
Real-Time Access Guarantees for NAND Flash
Using Partial Block Cleaning

Siddharth Choudhuri and Tony Givargis

Center for Embedded Computer Systems,
School of Information and Computer Sciences,

University of California, Irvine CA, USA
{sid,givargis}@uci.edu

Abstract. Increasing use of NAND flash in newer application domains
has been possible due to lowering cost per GB, consumer demands for
storage and advantages of NAND flash over traditional disks. However,
NAND flash has its idiosyncrasies resulting in asymmetric read/write
times due to garbage collection and wear leveling requirements. Such
asymmetric (non-deterministic) read/write times poses a challenge for
the adoption of NAND flash in real-time systems.

We present the implementation details of a flash translation layer
called GFTL that guarantees strict upper bounds on read/write times
that are comparable to a theoretical ideal case. Such guarantees are made
possible by dividing the source of non-determinism into deterministic in-
tervals using our proposed approach called partial block cleaning. Using
partial block cleaning, the process of garbage collection is divided into
several smaller, deterministic steps. Partial block cleaning comes with
an overhead of additional space requirements. We provide a proof on the
limit of the additional space requirements.

Keywords: NAND flash, real-time, file system, embedded systems.

1 Introduction

The use of NAND flash as a storage subsystem is on the rise. NAND flash man-
ifests itself in a wide variety of embedded systems such as mp3 players, digital
camera cards, USB based flash drives, set-top boxes, routers to name a few.
The driving forces behind the widespread adoption of NAND have been − (i)
The advantages of NAND flash over hard disk drives such as small form factor,
shock resistance and fast access times; (ii) The falling cost per GB of NAND
flash [1] [2]; and (iii) The push from end users for increased storage in consumer
electronics. With lowering cost per GB, NAND flash is poised to be used in
newer application domains that impose timing guarantees on storage accesses.
For example, the One Laptop Per Child (OLPC) project, Canon’s HD camcoder
use NAND flash as the only non-volatile storage medium [3][4]. While the eco-
nomics of price has been favorable, the use of NAND flash in mission critical
and real-time applications that demand determinism, has been a challenge due
to NAND flash idiosyncrasies.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 138–149, 2008.
c© IFIP International Federation for Information Processing 2008

Real-Time Access Guarantees for NAND Flash 139

NAND flash has certain unique characteristics that are atypical of either RAM
or hard disk drives. Specifically, NAND flash does not support in-place updates,
i.e., an update (re-write) to a page (the minimum of write) is not possible, unless
a larger region containing the page (known as a block) is first erased. Erase
operation on a block is an order of magnitude slower, making it undesirable.
Further, a block has a limited erase lifetime (typically 100,000) after which a
block becomes unusable. Such characteristics require special handling of NAND
flash using either a dedicated file system or wrapping the NAND flash with
a layer of hardware/software known as the flash translation layer (FTL). The
FTL performs three important functions (i) Exports a view of NAND flash that
resembles a disk drive, thereby hiding the peculiarities of NAND flash. Thus, an
FTL translates a read/write request from the file system (sector) into a specific
〈block, page〉 of the NAND flash; (ii) Reclaims space by erasing obsoleted blocks
(due to out of place updates), also known as garbage collection; (iii) Performs
wear leveling to make sure that blocks across a flash get evenly erased.

NAND flash management (wear leveling and garbage collection) is workload
dependent resulting in asymmetric read/write times. Therefore, typically FTLs
do not provide service guarantees. Such asymmetric read/write latency might
be tolerable for single-threaded or dedicated applications. However, as we move
towards newer application domains, a deterministic service guarantee becomes
desirable to design and run applications.

In this paper, we present implementation details of an FTL called as GFTL
(for Guarantee Flash Translation Layer) based on the concept of “partial block
cleaning”. An FTL based on partial block cleaning is capable of providing strict
service guarantees for file system accesses (reads/writes) independent of the state
or utilization of the flash. Partial block cleaning comes at a cost of additional
flash storage. It is our opinion that with rising capacities and lowering cost per
GB, additional NAND flash overhead (less than 20% across benchmarks) to
provide deterministic guarantee is tolerable. The following are the contributions
of this paper:

– GFTL algorithms for read/write access to a NAND flash which provides
strict service guarantees due to partial block cleaning.

