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Abstract. In many application areas of machine learning, prior knowledge con-
cerning the monotonicity of relations between the response variable and predictor
variables is readily available. Monotonicity may also be an important model re-
quirement with a view toward explaining and justifying decisions, such as accep-
tance/rejection decisions. We propose a modified nearest neighbour algorithm for
the construction of monotone classifiers from data. We start by making the train-
ing data monotone with as few label changes as possible. The relabeled data set
can be viewed as a monotone classifier that has the lowest possible error-rate on
the training data. The relabeled data is subsequently used as the training sample
by a modified nearest neighbour algorithm. This modified nearest neighbour rule
produces predictions that are guaranteed to satisfy the monotonicity constraints.
Hence, it is much more likely to be accepted by the intended users. Our exper-
iments show that monotone kNN often outperforms standard kNN in problems
where the monotonicity constraints are applicable.

1 Introduction

Monotonicity of relations between a response variable and predictor variables is a form
of prior knowledge that is available in many application areas of machine learning.
For example, in house pricing, the price of a house typically increases with the lot
size, and decreases with the distance to the city center. Other examples of monotonicity
constraints can be found in medicine [8123]], finance [16], and law [18]].

Monotonicity may also be an important model requirement with a view toward
explaining and justifying decisions, such as acceptance/rejection decisions. Pazzani
et al.[21]], report on an application of rule induction algorithms to early detection of
dementia, and prediction of mild mental retardation. They show that the rules learned
with monotonicity constraints were significantly more acceptable to medical experts
than rules learned without the monotonicity restrictions.

While human experts tend to feel uncomfortable expressing their knowledge and ex-
perience in terms of numeric assessments, they typically are able to state their knowl-
edge in a semi-numerical or qualitative form with relative conviction and clarity, and
with less cognitive effort [10]. Experts, for example, can often easily indicate which of
two probabilities is smallest. In addition to requiring less cognitive effort, such relative
judgements tend to be more reliable than direct numerical assessments [19].

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 3014316,/2008.
(© Springer-Verlag Berlin Heidelberg 2008



302 W. Duivesteijn and A. Feelders

Hence, monotonicity constraints occur frequently in machine learning problems and
such constraints can be elicited from subject area experts with relative ease and reliabil-
ity. This has motivated the development of learning algorithms that are able to enforce
such constraints in a justified manner. Several machine learning techniques have been
adapted to be able to handle monotonicity constraints in one form or another. Exam-
ples are: classification trees [ZU12I22], neural networks [3126], and Bayesian networks
(LT3

In this paper we present an algorithm for nonparametric monotone classification.
Our approach consists of two steps. In the first step, the training data is made monotone
by relabeling as few cases as possible. This relabeled data set may be viewed as the
monotone classifier with the smallest error rate on the training data. In the second step,
we use a modified nearest neighbour rule to predict the class labels of new data in such
a way that the monotonicity constraints are satisfied.

The paper is organized as follows. In the next section, we establish some notation and
definitions that will be used throughout the paper. In section[3l we discuss the problem
of relabeling a non-monotone data set, and give an algorithm to make it monotone with
as few label changes as possible. Subsequently, we present in section [4 a monotone
variant of the k-nearest neighbour rule to predict the class labels of new data points.
Related work on nonparametric monotone classification is discussed in section 3l In
section [0l we present the results of experiments in which we compare the monotone
nearest neighbour rule with standard nearest neigbour prediction. Finally, we draw con-
clusions in section [7]

