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Abstract. The parameter space of a statistical learning machine has a
Riemannian metric structure in terms of its objective function. Amari
[1] proposed the concept of “natural gradient” that takes the Rieman-
nian metric of the parameter space into account. Kakade [2] applied it to
policy gradient reinforcement learning, called a natural policy gradient
(NPG). Although NPGs evidently depend on the underlying Riemannian
metrics, careful attention was not paid to the alternative choice of the
metric in previous studies. In this paper, we propose a Riemannian met-
ric for the joint distribution of the state-action, which is directly linked
with the average reward, and derive a new NPG named “Natural State-
action Gradient” (NSG). Then, we prove that NSG can be computed by
fitting a certain linear model into the immediate reward function. In nu-
merical experiments, we verify that the NSG learning can handle MDPs
with a large number of states, for which the performances of the existing
(N)PG methods degrade.

Keywords: policy gradient reinforcement learning, natural gradient,
Riemannian metric matrix, Markov decision process.

1 Introduction

Policy gradient reinforcement learning (PGRL) attempts to find a policy that
maximizes the average (or time-discounted) reward, based on the gradient ascent
in the policy parameter space [3,4,5]. As long as the policy is represented by a
parametric statistical model that satisfies some mild conditions, PGRL can be
instantly implemented in the Markov decision process (MDP). Moreover, since
it is possible to treat the parameter controlling the randomness of the policy,
PGRLs, rather than value-based RLs, can obtain the appropriate stochastic
policy and be applied to the partially observable MDP (POMDP). Meanwhile,
depending on the tasks, PGRL methods often take a huge number of learning
steps. In this paper, we propose a new PGRL method that can improve the slow
learning speed by focusing on the metric of the parameter space of the learning
model.
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It is easy to imagine that large-scale tasks suffer from a slow learning speed
because the dimensionality of the policy parameters increases in conjunction
with the task complexity. Besides the problem of dimensionality, the geometric
structure of the parameter space also gives rise to slow learning. Ordinary PGRL
methods omit the sensitivity of each element of the policy parameter and the
correlation between the elements, in terms of the probability distributions of the
MDP. However, most probability distributions expressed by the MDP have some
manifold structures instead of Euclidean structures. Therefore, the updating di-
rection of the policy parameter by the ordinary gradient method is different from
the steepest direction on the manifold; thus, the optimization process occasion-
ally falls into a stagnant state, commonly called a plateau. This is mainly due
to the regions in which the geometric structure for the objective function with
respect to the parameter coordinate system becomes fairly flat and its derivative
becomes almost zero [6]. It was reported that a plateau was observed in a very
simple MDP with only two states [2]. In order to solve such problem, Amari [1]
proposed a “natural gradient” for the steepest gradient method in Riemannian
space. Because the direction of the natural gradient is defined on a Riemannian
metric, it is an important issue how to design the Riemannian metric. Never-
theless, the metric proposed by Kakade [2] has so far been the only metric in
the application of the natural gradient for RL [7,8,9], commonly called natural
policy gradient (NPG) reinforcement learning.

In this paper, we propose the use of the Fisher information matrix of the
state-action joint distribution as the Riemannian metric for RL and derive a
new robust NPG learning, “natural state-action gradient” (NSG) learning. It is
shown that this metric considers the changes in the stationary state-action joint
distribution, specifying the average reward as the objective function. In contrast,
Kakade’s metric takes into account only changes in the action distribution and
omits changes in the state distribution, which also depends on the policy in
general. A comparison with the Hessian matrix is also given in order to confirm
the adequacy of the proposed metric. We also prove that the gradient direction
as computed by NSG is equal to the adjustable parameter of the linear regression
model with the basis function defined on the policy when it minimizes the mean
square error for the rewards. Finally, we demonstrate that the proposed NSG
learning improves the performance of conventional (N)PG-based learnings by
means of numerical experiments with varying scales of MDP tasks.

2 Conventional Natural Policy Gradient Method

We briefly review PGRL in section 2.1 and the natural gradient [1] and the NPG
in section 2.2. In section 2.3, we introduce the controversy of NPGs.