– Proof for determining the limit on additional space requirements for GFTL.

The rest of the paper is organized as follows: Section 2 briefly describes the
NAND flash characteristics. Section 3 presents our problem formulation followed
by Section 4 which describes the read/write algorithms for GFTL and presents a
proof on the space overhead of GFTL. Section 5 describes the benchmarks used
followed by results. Section 7 summarizes related work followed by conclusion.

2 Preliminaries

A NAND flash consists of multiple erase blocks. Each such erase block is further
divided into multiple pages, a page being the minimum unit of data transfer
(read/write). Associated with each page is a spare area known as the Out Of

140 S. Choudhuri and T. Givargis

Band (OOB) area, primarily meant to store the Error Correction Code (ECC)
of the corresponding page (also used to store meta-data such as inverse page
table). A page is 512 bytes for older, small block NAND flash and 2 KB for
newer large block NAND flash. Three basic operations can be performed on a
NAND flash. An erase operation “wipes” an entire erase block turning every
byte into all 1s i.e., 0xff. A write operation works on either a page or an OOB
area, selectively turning desired 1s into 0s. A read operation reads an entire page
or an OOB area. Updates (re-writes) are out-of-place i.e., directed to a different
page unless the entire block is erased. Table 1 depicts NAND flash specifications
for the basic operations. There are two possible mappings between a sector and

Table 1. NAND flash specifications

Characteristics Samsung 16MB Samsung 128MB
Small Block Large Block

Block size 16384 (bytes) 65536 (bytes)
Page size 512 (bytes) 2048 (bytes)
OOB size 16 (bytes) 64 (bytes)
Read Page 36 (usec) 25 (usec)
Read OOB 10 (usec) 25 (usec)
Write Page 200 (usec) 300 (usec)
Write OOB 200 (usec) 300 (usec)

Erase 2000 (usec) 2000 (usec)

a 〈block, page〉. A page based mapping where a translation table maps each
sector to a 〈block, page〉 pair. However, the size of translation table can become
a limiting factor as flash size increases. In order to deal with such a problem, a
block based translation layer is widely used. For instance, in one of the popular
block based translation layers known as NFTL [5], a sector is divided into a
virtual block and an offset. The virtual block maps to a physical block (known
as the primary block) on the NAND flash. In case of a rewrite (or if the primary
block is full), a new physical block called a secondary block is chosen to perform
the writes. When the two blocks become full, an operation known as fold merges
the primary and the replacement blocks into a new primary block and freeing the
old primary and replacement block. Garbage collection is invoked either when
the NAND flash runs out of space (which does a fold across several blocks) or
using a heuristic. Interested reader can find more details on mapping and garbage
collection heuristics in [6] [7]. For the rest of the paper, the term flash refers to
NAND flash. Table 2 denotes the terminology used throughout the paper (to be
described in later sections)

3 Problem Formulation

We model I/O request (incoming from file system to the FTL) as a real-time
task τ = {p, e, d} where p is the periodicity, e is the execution time and d is the

Real-Time Access Guarantees for NAND Flash 141

Table 2. Terminology

Symbol Definition
Twrpg Time to write a page and OOB area
Trdpg Time to read a page
Trdoob Time to read an OOB area
Ter Time to erase a block
π Pages per block
N Number of blocks
L Length of the write pending queue

deadline. Without loss of generality, we assume that p is equal to d. We have
two kinds of tasks: a read request task τr = {pr, er}, and a write request task
τw = {pw, ew}. pr and pw denote “how often” a read or write request arrives
from the file system. er is the time taken to search for a given sector, read the
corresponding 〈block, page〉 of the flash, and return a success/failure to the file
system. Similarly, ew is the time taken to write a sector to a given 〈block, page〉 .
The bounds on p and e are determined by the FTL. Specifically, a lower bound on
p (denoted by L(p)) determines the maximum request arrival rate that an FTL
can handle. The worst case execution time, i.e., an upper bound on e (denoted by
U(e)), determines the worst case rate at which requests are serviced by the FTL.
For a file system, U(e) represents the average memory access time (AMAT) for
read/write and L(p) represents the maximum rate at which requests are issued
to the flash.