2 Notation and Preliminaries

Let X denote the vector of predictors (attributes), which takes values x in a p-
dimensional input space X = x X}, and let Y denote the class variable which takes val-
ues y in a one-dimensional space ). Let D = {(x;,y:)}; denote the set of observed
data points in X’ x V. We also use the alternative representation U = {(x;,y;)}"_,0f n
distinct points in X’ x ) together with a vector of weights w; = n(x;,y;), i =1,...,n,
where n(x;,y;) denotes the number of observations in D with X = x; and Y = y;.
Clearly, we have N = Zzl:l w;. Furthermore, we assume a partial order on X and a
total order on ) = {1,2,...,c}, where c is the number of class labels. Typically, the
partial order on X’ is the product order induced by total orders on A}, that is

x<x' &x <z Vi=1,...,p,

but at no point do we require this to be the case. The objective is to learn from data an
allocation rule f : X — ) such that Vx,x’ € X

x<x = f(x) < f(xX), ()

that is, a lower ordered input is not allowed to have a higher class label. A pair of points
(x4,9:) and (x;,y;) from U (or D) is called non-monotone if

x; <xjandy; > y; ()
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We define the monotonicity violation graph (MVG) to be the directed graph G =
(V,E), with V. = {1,2,...,n} and (i,j) € Eif x; < x; and y; > y,;. We note
that the monotonicity violation graph is the graph of a strict partial order, since it is

1. Anti-symmetric: (i,7) € E = (j,1) € E.
2. Transitive: (i,5) € E and (j,k) € E = (i,k) € E.

These properties follow immediately from the order on the class labels. We associate
with each node i € V' the weight w;. Finally, we define the downset | (; 5) and the upset
T(i,s) forany S C V andi € V:

Lasy= 17 € Slxj < xi}and T( 6= {j € S|xi < x;}.

3 Relabeling Non-monotone Data

The first step in our approach is to relabel the training data in order to remove all
monotonicity violations, using as few label changes as possible. The relabeled data
set can be viewed as a monotone classifier that minimizes the error rate on the training
data.

A subset of the vertices of a graph is an independent set if no two vertices in the sub-
set are adjacent. As Rademaker et al. observe, a maximum weight independent set
in the monotonicity violation graph, corresponds to a maximum size monotone subset
of the data. Relabeling the complement of the maximum independent set results in a
monotone data set with as few label changes as possible; it is important to note that it
is always possible to find a consistent relabeling. Although finding a maximum inde-
pendent set in an arbitrary graph is known to be NP-hard [17], we make use of the fact
that this is not the case for comparability graphs (the graph of a partial order). For such
graphs, a maximum independent set corresponds to a maximum antichain in the corre-
sponding partial order, and can be computed in O(n?) time by solving a minimum flow
problem on a transportation network that is easily constructed from the comparability
graph, see [20/14]. As we noted, the monotonicity violation graph is a comparability
graph, so we have an O(n?) algorithm that minimizes

N

D Iy # f(x)),

i=1

subject to
x; <x; = f(x:) < f(x5), )

for an arbitrary partial order on /X', and for an arbitrary number of linearly ordered class
labels.

We next describe the transformation of the monotonicity violation graph G = (V, E)
to the corresponding transportation network G’ = (V’, E’). Let V~ denote the set of
nodes in V' with non-zero degree. Because the monotonicity violation graph has weights
associated with the vertices rather than the edges (as is assumed by standard network
flow algorithms), we transform vertices to edges, by so-called vertex splitting:
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V' = | {arin} U{s 1},
icv -
where s is the source, and ¢ is the sink of the transportation network. The edge set
E’ contains edges (i4, 1) for all i € V', and edges (i, j,) for all (¢,j) € E. Fur-
thermore, F’ contains edges (s, i,) for all minimal points x;, and edges (j,t) for all
maximal points x;. The edges (i4,1%,) € E' are assigned lower capacities w; and upper
capacities +oo. All remaining edges of E’ are assigned lower capacities of zero and up-
per capacities of 4+-co. The problem of finding the maximum weight independent set in
G can now be solved by finding the minimum flow value £ in G’. Furthermore, by

. val
the min-flow max-cut theorem [I3], £]7/" equals the maximum capacity of an s, t-cut
(or maximum cut) in G’, that is,

= | Y e - Y uelvw)] |

(v,w)eE’ (v,w)eE’

veES,WET veT ,weS
where S, T is an s, t-cut of G’ = (V' E’), thatis, V! = SUT,SNT = 3,s € S,
t € T, and where lc(v,w) and uc(v, w) denote the lower and upper capacity of edge
(v,w) € E'.