2.1 Policy Gradient Reinforcement Learning

PGRL is modeled on a discrete-time Markov decision process (MDP) [10,11]. It is
defined by the quintuplet (S, A, p, r, πθ), where S � s and A � a are finite sets of
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states and actions, respectively. Further, p : S×A×S → [0, 1] is a state transition
probability function of a state st, an action at, and the following state st+1 at a
time step t, i.e., p(st+1|st, at) ≡ Pr(st+1|st, at) 1. r : S × A × S → R is a reward
function of st, at, and st+1, and is bounded, which defines an immediate reward
rt+1 = r(st, at, st+1) observed by a learning agent. π : A × S × Rd → [0, 1] is an
action probability function of at, st, and a policy parameter θ ∈ Rd, and is always
differentiable with respect to θ known as a policy, i.e., π(at|st; θ) ≡ Pr(at|st, θ).
It defines the decision-making rule of the learning agent and is adjustable by
tuning θ. We make an assumption that the Markov chain M(θ) = {S, A, p, πθ}
is ergodic for all θ. Then, there exists a unique stationary state distribution
dθ(s) ≡ Pr(s|M(θ)), which is equal to the limiting distribution and independent
of the initial state, dθ(s′) = limt→∞ Pr(St = s′|S0 = s, M(θ)), ∀s ∈ S. This
distribution satisfies the balance equation:

dθ(s′) =
∑

s∈S

∑

a∈A
p(s′|s, a)π(a|s;θ)dθ(s). (1)

The following equation instantly holds [10]:

dθ(s′)= lim
T→∞

1
T

T∑

t=1

Pr(St =s′|S0 =s, M(θ)), ∀s ∈ S. (2)

The goal of PGRL is to find the policy parameter θ∗ that maximizes the
average of the immediate rewards called the average reward:

R(θ) ≡ lim
T→∞

1
T

E

{ T∑

t=1

rt

∣∣∣s0, M(θ)
}

, (3)

where E{·} denotes expectation. It is noted that, under the assumption of er-
godicity (eq.2), the average reward is independent of the initial state s0 and can
be shown to equal [10]:

R(θ) =
∑

s∈S

∑

a∈A

∑

s′∈S
dθ(s)π(a|s;θ)p(s′|s, a)r(s, a, s′)

=
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)r̄(s, a)

≡
∑

s∈S

∑

a∈A
Pr(s, a|M(θ))r̄(s, a). (4)

where r̄(s, a) ≡
∑

s′∈S p(s′|s, a)r(s, a, s′). The statistical model Pr(s, a|M(θ))
is called the stationary state-action (joint) distribution. Since r̄(s, a) is usually
independent of the policy parameter, the derivative of the average reward with

1 Although it should be Pr(St+1 = st+1|St = st, At = at) for the random variables
St+1, St, and At to be precise, we notate Pr(st+1|st, at) for simplicity. The same rule
is applied to the other distributions.
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respect to the policy parameter, ∇θR(θ) ≡ [∂R(θ)/∂θ1, ..., ∂R(θ)/∂θd]	 is given
by

∇θR(θ) =
∑

s∈S

∑

a∈A
∇θ {dθ(s)π(a|s;θ)} r̄(s, a)

=
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)r̄(s, a) {∇θln π(a|s; θ) + ∇θln dθ(s)} , (5)

where � denotes transpose and ∇θaθbθ ≡ (∇θaθ)bθ. Therefore, the average
reward R(θ) increases by updating the policy parameter as follows:

θ := θ + α∇θR(θ),

where := denotes the right-to-left substitution and α is a sufficiently small learn-
ing rate. The above framework is called the PGRL method [5].

2.2 Natural Gradient [1]

Natural gradient learning is a gradient method on a Riemannian space. The
parameter space being a Riemannian space implies that the parameter θ ∈ Rd

is on the Riemannian manifold defined by the Riemannian metric matrix G(θ) ∈
Rd×d (positive definite matrix) and the squared length of a small incremental
vector Δθ connecting θ to θ + Δθ is given by

‖Δθ‖2
G = Δθ	G(θ)Δθ.

