX
light sensor, and the RCX Intelligent Brick. Finally, we also chose to analyze the new
Mindstorms™ NXT system which is referred to as NN: two NXT servo motors, the
NXT light sensor, and Mindstorms™ NXT processor.

 Cost-Performance Tradeoff for Embedded Systems 203

Table 2. Morphological Box for the Robot Controller

Motor A Motor C Light Sensor Platform

RCX Interactive
Servo Motor

RCX Interactive
Servo Motor

Mindstorms™ Light
Sensor

RCX Intelligent Brick -
Hitachi H8 μμμμ controller

Latency=1ms Latency=1ms detectionLatency=10.3ms IPS=18M
cost=$18 cost=$18 Cost=$17 clockspeed=16MHz

CDS Photoresister csOverhead= < 1ms
detectionLatency=30ms kbMemOverhead=17.5
Cost=$0.60 RAM=28KB

Cost=$45
JOP - Altera Cyclone EP1C6
FPGA Board
IPS=10406M
clockspeed=20 MHz
csOverhead= < 1ms
kbMemOverhead=3KB
RAM=92KBits
Cost=$310.00
Mindstorms™ NXT – ARM
7 μμμμ controller
IPS=80M
clockspeed=40MHz
csOverhead= <1 ms
kbMemOverhead=20
RAM=64MB

NXT Servo
Motor
Latency=1ms
cost=$18

NXT Servo
Motor
Latency=1ms
cost=$18 NXT Light Sensor

detectionLatency=5ms
Cost=$39

Cost=$135

4.3 Performance Analysis

The third step in the tradeoff analysis approach is to conduct the performance analysis.
This is the step where the different hardware implementations are analyzed for per-
formance. In this case study, to illustrate the flexibility of the cost-performance trade-
off approach, we will show the performance analysis using both an analytical and a
simulation approach. The follow subsections show the details for each approach.

4.3.1 Analytical Technique
For an analytical technique, we start with a UML model augmented with platform
specific characteristics and then apply event sequence analysis for certain perform-
ance scenarios. Here, platform specific UML models are annotated using the UML
Profile for Schedulability, Performance and Time (SPT) [17]. The UML SPT profile
is scheduled to be replaced by the UML Profile for Modeling and Analysis of Real-
time and Embedded Systems (MARTE) [18], however the SPT profile is still ade-
quate for the purposes of this paper.

Using this approach, we created a platform specific UML model for each of the
hardware configurations being analyzed. At a minimum, the platform specific UML
model must capture the hardware configuration in a deployment diagram and the
processing steps in interaction diagrams such as a sequence diagram. Figure 3 shows
the platform specific sequence diagram for the RCX Intelligent Brick with CDS
photoresistor (RP) configuration. We estimated demand times for each step by divid-
ing the number of estimated instructions per step by the microcontroller’s IPS rate.

204 J.S. Fant and R.G. Pettit

Fig. 3. Platform Specific UML Sequence Diagram for the RP configuration

 Cost-Performance Tradeoff for Embedded Systems 205

After we created the platform specific UML models, we then performed event
sequence analysis to determine the worst case latency through the system. Event
sequence analysis is used to determine the tasks that need to be executed in order to
service a given event. This is computed by calculating the time for the tasks in the
event sequence plus any time used for context switching and message communication
[5]. Table 3 provides a summary of the results for each of the configurations.

Table 3. Summary Performance Analysis Results

Short Name Configuration Worst Case Latency
JN JOP w/NXT light sensor 6.1ms
RP RCX Intelligent Brick w/photoresistor 50.7ms
RR RCX Intelligent Brick w/RCX light sensor 31ms
NN Mindstorms™ NXT w/NXT light sensor 10.5ms

4.3.2 Simulation
The simulation technique we used in this case study is simulation through coloured
Petri nets(CPNs) by Pettit and Gomaa [7-9]. This method assigns behavioral patterns
to the UML objects and constructs CPN templates for each behavioral pattern. Con-
necting the templates and populating with application and platform specific character-
istics provides for an executable CPN model of the system that can be used to analyze
such properties as throughput and concurrent behavior. Applying time-stamps to the
tokens within the net also allows us to monitor the flow of events and messages over
time and provides us with the capability to analyze response time (latency) from the
receipt of an event to the output action associated with that event.

Fig. 4. CPN Simulated Response Time

206 J.S. Fant and R.G. Pettit

Figure 4 shows the high-level results of simulating response times for the RR con-
figuration. In this scenario, a light sensor event occurs at time 6459 (not shown on
the figure) and a response to the motors is observed at time 6490 (simulation time in
milliseconds). Thus, the reaction time for this case is 31ms. Further execution runs
resulted in response times no greater than this value.

4.4 Cost-Performance Tradeoff Analysis

After we conducted performance analysis on the all the different hardware configura-
tions, we created the cost-performance tradeoff plot. These plots can be derived from
the analysis data, the simulation data, or both, depending on the availability of models
and the desired confidence in the results. Figure 5 is the tradeoff plot of our perform-
ance analysis shows cost versus worst case latency. From this tradeoff plot we can see
that the RP configuration does not meet the performance requirement; therefore it
cannot be selected. We can also tell from the tradeoff plot that the lowest cost option
that still meets the performance requirement is the RR configuration. The tradeoff plot
also clearly shows that while the NN configuration does cost more (∆$112), it does
provide a significant performance increase (∆20.5ms). We can also tell from this
graph that the highest cost option, JN, does yield the fastest performance. However,
this graph illustrates that the relative performance gain of ∆4.4ms between the NN
and JN configuration probably does not outweigh the additional cost of ∆$175.