A flash needs to perform flash management (wear leveling and garbage collec-
tion) which involves erasing atleast one or more blocks. Ter is the longest atomic
operation on a flash, i.e., when a block is being erased, the flash is locked and
hence non-interruptible. Therefore, Ter is the limiting factor which decides the
inter-arrival time (periodicity) of requests. Therefore, in an ideal case, L(p) is at
least Ter. The latency due to Ter could be hidden by having buffers in the RAM.
However, while this solution works in an average case, in a worst case scenario
(i.e., when every access results in a block erase), one would require an infinitely
large buffer in RAM as the arrival rate would exceed the service rate. Table 3
depicts the bounds guaranteed by GFTL (details in the next section).

Table 3. Service guarantee bounds

Bounds Ideal GFTL
U(ew) Twrpg Twrpg

U(er) Trdpg + Trdoob πTrdoob + Trdpg

L(pr) L(pw) Ter Ter+max{U(ew), U(er)}

GFTL guarantees (Table 3) a worst case execution time for writes that is as
good as an ideal case and a worst case execution time for reads that is mar-
ginally ((π − 1)Trdoob) larger than an idea case. Further, GFTL provides service

142 S. Choudhuri and T. Givargis

guarantees for requests that have an inter-arrival time [L(p)] that is only slightly
larger than an ideal case while still performing garbage collection.

4 Technical Approach

GFTL is a block based approach. A sector is treated as a logical address and
a logical block is derived from the most significant bits of the logical address
(Figure 1). A block mapping table is used to map a logical block to a physical
block of flash. For a given flash with N blocks, there is a 1 : 1 mapping between
the logical blocks and the physical blocks, resulting in N entries in the block
mapping table. Further, GFTL requires an additional Q blocks for a write queue.

4.1 GFTL Writes

The first write to a given virtual block is written to a free physical block. Due
to a 1 : 1 mapping, a free physical block is guaranteed to be available. Once a
physical block is found, pages are written sequentially starting from page 0. The
sector number is written in the OOB area and serves as an inverse page table.
After π writes, the physical block becomes full. The full physical block is added
to a garbage collection queue called as GCQ. Additional writes that map to a
full physical block are written to pages in the write queue (shown as dark gray in
Figure 1). The write queue serves as a buffer for writes from the time a physical
block becomes full until that physical block is garbage collected. A write queue
tail serves as the index to the next available page in the write queue. There is
only one write queue for the entire flash, thus, there exists a write queue map
which maps the logical address (sector) to a 〈block, page〉 of the write queue.
Algorithm 1 shows that the bounds on taken by write is Twrpg.

4.2 GFTL Reads

A read to a given sector is first searched in the write queue map since it holds
the most recent copy. In case of a write queue map miss, the block mapping
table is used to determine the physical block corresponding to the sector. The

.........

0 1 2 3 4 N+Q-2 N+Q-1

0

1

2

3

4

N-1

Block mapping
table

logical address
(sector)

indexphysical
block

write queue
 tail

Page written

Write queue
block

NAND
Flash

logical
block

... ...

L

Write queue
map

Free page

Single block

GCQ

2

Fig. 1. GFTL Data Structures

Real-Time Access Guarantees for NAND Flash 143

Algorithm 1. GFTL write
1: writesect(sector, buffer)
2: Input: Function writesect, Sector sect, Buffer buf
3: Output: return status
4: vba ← sector/blocksize
5: if (fsm.state = READ ∨ ERASE) ∧ fsm.blk = vba then
6: cached ← true
7: writebuffer(buffer); /* Write to RAM O(1) */
8: goto PartialGC

9: end if
10: if ¬ cached then
11: pba ← blockmap[vba].block /* RAM lookup O(1) */
12: if pba = NULL then
13: pba = find free blk() /* RAM lookup O(1) */
14: nandwrite(pba, 0, buf) /* Write to flash O(Twrpg) */
15: goto PartialGC