Under the constraint ‖Δθ‖2
G = ε2 for a sufficiently small constant ε, the steepest

ascent direction of a function R(θ) is given by

∇̃G,θ R(θ) = G(θ)−1∇θR(θ). (6)

It is called the natural gradient of R(θ) in the Riemannian space G(θ). In
RL, the parameter θ is the policy parameter, the function R(θ) is the average
reward, and the gradient ∇̃G,θR(θ) is called the natural policy gradient (NPG)
[2]. Accordingly, in order to (locally) maximize R(θ), θ is incrementally updated
by

θ := θ + α ∇̃G,θ R(θ). (7)

When we consider a statistical model of a variable x parameterized by θ, Pr(x|θ),
the Fisher information matrix (FIM) Fx(θ) is often used as the Riemannian
metric matrix: [12]

Fx(θ) ≡
∑

x∈X
Pr(x|θ)∇θ ln Pr(x|θ)∇θ ln Pr(x|θ)	

= −
∑

x∈X
Pr(x|θ)∇2

θ ln Pr(x|θ), (8)
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where X is a set of possible values taken by x. ∇2
θaθ denotes ∇θ(∇θaθ). The rea-

son for using F (θ) as G(θ) comes from the fact that F (θ) is a unique metric ma-
trix of the second-order Taylor expansion of Kullback-Leibler (KL) divergence2,
which is known as a (pseudo) distance between two probability distributions.
That is, the KL divergence of Pr(x|θ+Δθ) from Pr(x|θ) is represented by

DKL{Pr(x|θ)| Pr(x|θ+Δθ)}=
1
2
Δθ	Fx(θ)Δθ+O(‖Δθ‖3),

where ‖a‖ denotes the Euclidean norm of a vector a.

2.3 Controversy of Natural Policy Gradients

PGRL is regarded as an optimizing process of the policy parameter θ on some
statistical models relevant to both a stochastic policy π(a|s;θ) and a state transi-
tion probability p(s′|s, a). If a Riemannian metric matrix G(θ) can be designed
on the basis of the FIM of an apposite statistical model, F ∗(θ), an efficient NPG
∇̃F ∗,θR(θ) is instantly derived by eq.6.

As Kakade [2] pointed out, the choice of the Riemannian metric matrix G(θ)
for PGRL is not unique and the question what metric is apposite to G(θ) is still
open. Nevertheless, all previous studies on NPG [13,14,8,7,9] did not seriously
address the above problem and (naively) used the Riemannian metric matrix
proposed by Kakade [2]. In the next section, we will discuss the statistical models
and metric spaces for PGRL and propose a new Riemannian metric matrix.

3 Riemannian Metric Matrices for PGRL

In section 3.1, we propose a new Riemannian metric matrix for RL and derive
its NPG named the NSG. In sections 3.2 and 3.3, we discuss the validity of this
Riemannian metric by comparing it with the Riemannian metric proposed by
Kakade [2] and the Hessian matrix of the average reward.

3.1 A Proposed Riemannian Metric Matrix and NPG Based on
State-Action Probability

Since the only adjustable function in PGRL is the policy function π(a|s;θ), pre-
vious studies on NPG focused on the policy function π(a|s;θ), i.e., the statistical
models Pr(a|s, M(θ)). However, the perturbations in the policy parameter θ also
give rise to the change in the probability of the state Pr(s|M(θ)). Because the
average reward R(θ) as the objective function of PGRL is specified by the joint
probability distribution of the state and the action (s, a) ∈ S × A (eq.4), it is
natural and adequate to focus on the statistical model Pr(s, a|M(θ)). For this
case, the FIM of Pr(s, a|M(θ)) can be used as the Riemannian metric G(θ).
Then, its NPG consists with the direction maximizing the average reward under
2 It is same in the case of all f-divergences in general, except for scale [12].
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the constraint that a measure of changes in the KL divergence of the stationary
state-action distribution with respect to θ is fixed by a sufficient small constant
ε: DKL{Pr(s, a|M(θ))| Pr(s, a|M(θ + Δθ))} = ε2. The FIM of this statistical
model, Fs,a(θ), is calculated with Pr(s, a|M(θ)) = dθ(s)π(a|s;θ) and eq.8 to be

Fs,a(θ) =
∑

s∈S

∑

a∈A
Pr(s, a|M(θ))∇θ ln Pr(s, a|M(θ))∇θ ln Pr(s, a|M(θ))	

= −
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)∇2

θ ln (dθ(s)π(a|s;θ))

= Fs(θ) +
∑

s∈S
dθ(s)Fa(s, θ), (9)

where
Fs(θ) =

∑

s∈S
dθ(s)∇θln dθ(s)∇θ ln dθ(s)	 (10)

is the FIM defined from the statistical model comprising the state distribution,
Pr(s|M(θ))=dθ(s), and

Fa(s, θ) =
∑

a∈A
π(a|s;θ)∇θln π(a|s; θ)∇θln π(a|s; θ)	 (11)

is the FIM of the policy comprising the action distribution given the state s,
Pr(a|s, M(θ)) = π(a|s;θ). Hence, the new NPG on the FIM of the stationary
state-action distribution is

∇̃Fs,a,θR(θ) = Fs,a(θ)−1 ∇θR(θ).