Obviously, £/ must be positive, and therefore an optimal cut S, T" contains no

edges (v,w) € E' withv € T and w € S, since uc(v,w) = +oo for each such edge.
This implies that the set of vertices

A={i €V | (ia,ip) € E'yig € S,ip € T} 4)

corresponding to an optimal cut, is an antichain of G. To see this, suppose that A is not
an antichain, that is, it contains comparable points i and j. Then, by the definition of A,
we have i, and j, € S, and 7, and j, € T Since 7 and j are comparable, we have either
(iby Ja) € E’ or (Jp,4,) € E’ which means we would have an edge from 7" to S in E’.
But this contradicts our observation that £ must be positive.

Furthermore, since each antichain A in G induces an S, T cut in G’ by putting

S = {v € V' | there is a directed path in G’ from v to 4}, for some i € A}

we have that the minimum flow value in G’ equals the maximum weight of an antichain
in G [20].

Although in the worst case, the run time of the algorithm is cubic in the number of
distinct observations, it may be quite fast in practice because of two reasons. First, all
points that are not involved in any monotonicity violations can be disregarded, because
they will never be relabeled. Since they are not connected to any other point in the
MVG, they will belong to every maximum independent set. Hence the restriction to
nodes in V'~ in the transportation network. If the data generating process is indeed
monotonic, and any monotonicity violation is caused by noise, then it is reasonable to
assume that most points are not involved in a monotonicity violation. Secondly, we can
apply a divide-and-conquer strategy by finding a maximum independent set for each
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Fig. 1. Example Monotonicity Violation Graph

connected component of the MVG separately. The union of these sets will then be a
maximum independent set for the complete graph.

The relabeling algorithm is summarized in Algorithm[Il It takes the training set and
its monotonicity violation graph as inputs, and returns the relabeled training set. In line
6 the actual relabeling takes place. The function select picks a value from the interval
of allowed class labels [Ymin, Ymax]; this interval always contains at least one element,
since the set of points with index in M is always consistent. Which element it picks is
arbitrary from the viewpoint of error-rate minimization.

Algorithm 1. relabel(U, G = (V, E))
1: M «+ maximum independent set(G)
22 R—V\M
3: forall j € Rdo
4 Ymin — max{yili €|}

50 Ymax < min{yili €T}

6:  y; — select(Ymin,Ymax)

7 M — MU{j}
8: end for
9: return U

As an example, consider the data set with monotonicity violation graph depicted in
Figure[ll Here x1, . . ., X7 are plotted as points in the plane, and their observed class la-
bels are given inside the points. If both 2 and z2 are known to have a positive influence
on y, then the appropriate ordering on the input points is given by

x<x & x <2 A1y < af

So, for example, we have x; < X9, but x5 and x3 are incomparable points. The cor-
responding monotonicity violation graph is G = (V, E) with V = {1,2,3,4,5,6,7},
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Fig. 2. Transportation network based on the Monotonicity Violation Graph in Figure[I]

E={(1,2),(1,3),(1,7),(5,7),(6,7)},and V~ = V\{4}. Figure Rldepicts the trans-
portation network associated with G. Each of the points in V'~ is represented by an
edge with a lower capacity of one (all data points happen to be unique in this example),
and an upper capacity of +00. The connections to the source and the sink, and the edges
representing the monotonicity violations are assigned lower capacities of zero and up-
per capacities of +oco. For the network flow in Figure Pl we find vmail” = 4, that is, the
weight of the maximum weight antichain A is 4. This set is obtained by the S, T'-cut,
where S = {s,X14, X1, X2a) X3a; X5a; X6a }» I = V'\S. Using equation @), we find
A = {2,3,5,6}. Adding x4 gives M = {2,3,4,5,6}. Finally, the set complement to
the maximum weight independent set is the set of points that need to be relabeled to get
monotone data. Hence, we find that the set of points that need to be relabeled to make
D monotone is R = V\M = {1,7}.