16: end if
17: if pba.status = BLOCK FULL then
18: pba ← writequeue.block
19: page ← writequeue.tail
20: else
21: pba ← blockmap[vba].index
22: end if
23: nandwrite(pba, page, buf) /* Write to flash O(Twrpg) */
24: end if
25: PartialGC:

26: if GCQ.size > 0 then
27: do fsm() /* Invoke partial GC FSM to determine next state */
28: end if
29: return

OOB area of the physical block is searched backwards starting from the page
pointed to by the index field of the block mapping table.

A read from the write queue will result in one OOB read and one page read. A
read from block mapping table on the other hand will result in π OOB reads in
the worst case followed by the actual page read. Therefore, the best case AMAT
for reads is Trdpg + Trdoob and the worst case is πTrdoob + Trdpg.

A write either goes to the next available location pointed to by the index
field of block mapping table (Figure 1) or into the write queue in case of a full
physical block. In either case the time taken is constant i.e., Twrpg. Due to the
1 : 1 mapping between virtual and physical blocks, a physical block is guaranteed
available for the very first write. Further, in case of a full block, the size of write
queue is such that a page is guaranteed to be available.

4.3 GFTL Flash Management

The only flash management performed in GFTL is based on partial block clean-
ing which takes care of both garbage collection and wear leveling. The idea

144 S. Choudhuri and T. Givargis

Algorithm 2. GFTL read
1: readsect(sector, buffer)
2: Input: Function readsect, Sector sect, Buffer buf
3: Output: return status
4: if sector ∈ writequeue then
5: pba ← writequeue[sector].block
6: page ← writequeue[sector].page
7: else
8: pba ← blockmap[vba].block /* RAM lookup O(1) */
9: for all page ∈ pba do

10: nand read oob(pba, page, oob) /* O(π × Trdoob) */
11: if sector = oob.sec then
12: nand read page(pba, page, buf) /* O(Trdpg) */
13: end if
14: end for
15: end if
16: if GCQ.size > 0 then
17: do fsm() /* Invoke partial GC FSM to determine next state */
18: end if

behind partial block cleaning is to perform garbage collection on a single block
at a time. Further, each such single block garbage collection is divided into “par-
tial” steps such that the time taken to perform each step is no longer than the
longest atomic flash operation i.e., Ter. The partial steps are interleaved between
servicing read/write requests. The garbage collection of a single block, say Bi,
amounts to the following phases:

1. Block Read: In this phase, the pages that belong to Bi are first read from the
write queue followed by reading the remaining valid pages out of the block
Bi. In a worst case, this step can result in reading (π − 1) pages from the
write queue followed by π OOB reads of Bi to search the remaining valid
page. Thus, the worst case time is (2π − 1)Trdoob + πTrdpg.

2. Block Erase: Block Bi is erased in time Ter.
3. Block Write: The pages that were read in phase 1 are written to a free block,

say, Bnew. In a worst case, π pages will be written resulting in a worst case
time of πTwrpg.

The idea behind partial block cleaning is to divide the block read and block write
phases into partial steps, each of which is of a duration equal to Ter as shown in
Figure 2(a). Let α = �(2π−1)Trdpg/Ter� denote the number of partial steps into
which a read phase can be split as multiple of Ter. Similarly, β = �πTwrpg/Ter�
denotes the number of partial steps that a block write can be broken into. Thus
partial block cleaning divides the three block cleaning phases into (α + 1 + β)
steps, each of a duration Ter.

The core of GFTL acts as a real-time executive that implements the finite state
machine shown in Figure 2(b). As shown in Figure 2(a), GFTL first dispatches

Real-Time Access Guarantees for NAND Flash 145

Fig. 2. Partial block cleaning and FSM

any read/write request followed by performing a step of partial block cleaning
(if the GCQ is non-empty). This approach lets GFTL provide read/write service
guarantees shown in Table 3 while accepting requests at a rate equal to L(p). The
wear level is taken care of in GFTL due to a round robin approach to allocating
free blocks.