We term it the “natural state-action gradient”(NSG).

3.2 Comparison with Kakade’s Riemannian Metric Matrix

The only Riemannian metric matrix for RL that has been proposed so far is the
following matrix, which was proposed by Kakade [2] and was the weighted sum
of the FIMs of the policy by the stationary state distribution dθ(s),

F a(θ) ≡
∑

s∈S
dθ(s)Fa(s, θ). (12)

This is equal to the second term in eq.9. If it is assumed that the stationary
state distribution is not changed by a variation in the policy, i.e., if ∇θdθ(s) =
0 holds, then Fs(θ) = 0 holds according to eq.10. While this assumption is
not true in general, Kakade’s metric F a(θ) is equivalent to Fs,a(θ) if it holds.
These facts indicate that F a(θ) is the Riemannian metric matrix ignoring the
change in the stationary state distribution dθ(s) caused by the perturbation in
the policy parameter θ in terms of the statistical model of the stationary state-
action distribution Pr(s, a|M(θ)).
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Meanwhile, Bagnell et al. [13] and Peters et al. [14] independently, showed
the relationship between the Kakade’s metric and the system trajectories ξT =
(s0, a0, s1, ..., aT−1, sT ) ∈ ΞT . When the FIM of the statistical model for the
system trajectory ξT ,

Pr(ξT |M(θ)) = Pr(s0)
T−1∏

t=0

π(at|st;θ)p(st+1|st, at),

is normalized by the time steps T with the limit T → ∞, it is equivalent to the
Kakade’s Riemannian metric,

lim
T→∞

1
T

FξT (θ) = − lim
T→∞

1
T

∑

ξT ∈ΞT

Pr(ξT |M(θ))∇2
θ

{
T−1∑

t=0

ln π(at|st;θ)

}

= −
∑

s∈S
dθ(s)

∑

a∈A
π(a|s;θ)∇2

θ ln π(a|s;θ)

= F a(θ)

Since the PGRL objective, i.e., the maximization of the average reward, is re-
duced to the optimization of the system trajectory by eq.3 [13,14] suggested
that the Kakade’s metric F a(θ) could be a good metric. However, being equal
to F a(θ), the normalized FIM for the infinite-horizon system trajectory obvi-
ously differs with Fs,a(θ) and is the metric that ignores the information Fs(θ)
about the stationary state distribution Pr(s|M(θ)). This is due to the fact that
the statistical model of the system trajectory considers not only the state-action
joint distribution but also the progress for the (infinite) time steps, as follows.

Here, s+t and a+t are the state and the action, respectively, progressed in t
time steps after converging to the stationary distribution. Since the distribution
of the system trajectory for T time steps from the stationary distribution, ξ+T ≡
(s, a+0, s+1, ..., a+T−1, s+T ) ∈ ΞT , is

Pr(ξ+T |M(θ)) = dθ(s)
T−1∏

t=0

π(a+t|s+t;θ)p(s+t+1|s+t, a+t),

its FIM is given by

Fξ+T (θ) = Fs(θ) + TF a(θ). (13)

The derivation of which is shown in appendix A. Because of limT→∞ Fξ+T /T =
F a(θ), the Kakade’s metric F a(θ) is regarded as the limit T → ∞ of the system
trajectory distribution for T time steps from the stationary state distribution.
Consequently, F a(θ) omits the FIM of the state distribution, Fs(θ). On the
other hand, the FIM of the system trajectory distribution for one time step
is obviously equivalent to the FIM of the state-action joint distribution, i.e.,
Fξ+1(θ) = Fs,a(θ).