Because the class label is binary, there is only one alternative label for each point,
so relabeling is automatic. For binary classification problems, we can also accomodate
different misclassification (relabeling) costs. Let C(4, k) denote the cost of relabeling
an example from class j to class k. Define weights

 nxey)C(L,2) 0 g =1
i n(x;,y:)C(2,1)if y; =2

We now obtain a minimum cost relabeling by finding a maximum weight independent
set in the MVG, and relabeling its complement. To illustrate, consider the case where
C(1,2) = 1and C(2,1) = 3. Hence, all points in Figure [l with class label 1 receive a
weight of 1, and all points with class label 2 receive a weight of 3. The reader can verify
that the maximum weight independent set is M = {1,4, 5,6} and hence R = {2, 3, 7}:
it has become cheaper to relabel both 2 and 3, instead of relabeling 1. Unfortunately,
this straightforward approach can not be extended to the non-binary case, because we
then have more than one relabeling option, and we can therefore not associate a unique
weight with each node.

The relabeled data set can be viewed as a monotone classifier that minimizes the
error-rate on the training data. This classifier is however only defined on the observed
data points. In case we have just a few discrete input variables, these might cover the
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entire input space, but in general this will not be the case. Hence, the classifier has to
be extended to the entire input space in such a way that the monotonicity constraints
are satisfied, and the information contained in the observed data points is used to its full
extent to classify new cases. This problem is discussed in the next section.

4 Monotone KNN

In order to satisfy the monotonicity restrictions, it is clear that the class label assigned
to a new data point xg is constrained to lie in the the interval [Ymin, Ymax), Where

Ymin = max{y|(x, y) eDAx< X0}7

and
Ymax = min{y|(x,y) € D Axo < x},

where D is the relabeled data set. The choice of a value from this interval is however
free, and hence it makes sense to make further use of the observed data to guide this
choice. We consider two variants on the standard nearest neighbour rule:

1. Take the k nearest neighbours of x( from D and predict the label from [Ymin, Ymax]
that occurs most often among these £ points. If none of the £ labels are allowed,
choose at random from [Yumin, Ymax-

2. Take the k nearest neighbours of xq from D with label in [ymin, Ymax] and predict
the label by majority voting.

Variant 1 uses at most k neighbours in the majority voting, variant 2 always uses exactly
k neighbours. The two variants are equivalent if the class label is binary, since in that
case there is a choice of label only when both labels are allowed, but then both variants
are the same as the standard nearest neighbour rule.

If we want predictions to be consistent among themselves as well (and not just with
the training sample), then we should store the points with their predicted class labels
to be used in subsequent predictions. It is clear that in this case, the order of arrival of
points to be predicted makes a difference.

To visually illustrate the difference between standard nearest neighbour and
monotone nearest neighbour, we consider a small example. Suppose the training data
consists of the three points plotted in Figure[3l Next to each data point, its (1, x2) coor-
dinates and class label are given. The figure also gives the partitioning of the input space
according to the 1-nearest neighbour rule, the so-called Voronoi diagram. It is clear that
the resulting allocation rule is not monotone. In Figure [l we have given the allocation
rule for the next prediction of the monotone 1-nearest neighbour rule. Since all points
smaller than (4,8) can not get a class label bigger than 1, the allocation rule has been
adjusted accordingly. Note that this allocation rule is not monotone in general, but it is
monotone with respect to the three points in the training sample. If predictions do not
have to be monotone among themselves, then Figure [l gives the monotone 1-nearest
neighbour allocation rule. Otherwise, it may have to be updated after each prediction.



308 W. Duivesteijn and A. Feelders

3
10k ° -

(10,10)

Fig. 3. Allocation rule of 1 nearest neighbour. For each data point its (z1,z2) coordinates and
class label are given.