4.4 Write Queue Limit

In order to determine the write queue limit (i.e., the limit on L), we consider a
worst case write request arrival sequence. The following is a worst case write re-
quest arrival sequence: N ×π write requests arrive such that each request is to a
unique page. Thus, at the end of N ×π write requests, we have a full flash. Now,
each subsequent request will start filling the write queue. Note that if each re-
quest filling up a write queue belongs to a unique logical block, garbage collecting
such write queue block cannot be started until each block whose page is written
to the write queue block has been reclaimed. For example, if a write queue block
Qi has π pending writes that belong to unique logical blocks {B1, B2, ..., Bπ},
the write queue block Qi cannot be reclaimed (garbage collected) until each
block in {B1, B2, ..., Bπ} has been reclaimed. Therefore, the worst case sequence
of logical blocks to which writes arrive are {0, 1, 2, ..., N − 1, 0, 1, 2, ..., N − 1, ...}
(Figure 3 “Block Numbers Arrival Sequence”). This results in each write queue
block being filled with π pending writes, each of which belongs to a unique logical
block. Therefore, a write queue block cannot be reclaimed until π blocks are first
garbage collected (i.e., worst case for a write queue block). Thus, the write re-
quest grows at a rate equal to 1/L(p) (Figure 3 “Arrival Rate”). However, every
(α + β + 1) × L(p) time units, a block is garbage collected (Figure 3 “Service
Rate”) resulting in a net growth of write queue (Figure 3 “Theoretical Write
Queue Length”). In this case the arrival rate 1/L(p) is greater than the service
rate 1/(α + β + 1)L(p) (Figure 3) leading to an infinite queue length. However,
in our worst case arrival model, after N writes, every incoming write request al-
ready has at least one other pending write in the write queue that belongs to the
same logical block as the incoming write. Similarly, after 2N writes, every write
request has 2 pending requests that belong to the same logical block. Thus, with
time, the growth of the write queue length decreases every N requests reaching
a steady state value (Figure 3 “Write Queue Length”). Specifically, the write

146 S. Choudhuri and T. Givargis

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

G
ro

w
th

 (
W

rit
e

Q
ue

ue
 L

en
gt

h)

Time (Requests)

L = N x (alpha + beta + 1)/2

Theoretical Write Queue Length

Write Queue Length
Block Numbers Arrival Sequence (ramp function)

Service Rate
Theoritical Write Queue Length

L = N x (alpha + beta + 1)/2
Arrival Rate

Fig. 3. Write Queue Length Growth

queue length reaches a maximum value of L = [N × (α + β + 1)/2] after which
the write queue attains a steady state. Figure 3 depicts the growth of write queue
buffer with L(p) = 1.

The following proof provides a limit on the upper bound of the write queue
length. The proof is derived for the worst case arrival sequence mentioned above
(i.e., the write queue pages fill up such that each page belongs to a different
logical block and the distance between two pages in the write queue that belong
to the same block is N).

In Figure 3, the ramp function denotes the growth of write queue in terms of
the logical block numbers. The actual growth is denoted by the curve entitled
“Write Queue Length”. Assuming κ = (α + β + 1), the service rate is given by
y(x) = x/κ.

Every κ interval, a physical block Bi is reclaimed. Since the block Bi is re-
claimed, every page p | p ∈ writequeue∧physical block(p) = Bi is also rendered
obsolete. Every N th interval, the number of such write queue pages | p | (that
are rendered obsolete) increases by 1 until κ times. This can be seen as the in-
tersection of “Service Rate” and the ramp function in Figure 3. After κ times,
the growth of the write queue reaches a steady state as the number of pages
that are rendered obsolete i.e., | p | equals κ. Therefore, the write queue length
reaches a steady state where it grows by an amount κ and then decreases by the
same amount every κ intervals due to multiple pages in the write queue being
rendered obsolete.