Now, we discuss which FIM is adequate for the average reward maximization.
As discussed in section 3.1, the average reward in eq.4 is the expectation of r̄(s, a)
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over the distribution of the state-action (i.e. the +1-time-step system trajectory)
and does not depend on the system trajectories after +2 time steps. It indicates
that the Kakade’s metric F a(θ) supposed a redundant statistical model and the
proposed metric for state-action distribution, Fs,a(θ), would be more natural and
adequate for PGRL. We give comparisons among various metrics such as Fs,a(θ),
F a(θ), and a unit matrix I through the numerical experiments in section 5.

Similarly, when the reward function is extended a function of T time steps,
r(st, at, ..., at+T−1, st+T ), instead of one time step, r(st, at, st+1), the FIM of the
T -time-step system trajectory distribution, Fξ+T (θ), would be a natural metric
because the average reward becomes R(θ) =

∑
ξ+T ∈ΞT

Pr(ξ+T |M(θ))r(ξ+T ).

3.3 Analogy with Hessian Matrix

We discuss the analogies between the Fisher information matrices Fs,a(θ) and
F a(θ) and the Hessian matrix H(θ), which is the second derivative of the aver-
age reward with respect to the policy parameter θ,

H(θ) ≡ ∇2
θR(θ)

=
∑

s∈S

∑

a∈A
r̄(s, a)dθ(s)π(a|s;θ)

{
∇2

θ ln
(
dθ(s)π(a|s;θ)

)
+ ∇θ ln

(
dθ(s)π(a|s;θ)

)
∇θ ln

(
dθ(s)π(a|s;θ)

)	}

(14)

=
∑

s∈S

∑

a∈A
r̄(s, a)dθ(s)π(a|s;θ)

{
∇2

θ ln π(a|s;θ) + ∇θ ln π(a|s;θ)∇θ ln π(a|s;θ)	 + ∇2
θ ln dθ(s)

+ ∇θ ln dθ(s)∇θ ln dθ(s)	 + ∇θln dθ(s)∇θln π(a|s;θ)	

+ ∇θln π(a|s;θ)∇θln dθ(s)	
}

. (15)

Comparing eq.12 of the Kakade’s metric matrix F a(θ) with eq.15 of the Hessian
matrix H(θ), the Kakade’s metric does not have any information about the
last two terms in braces {·} of eq.15, as Kakade [2] pointed out3. This is because
F a(θ) is derived under ∇θdθ(s) = 0. By eq.9 and eq.14, meanwhile, the proposed
metric Fs,a(θ) obviously has some information about all the terms of H(θ).
This comparison with the Hessian matrix suggests that Fs,a(θ) should be an
appropriate metric for PGRL. Additionally, Fs,a(θ) becomes equivalent to the
Hessian matrix in the cases using an atypical reward function that depends on
θ (see Appendix B).

It is noted that the average reward would not be a quadratic form with re-
spect to the policy parameter θ in general. Especially when θ is far from the
optimal parameter θ∗, the Hessian matrix H(θ) occasionally gets into an indef-
inite matrix. Meanwhile, FIM F (θ) is always positive (semi-)definite, assured

3 Strictly speaking, H(θ) is sligthtly different from the Hessian matrix used in [2].
However, the essence of argument is the same as in [2].
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by its definition in eq.8. Accordingly, the natural gradient method using FIM
might be a more versatile covariant gradient ascent for PGRL than the Newton-
Raphson method [15], in which the gradient direction is given by ∇̃−H,θ R(θ).
Comparison experiments are presented in section 5.

4 Computation of Natural State-Action Gradient

In this section, we view the estimation of the NSG. It will be shown that this
estimation can be reduced to the regression problem of the immediate rewards.

Consider the following linear regression model

fθ(s, a; ω) ≡ φθ(s, a)	ω, (16)

where ω is the adjustable parameter and φθ(s, a) is the basis function of the
state and action, also depending on the policy parameter θ,

φθ(s, a) ≡ ∇θ ln (dθ(s)π(a|s;θ))
= ∇θln dθ(s) + ∇θln π(a|s; θ). (17)

Then, the following theorem holds:

Theorem 1. Let the Markov chain M(θ) have the fixed policy parameter θ, if
the objective is to minimize the mean square error ε(ω) of the linear regression
model fθ(st, at; ω) in eq.16 for the rewards rt+1,

ε(ω) = lim
T→∞

1
2T

T−1∑

t=0

{rt+1 − fθ(st, at; ω)}2
, (18)

then the optimal adjustable parameter ω∗ is equal to NSG as the natural policy
gradient on Fs,a(θ):

∇̃Fs,a,θR(θ) = ω∗.