5 Related Work

As mentioned in the introduction, several machine learning methods have been adapted
to incorporate monotonicity constraints. In this section, we restrict our attention to work
that is relevant specifically to the nonparametric monotone classification problem that
we are considering in this paper.

The earliest work in this area known to us is the Ordinal Learning Model (OLM) of
Ben-David [3l6]. They construct a so-called rule base from a set of training examples.
The rule-base R is a subset of the training examples, and is composed of consistent
and irredundant examples. Consistency here refers to the monotonicity requirement.
The algorithm sequentially adds examples from the training set to the rule-base, but if
an example violates the monotonicity restriction with one or more examples already
present in R, then it is discarded. Due to the prediction rule of OLM, examples may
also be redundant with respect to the current rule base. OLM allocates a new case xg to
the largest class among the points in R that precede it:

fOLM(XO) = maX{y | (X, y) € RAx < XO} (5)

As a consequence, if (x,y) € R then any (x',y) with x < x’ does not affect the
labeling of new instances. Hence (x’, y) is redundant with respect to (x, y). If there is
no (x,y) € R with x < xg, then X is allocated to the class of the point in R nearest
to it, that is, according to the 1-nearest neighbor rule. We note that the composition of
the final rule-base critically depends on the order in which the examples are processed.
In particular, when an unfortunate choice is made for the first example, then many of
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Fig. 4. Allocation rule of monotone 1-nearest neighbour. For each data point its (z1, z2) coordi-
nates and class label are given.

the training samples will have to be discarded. Furthermore, as pointed out in [9], non-
monotone prediction results are possible due to the 1-nearest neighbor rule used in case
no points smaller than x are contained in the rule-base. The most important difference
between OLM’s prediction rule and ours, is that OLM does not make use of the class
labels of nearby points in making its predictions: as shown in equation (@) it simply
takes the maximum label of all points that are smaller than the point to be predicted.

Cao-Van [9]] presents an algorithm called Ordinal Stochastic Dominance Learner
(OSDL), which learns a collection of probability distributions over the class variable,
under the restriction that

x<x' =Y Pr(y=jlx)>) Priy=j|x), (6)
j=1 j=1
fori =1,2,...,k — 1. In words, if x precedes x’ in the ordering, then the distribution

of Y in x’ must be stochastically larger than the distribution of Y in x. Although the
interpretation of the monotonicity constraint in terms of stochastic dominance is a use-
ful one for probabilistic classifiers, an allocation rule that assigns an input point to the
mode of this distribution will not in general be monotone, unless the class variable is
binary. In case an outright assignment to a class is required, OSDL therefore takes the
median class value according to 15\r(Y|x) This could be interpreted as an attempt to
minimize L, loss, although this is not stated explicitely. The conditional probabilities
Pr(Y|x) are estimated in a nonparametric way; for details we refer to [9].
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Dykstra et al.[11]] propose a nonparametric monotonic classification procedure that
minimizes L loss

N
> v — f(xi)l,
1=1

subject to
x; < x5 = f(xi) < f(x5),

where the class labels are numbered {1, 2, ..., c}. Their algorithm requires the perfor-
mance of ¢ — 1 isotonic regressions [24] to find an optimal solution. They also provide
an algorithm that minimizes Lo loss that requires the performance of a single isotonic
regression. Note that in the important special case of binary classification, minimizing
either of these loss functions results in minimal 0/1 loss as well. This is however not the
case if there are more than two class labels. The use of squared error loss or absolute
error loss presupposes more than an ordering of the class values. Even though these val-
ues may be numbered 1,2, .. ., ¢ for convenience, this does not imply that performance
of numerical operations on them is meaningful. On the other hand, it does make sense
to presume that classifying a class 1 observation as class 5, is worse than classifying it
as class 2.

Dykstra et al.[I1]] indicate possibilities to extend the relabeled training data to a
monotone prediction rule for the entire input space, but like OLM without using any
information in the training data beyond the ordering of data points.