Thus, the upper bound on the length of the write queue can be obtained by
summing the growth of write queue (given the arrival rate) and the decrease
in write queue due to partial garbage collection. The write queue increases
monotonically in the worst case. The decrease due to block cleaning is given
by intersection of the service rate with the ramp function. The first intersection
is found at y = x/κ for x = N . The second intersection is found at y = 2x/κ for

Real-Time Access Guarantees for NAND Flash 147

x = 2N and so on. The summation until the steady state gives the worst case
bound on the write queue length L

End of 1st interval L1 = N − �N/κ	
End of 2nd interval L2 = N − �2N/κ	
...
End of κ − 1th interval Lκ−1 = N − �(κ − 1)N/κ	

Summing, Σκ−1
i Li = (N × (κ − 1)) − (N × (κ − 1)/2)

ΣL = N × (κ − 1)/2

To this summation, we add N additional entries to accommodate the floor func-
tion rounding off as a buffer. Thus, the upper bounds on write queue limit is

L = N × (κ − 1)/2 + N
= N(κ + 1)/2

Note that though L is greater than N (total blocks), the actual write queue
length in terms of the number of additional blocks is [N(κ+1)/2]/π as each block
can store π pending writes. Thus, for a given flash the write queue length (L),
can be calculated at design time by looking at the flash specs and independent
of workload or flash state.

5 Results

We used the following benchmarks representing a variety of workloads. The
Andrew benchmark [8] consists of five phases involving creating files, copying
files, searching files, reading every byte of a file and compiling source files.
The Postmark benchmark measures performance of file systems running net-
worked applications like e-mail, news server and e-commerce [9]. The iozone
benchmark [10] is a well known synthetic benchmark. We ran iozone to do read,
write, rewrite, reread, random read, random write, backward read, record rewrite
and stride read. The file sizes ranged from 64KB to 32MB in strides of 2×
(i.e., 64, 128, . . . 32768). Besides these standard benchmarks, we used our own
benchmark called consumer which simulates flash activities used in consumer
electronics devices such as image manipulation, data transfer, audio and video
playback.

A set of benchmarks were run in sequence to generate a file system trace. The
first trace, called the synthetic trace was generated by running the following
sequence: format flash → andrew → postmark → iozone. Similarly, consumer
trace was generated by formating a flash followed by running the consumer
benchmark. In order to perform a rigorous evaluation of GFTL, each read/write
in the trace was simulated with a periodicity of L(p) i.e., there is no idle period.
Further, the synthetic trace consists of 4.3 million writes and 27, 841 reads and

148 S. Choudhuri and T. Givargis

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

S
ta

nd
ar

d
D

ev
ia

tio
n

(L
og

 s
ca

le
)

T
im

e
(u

se
c)

 (
Lo

g
sc

al
e)

 Synthetic Consumer

Std. Dev. GFTL
Std. Dev. NFTL

Max write time NFTL
Max write time GFTL

Fig. 4. NFTL vs. GFTL writes

 100

 1000

 10000

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

S
ta

nd
ar

d
D

ev
ia

tio
n

(L
og

 s
ca

le
)

T
im

e
(u

se
c)

 (
Lo

g
sc

al
e)

 Synthetic Consumer

Std. Dev. GFTL
Std. Dev. NFTL

Max read time NFTL
Max read time GFTL

Fig. 5. NFTL vs. GFTL reads

the consumer trace consists of 125, 596 writes and 76, 479 reads. The flash size at
100% utilization for synthetic trace is 136 and 260 MB for the consumer trace.

Figures 4 and 5 compares GFTL and NFTL in terms of read/write perfor-
mance. The variation in write times is more than an order of magnitude less
for GFTL due to partial block cleaning. The maximum write time of GFTL is
constant as opposed to NFTL. The maximum read time is proportional to the
number of pages per block i.e., π. This is due to the fact that reads requires
a sequential read of the OOB area until a desired sector is found. The average
overhead calculated across the traces and across all page, block size combinations
is 16%.