Proof: By the ergodic property of M(θ), eq.18 is written as

ε(ω) =
1
2

∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ) (r̄(s, a) − fθ(s, a; ω))2 .

Since ω∗ satisfies ∇ωε(ω)|ω=ω∗ = 0, we have
∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)φθ(s, a)φθ(s, a)	ω∗ =

∑

s∈S

∑

a∈A
dθ(s)π(a|s;θ)φθ(s, a)r̄(s, a).

By the definition of the basis function (eq.17), the following equations hold,
∑

s,a

dθ(s)π(a|s;θ)φθ(s, a)φθ(s, a)	 = Fs,a(θ),

∑

s,a

dθ(s)π(a|s;θ)φθ(s, a)r̄(s, a) = ∇θR(θ).
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(i) Δθ�Fs,a(θ)Δθ = 0.14 (ii) Δθ�F a(θ)Δθ = 0.12 (iii) Δθ�IΔθ = 0.35

Fig. 1. Phase planes of a policy parameter in a two-state MDP: The gray level denotes
ln dθ(1)/dθ(2). Each ellipsoid denotes the fixed distance spaces by each metric G(θ) :=
(i) Fs,a(θ), (ii) F a(θ), or (iii) I .

Therefore, the following equation holds:

ω∗ = Fs,a(θ)−1∇θR(θ) = ∇̃Fs,a,θR(θ). �

It is confirmed by theorem 1 that if the least-square regression to the immedi-
ate reward rt+1 by the linear function approximator fθ(st, at; ω) with the basis
function φθ(s, a) ≡ ∇θ ln (dθ(s)π(a|s;θ)) is performed, the adjustable parameter
ω becomes the unbiased estimate of NSG ∇̃Fs,a,θR(θ). Therefore, since the NSG
estimation problem is reduced to the regression problem of the reward function,
NSG would be simply estimated by the least-square technique or by such a gra-
dient descent technique as the method with the eligibility traces proposed by
Morimura et al. [7], where the matrix inversion is not required.

It should be noted that, in order to implement this estimation, the com-
putation of both the derivatives, ∇θln π(a|s; θ) and ∇θln dθ(s), is required for
the basis function φθ(s, a). While ∇θln π(a|s; θ) can be instantly calculated,
∇θln dθ(s) cannot be solved analytically because the state transition probabili-
ties are generally unknown in RL. However, an efficient online estimation manner
for ∇θln dθ(s), which is similar to the method of estimating the value function,
has been established by Morimura et al. [16]. However, we have not discussed
the concrete implementations in this paper.

5 Numerical Experiments

5.1 Comparison of Metrics

We first looked into the differences among the Riemannian metric matrices
G(θ)—the proposed metric Fs,a(θ), Kakade’s metric F a(θ), and unit matrix
I—in a simple two-state MDP [2], where each state s ∈ {1, 2} has self- and
cross-transition actions A = {l, m} and each state transition is deterministic.
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The policy with θ ∈ R2 is represented by the sigmoidal function: π(l|s; θ) =
1/(1 + exp(−θ	ψ(s))), where ψ(1) = [1, 0]	 and ψ(2) = [0, 1]	. Figure 1 shows
the phase planes of the policy parameter θ. The gray level denotes the log ratio
of the stationary state distribution, and each ellipsoid corresponds to the set of
Δθ satisfying a constant distance Δθ	G(θ)Δθ = ε2, in which NPG looks for
the steepest direction maximizing the average reward. It is confirmed that the
ellipsoids by the proposed metric Fs,a(θ) coped with the changes in the state
distribution by the perturbation in θ because the alignment of the minor axis
of the ellipsoid on Fs,a(θ) complied with the direction significantly changing the
dθ(s). This indicates that the policy update with NSG does not drastically change
dθ(s). As we see theoretically. the other metrics could not grasp the changes even
though F a(θ) is the expectation of Fa(θ) over dθ(s).