6 Experiments

In order to test the proposed classification algorithm, we conducted a number of exper-
iments. In all these experiments, we compared the performance of monotone kNN with
that of standard kNN, in order to make sure we are not obtaining monotone models at
the expense of predictive accuracy. If a monotone model is really required, then a small
increase of the error might be acceptable, but clearly this should be within reasonable
limits. On the other hand, if the problem really is monotone, then we might even expect
an improvement of the accuracy.

We selected a number of data sets for which the presence of an increasing (or de-
creasing) relation between the attributes and the response variable was a priori plausi-
ble. Table [l gives an overview of the data sets we used. All data sets have been taken
from the UCI machine learning repository [4], except for Windsor Housindl [2], and
Employee Selection[ [6).

As an example, in Table [2l we give the signs of the relations between the attributes
and the response that we use for the AutoMpg data set.

For the Australian credit approval data, we only used columns 7, 8, 9 and 10 of
the attributes from the original data set. For the Boston housing data, we excluded the

! Available from the Journal of Applied Econometrics Data Archive at http://econ.
queensu.ca/jae/

2 Available at http://www.cs.waikato.ac.nz/ml/weka/index datasets.
html
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Table 1. Data sets used in the experiments. The number of attributes given is after preprocessing.
The column labeled Comparability gives the fraction of all pairs of data points x,x’ for which
x < x',orx’ <x.

Data set # points # attributes Target Comparability
Australian credit approval 690 4 Binary 0.7162
AutoMpg 392 7 Numeric 0.4009
Boston housing 506 12 Numeric 0.1910
Employee Selection 488 4 9 Classes 0.7065
Haberman survival 306 3 Binary 0.3123
Machine (cpu performance) 209 6 Numeric 0.4950
Pima indians diabetes 768 8 Binary 0.0732
Windsor housing 546 11 Numeric 0.2737
Wisconsin breastcancer 683 9 Binary 0.2710

Table 2. Signs used between the target Miles per gallon and the different attributes in the Auto-
Mpg data set

Attribute Type Sign
mpg continuous target
cylinders multi-valued discrete —
displacement continuous —
horsepower continuous —
weight continuous -
acceleration continuous +
model year multi-valued discrete +
origin multi-valued discrete  +

Charles River dummy variable. In the experiments we used a number of data sets with
a binary target, one with 9 class values (Employee Selection) and some with a numeric
target (see Table [T)). The numeric targets have been discretized into two and four in-
tervals; the intervals were chosen so that each one contained approximately the same
number of cases. In order to check whether our a priori ideas about monotonicity are
confirmed by the data, we compared the number of non-monotone pairs present in a data
set of size IV, to the average number of non-monotone pairs of that same data set, but
with the IV class labels randomly permuted. The idea is that such a random permutation
of class labels represents a non-monotone process, and hence the distribution obtained
by computing the number of non-monotone pairs for a great number of such random
permutations, can be loosely interpreted as its distribution under the null-hypothesis of
a non-monotone process. Table 3] shows the result of these computations for the data
sets with binary class label. The last column gives the ratio of the observed number of
non-monotone pairs (as given in the first column) to its average for 1000 permuted data
sets (as given in the second column). Note that the Haberman data set has by far the
highest ratio, and so perhaps the monotonicity assumption is dubious in this case. We
don’t have a clearcut criterion to decide on that however. Table @l provides the same
information for the data sets with non-binary classes.
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Table 3. Monotonicity test results: two classes

Data set # pairs Mean Std.dev. Ratio
Australian 8087 42649.0 2258.1 0.190
AutoMpg 21 7716.5 733.3 0.003
Boston 309 6113.0 612.50.051
Haberman 1784 2848.2 379.4 0.626
Machine 86 2714.0 311.4 0.032
Pima 482 4923.9 569.2 0.098
Windsor 429 10187.0  875.1 0.042
Wisconsin 9 14472.0 1357.4 0.001

Table 4. Monotonicity test results: non-binary classes

Dataset #pairs Mean Std.dev. Ratio
AutoMpg 74 11557.0  816.4 0.006
Boston 691 9175.8 739.4 0.075
Employee 1125 34236.0 1600.1 0.033
Machine 167 4070.2 359.2 0.041
Windsor 1328 15302.0 970.2 0.087

The experiments were performed with 10-fold cross-validation. For monotone near-
est neighbour this was done as follows. For each fold, we

1. relabeled the observations in 9 parts of the data to remove any monotonicity
violations;

2. used the relabeled data to predict the class labels of the remaining part with the
monotone nearest neighbour rule.