6 Related Work

While there have been several block based FTLs, the real time aspect of
NAND flash was first investigated by [11]. The authors proposed an innova-
tive approach towards using a garbage collector thread (instance) for each real
time task. The garbage collector thread has a execution time of
(π − α) × (Trdpg + Twrpg) + Ter+cpu time). In [11] each garbage collector in-
vocation is takes at least (π − 1)(Trdpg + Twrpg) + Ter) time (ignoring cpu time)
in the best case. In our approach, the overhead of partial GC is Ter in the worst
case. Moreover, with GFTL we do not associate an additional GC task thereby
avoiding overhead. [11] requires file system support for special ioctl calls. GFTL
can be run on top any unmodified file system. Results from [11] are based on
two tasks T 1 = (3, 20) and T 2 = (5, 20) resulting in creation of two GC tasks
G1 = (22, 160) and G2 = (22, 600) at 50% utilization. The execution time of
GC thread is comparable to 10 times Ter. GFTL on the other hand provides a
delay that is around Ter. Moreover, we provide a rigorous where each request is
considered a real-time task along with high utilization.

In [12], the authors address soft real-time issues by modifying the file sys-
tem. The techniques in [12] focus on commonly used access patterns and not
strict guarantees. In [6], the authors survey a wide range of garbage collection

Real-Time Access Guarantees for NAND Flash 149

algorithms as part of their study. However, the garbage collectors are not aimed
at real-time systems. An exhaustive research on flash memories for real time
systems was done by [13]. The conclusions in [13], supports our motivation for
the lack of real-time, deterministic guarantees for flash. The results on wear level
and details on benchmark performance is in[14].

7 Conclusion

In this paper we provided the algorithms to implement an FTL called GFTL
that guarantees O(1) write time and a read time that takes π (pages per block)
searches of the flash OOB in the worst case. Further, we provided a proof that
determines the bounds on space overhead required by GFTL using partial block
cleaning. Thus, for a given flash the write queue can be computed at design
time independent of flash workload or state. Using the approach of partial block
cleaning, real-time guarantees can be provided for NAND flash (that are close
to an ideal case). The overhead of partial block cleaning is less than 20% across
the benchmarks used in our experiments.

References

1. Lawton, G.: Improved flash memory grows in popularity. Computer 39(1), 16–18
(2006)

2. MemCon: MemCon. (July 2007),
http://linuxdevices.com/news/NS6633183518.html

3. One Laptop Per Child Project, http://laptop.org
4. Canon: Vixia HD Camcoder (January 2008)
5. Ban, A.: Flash file system optimized for page-mode flash technologies. US Patent

5,937,425 (August 10, 1999)
6. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Comp.

Surv. 37(2), 138–163 (2005)
7. Chang, L.P., Kuo, T.W.: Efficient management for large-scale flash-memory storage

systems with resource conservation. Trans. Storage 1(4), 381–418 (2005)
8. Howard, J.H., et al.: Scale and performance in a distributed file system. ACM

Trans. Comput. Syst. 6(1), 51–81 (1988)
9. Katcher, J.: Postmark: A new file system benchmark. Technical report, Net App.

Inc. (TR 3022) (1997)
10. Norcutt, W.: IOZONE benchmark, http://www.iozone.org
11. Chang, L.P., Kuo, T.W., Lo, S.W.: Real-time garbage collection for flash-memory

storage systems of real-time embedded systems. TECS 3(4), 837–863 (2004)
12. New techniques for real-time fat file system in mobile multimedia devices. IEEE

Transactions on Consumer Electronics 52, 1–9 (2006)
13. Parthey, D.: Analyzing real-time behavior of flash memories. Diploma Thesis,

Chemnitz University of Technology (April 2007)
14. Choudhuri, S., Givargis, T.: Deterministic service guarantees for NAND flash using

partial block cleaning. In: CODES+ISSS 2008. ACM, New York (to appear, 2008)

http://linuxdevices.com/news/NS6633183518.html
http://laptop.org
http://www.iozone.org

	Real-Time Access Guarantees for NAND FlashUsing Partial Block Cleaning
	Introduction
	Preliminaries
	Problem Formulation
	Technical Approach
	GFTL Writes
	GFTL Reads
	GFTL Flash Management
	Write Queue Limit

	Results
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