5.2 Comparison of Learnings

We compared NSG with Kakade’s NPG, the ordinary PG, and the (modified)
Newton PG learnings in terms of the optimizing performances for θ through ran-
domly synthesized MDPs with a varying number of states, |S| ∈ {3, 10, 20, 35,
50, 65, 80, 100}. Note that the only difference among these gradients is the defini-
tion of the matrix G(θ) in eq.6. The Newton PG uses a modified Hessian matrix
H�(θ) to assure the negative definiteness:

H�(θ) = H(θ) − max(0, λmax − λ′
max)I,

where λmax and λ′
max are the maximum and the largest-negative eigenvalues of

H(θ), respectively4.
It is noted that each gradient was computed analytically because we focussed

on the direction of the gradients rather than the sampling issue in this paper.

Experimental Setup. We initialized the |S|-state MDP in each episode as
follows. The set of the actions was always |A| = {l, m}. The state transition
probability function was set by using the Dirichlet distribution Dir(α ∈ R2)
and the uniform distribution U(|S|; b) generating an integer from 1 to |S| other
than b: we first initialized it such that p(s′|s, a) := 0, ∀(s′, s, a) and then, with
q(s, a)∼Dir(α=[.3, .3]) and x\b ∼ U(|S|; b),

{
p(s + 1|s, l) := q1(s, l)
p(x\s+1|s, l) := q2(s, l)

{
p(s|s, m) := q1(s, m)
p(x\s|s, m) := q2(s, m)

where s′=1 and s′= |S|+1 are the identical states. The reward function r(s, a, s′)
was temporarily set for each argument by Gaussian distribution N(μ=0, σ2 =1)
and was normalized such that maxθ R(θ) = 1 and minθ R(θ) = 0;

r(s, a, s′) :=
r(s, a, s′) − minθ R(θ)

maxθ R(θ) − minθ R(θ)
.

4 We examined various Hessian modifications [15]. The modification adopted here
worked best in this task.
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The policy parameterization was the same as that for previous experiment. Ac-
cordingly, in this MDP setting, there is no local optimum except for the global
optimum. Each element of θ0 ∈ R|S| and ψ(s) ∈ R|S| for any state s was drawn
from N(0, .5) and N(0, 1), respectively. We set the total episode time step at
T = 300 and the initial learning rate α0 in eq.7 for each (N)PG before each
episode at the inverse of RMS,

α0 =
√

|S|/
∥∥∇̃G,θR(θ)|θ=θ0

∥∥.

If the learning rate α is decent, R(θ) will always increase by the policy update
of eq.7. Hence, when the policy update decreased R(θ), we tuned the learning
rate “α :=α/2” and reattempted the update in the same time step. This tuning
was kept until ΔR(θ) ≥ 0. On the other hand, when α0 > α held true at the
following time step, we also tuned “α := 2α” to avoid standstills of the learning.

Results and Discussions. Figure 2 shows the learning curves for ten individual
episodes in 100-state MDPs and reveals that NSG learning was able to succeed in
optimizing the policy parameter uniformly and robustly though, compared with
the other gradients, NSG was not infrequently slow in improving of performance
at a moment. These are consistent with the results about the application of the
natural gradient method to the learning of the multilayer perceptron [17].

Figure 3(A) shows the success rate of the learning by 300 episodes at each
number of states. Since the maximum of the average reward was set to 1, we
regarded the episodes satisfying R(θT ) ≥ 0.95 as “successful” episodes. This
suggests that, in the case of the MDPs with a small number of states, NSG and
Kakade’s NPG methods could avoid falling into the severe plateau phenomena
and robustly optimize the policy parameter θ, compared with the other methods.
The reason why Kakade’s NPG could work as well as NSG would be that the
Riemannian metric used in Kakade’s method has partial information about the
statistical model Pr(s, a|M(θ)). Meanwhile, Kakade’s method frequently failed
to improve the average reward in the cases of the MDPs with a large number
of states. This could be due to the fact that Kakade’s metric omits the FIM
about the state distribution, Fs(θ) unlike the proposed metric, as discussed
theoretically in section 3.2. It is also confirmed that Kakade’s NPG was inferior
to the modified Newton PG in the cases of many states. This could also be a
result of whether the gradient has the information about the derivative of dθ(s)
or not.

Finally, we analyzed how severe was the plateau in which these PG learnings
were trapped. As this criterion, we utilized the smoothness of the learning curve
(approximate curvature),

Δ2R(θt)=ΔR(θt+1)−ΔR(θt),
where ΔR(θt) ≡ R(θt)−R(θt−1). The criterion for the plateau measure of the
episode was defined by

PM=
∑T−1

t=1 ‖Δ2R(θt)‖.