In summary, the tradeoff plot helps engineers in their design decision process. For
this system, if the overall goal is to keep costs low, then the RR configuration is the
best option since it is the lowest cost option that still meets the performance require-
ments. If the overall goal is to maximize performance while keeping costs down, then
the NN configuration is the logical choice since it has a reasonable balance of cost
and performance.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Cost ($)

W
o

rs
e

C
as

e
L

at
en

cy
 (

m
s)

RP

RR

NN
JN

Fig. 5. Tradeoff plot for robot controller case study

 Cost-Performance Tradeoff for Embedded Systems 207

5 Conclusions and Future Work

In conclusion, the proposed cost-performance tradeoff approach is intended to help in
the design decision processes to ensure the best overall decision is made. Specifi-
cally, it helps to examine and illustrate the tradeoffs between cost and performance
for embedded systems. This helps engineers ensure performance requirements are
met and cost is considered in the processes. This helps avoid the unnecessary pur-
chase of expensive hardware and helps keep the overall system cost low. The ap-
proach is also flexible enough to work with any software performance analysis tech-
nique which companies maybe using. This enables organizations to leverage the
performance analysis technique already in existence. Finally, it provides an easy
means to understand, communicate, and document tradeoff decisions. The tradeoff
plots present the data from all the potential hardware options on a single graph which
makes the data easy to communicate and understand.

A next logical extension of this approach would be to tradeoff decisions with other
non-functional aspects of software such as security or reliability. For example, the
approach can examine the performance impacts of including various security meas-
ures in a system. Tests should also be expanded to larger systems to prove scalability
of the approach.

References

1. Wu, X., Woodside, M.: Performance modeling from software components. In: Proceedings
of the 4th international workshop on Software and performance, Redwood Shores. ACM
Press, California (2004)

2. Woodside, M., et al.: Performance by Unified Model Analysis (PUMA). In: Fifth Interna-
tional Workshop on Software and Performance (WOSP 2005), Palma, Illes Balears, Spain
(2005)

3. Sabetta, A., et al.: Annotating UML Models with Non-Functional Properties for Quantita-
tive Analysis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Springer,
Heidelberg (2006)

4. Wu, X., McMullan, D., Woodside, M.: Component Based Performance Prediction. In: 6th
ICSE Workshop on Component-Based Software Engineering: Automated Reasoning and
Prediction, Portland, Oregon (2003)

5. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML,
3rd edn. Addison-Wesley Object Technology Series, Boston (2000)

6. Street, J., Gomaa, H.: An Approach to Performance Modeling of Software Product Lines.
In: 9th International Conference on Model Driven Engineering Languages and Systems
Modeling and Analysis of Real-Time and Embedded Systems (MARTES) Workshop,
Genova (2006)

7. Pettit, I.R.: Analyzing Dynamic Behavior of Concurrent Object-Oriented Software Design
Ph.D Dissertation, in Department of Information and Software Engineering, George Ma-
son University: Fairfax, VA (2003)

8. Pettit IV, R., Gomaa, H.: Modeling Behavioral Design Patterns of Concurrent Objects. In:
Conference on Software Engineering (ICSE), Shanghai, China (2006)

9. Pettit IV, R., Gomaa, H.: Analyzing Behavior of Concurrent Software Designs for Embed-
ded Systems. In: ISORC 2007. IEEE, Los Alamitos (2007)

208 J.S. Fant and R.G. Pettit

10. Ober, I., Graf, S., Ober, I.: Validating timed UML models by simulation and verification.
In: Workshop on SVERTS: Specification and Validation of UML models for Real Time
and Embedded Systems, San Francisco, California, USA (2003)

11. Buede, D.: The Engineering Design of Systems Models and Methods. Wiley Series in Sys-
tems Engineering. Sage, Thousand Oaks (2000)

12. Performance of Various Java Processors (2006) [cited May 2008],
http://www.jopdesign.com/perf.jsp

13. MINDSTORMS(R) - Legos Shop [cited May 2008],
http://shop.lego.com/ByTheme/Leaf.aspx?cn=17&d=70

14. Macron Photoresistor Specification [cited May 2008],
http://www.macron.com.hk/spec_photoersistor.htm

15. Radio Shack [cited May 2008], http://www.radioshack.com/sm-cds-
photoresistorsassortment-of-5–pi-2062590_tb-techSpecs.html

16. Altera Online [cited May 2008], http://www.altera.com/
17. The UML Profile for Schedulability, Performance and Time (January 2005) cited,

http://www.omg.org/technology/documents/formal/schedulabilit
y.htm

18. UML Profile for Modeling and Analysis of Real-time and Embedded Systems (MARTE)
(2007) cited, http://www.omg.org/cgi-bin/doc?ptc/2007-08-04

	Cost-Performance Tradeoff for Embedded Systems
	Introduction
	Related Work
	Analysis Approach and Benefits
	Case Study
	Platform Independent Model
	Hardware Configuration Selection
	Performance Analysis
	Cost-Performance Tradeoff Analysis

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