Figure 3(B) represents the average of PM over all episodes for each PG and shows
that NSG learning could learn very smoothly. This result indicates that the
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Fig. 2. Time courses of R(θ) for ten individual runs by (i) ∇̃Fs,a,θ R(θ), (ii) ∇̃F a,θR(θ),
(iii) ∇̃I,θ R(θ), (iv) ∇̃−H�,θ R(θ)
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learning by NSG could most successfully escape from a plateau; this is consistent
with all other results.

Since NSG could avoid the plateau and robustly optimize θ without any
serious effect of the setting of the MDP and the initial policy parameter, we
conclude that NSG could be a more robust and natural NPG than the NPG by
Kakade [2].

6 Summary and Future Work

This paper proposed a new Riemannian metric matrix for the natural gradient
of the average reward, which was the Fisher information matrix of the station-
ary state-action distribution. We clarified that Kakade’s NPG [2], which has
been widely used in RL, does not consider the changes in the stationary state
distribution caused by the perturbation of the policy, while our proposed NSG
does. The difference was confirmed in numerical experiments where NSG learn-
ing could dramatically improve the performance and rarely fell into the plateau.
Additionally, we proved that, when the immediate rewards were fitted by using
the linear regression model with the basis function defined on the policy, its
adjustable parameter represented the unbiased NSG estimate.

More algorithmic and experimental studies are necessary to further emphasize
the effectiveness of NSG. The significant ones would be to establish an efficient
Monte-Carlo estimation way of NSG along with estimating the derivative of
the stationary state distribution [16], and then to clarify whether or not the
proposed NSG method can still be useful even when the gradient is computed
from samples. We will investigate them in future work.
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Appendix

A Derivation of eq.13
For simplicity, we denote π+t ≡ π(a+t|s+t;θ) and p+t ≡ p(s+t|s+t−1, a+t−1).
Since ξ+T is the system trajectory for T time steps from dθ(s), Fξ+T (θ) is cal-
culated to be

Fξ+T (θ) = −
∑

ξ+T ∈ΞT

Pr(ξ+T )∇2
θ

{
ln dθ(s) +

T−1∑

t=0

ln π(a+t|s+t;θ)
}

= −
∑

s∈S
dθ(s)

(
∇2

θ ln dθ(s) +
∑

a+0∈A
π+0

(
∇2

θ ln π+0+

∑

s+1∈S
p+1

∑

a+1∈A
π+1

(
∇2

θ ln π+1 + · · ·+

∑

s+T −1∈S
p+T−1

∑

a+T −1∈A
π+T−1 ∇2

θ ln π+T−1

)
· · ·

))
.

By using the balance equation of the dθ(s) in eq.1,

Fξ+T (θ) = Fs(θ) +
T−1∑

t=0

( ∑

s+t∈S
dθ(s+t)Fa(θ|s+t)

)

= Fs(θ) + TF a(θ). �

B Consistency of Fs,a(θ) and H(θ)
If the immediate reward is dependent on θ

r(s, a; θ) =
Pr(s, a|M(θ∗))
Pr(s, a|M(θ))

ln Pr(s, a|M(θ)), (19)
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then the average reward becomes the negative cross entropy,

R(θ) =
∑

s,a

Pr(s, a|M(θ∗)) ln Pr(s, a|M(θ)).

Hence, Pr(s, a|M(θ∗))=Pr(s, a|M(θ)) holds, if the average reward is maximized.
The Hessian matrix becomes H(θ)=

∑
s,aPr(s, a|M(θ∗))∇2

θ ln Pr(s, a|M(θ)). If
the policy parameter is nearly optimal θ ≈ θ∗, Pr(s, a|M(θ)) ≈ Pr(s, a|M(θ∗))
holds by the assumption of the smoothness of π(a|s;θ) with respect to θ. There-
fore, at this time, the Hessian matrix approximately equates the negative, pro-
posed FIM:

H(θ) ≈
∑

s∈S

∑

a∈A
Pr(s, a|M(θ))∇2

θ ln Pr(s, a|M(θ))

= −Fs,a(θ).

H(θ∗) = −Fs,a(θ∗) obviously holds. Therefore, when the reward function is in
eq.19 and the policy parameter is close to the optimal, NSG almost consists with
the Newton direction and the NSG learning attains quadratic convergence.
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