For prediction we considered the quasi-monotone prediction rule (predictions have
to be consistent only with the training data) as well as the monotone prediction rule
(predictions also have to be consistent among themselves). For the monotone prediction
rule, the points predicted thus far were used only to determine the interval of allowed
class labels for a new point; they were not used in voting for the class label of the new
point.

The results for the quasi monotone prediction rule for problems with two classes are
given in Table[dl and for problems with more than two classes in Table [71 They were
computed with prediction rule variant 1 as discussed in Section [ Preliminary experi-
ments showed the results of the two variants were virtually the same, and
variant 1 is easier to compute. Likewise, the results for the monotone prediction rule
were virtually identical to those for the quasi monotone rule, and are therefore not re-
ported separately. The results have been summarized in Table [ and Table[Zlas follows.
We took the best result of kNN for & = 1,3, 5 and compared its error with the error of
monotone kNN for that same value of k& (usually they had their lowest error rate for the
same value of k). The last column indicates what value of k that was. The p-values were
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Table 5. Cross-table for comparison of classifiers. For example, b is the number of cases classified
incorrectly by kNN but correctly by monotone kNN.

Trinn: Crann
T a b
Can ¢ d

Table 6. Comparison of error rates of KNN and monotone kNN with quasi-monotone prediction
rule for two-class problems

data set kNN mkNN Winner p-value k
Australian 18.3% 16.4% mkNN 0.0984
AutoMPG 8.7% 7.9% mkNN 0.6476
Boston 20.6% 18.8% mkNN 0.1996
Haberman 26.5% 28.4% kNN  0.4050
Machine 15.3% 14.8% mkNN 1

Pima 25.7% 25.9% kNN  0.9050
Windsor  26.4% 20.9% mkNN 0.0001
Wisconsin  3.7% 3.5% mkNN 1

NN W = W = = W

computed using an exact binomial test. We computed a cross-table as given in Table[3]
and performed a binomial test of b successes on b + c trials under

H0:7r:é Ha:ﬂ'?é%

where 7 denotes the probability of success. The p-value was computed with the function
binom. test inthe R systenﬁ.

Comparing the error rates for the two-class problems (see Table [6), monotone kNN
performs better in all cases, except for the Haberman and Pima data sets. The result
for Haberman is not surprising, given the relatively high number of nonmonotone pairs
we found in our preliminary calculations. For the Pima data, this ratio is also relativey
high, but not as high as for the Australian data, and there we did find a substantial
improvement of monotone kNN over standard kKNN. Hence, the computed ratio by itself
is not a perfect indicator for the success of the monotone model.

Looking at the problems with more than two classes (see Table [7), the advantage of
enforcing the monotonicity constraint appears even more prominent. Monotone kNN
has the lower estimated error rate in all cases, and in two cases significantly so. The
effect of the monotonicity constraint can be appreciated clearly by looking at the per-
formance for k& = 1 (see Table [B): it appears to reduce if not prevent the overfitting
of standard kNN. The Employee Selection data set is a good example: standard kNN
breaks down, whereas monotone kNN isn’t performing much worse than for higher
values of k.

3 See www.r-project.org



314 W. Duivesteijn and A. Feelders

Table 7. Comparison of error rates of KNN and monotone kNN with quasi-monotone prediction
rule for problems with more than two classes

data set kNN mkNN Winner p-value k
AutoMPG 22.2% 21.9% mkNN 1 1
Boston  49.8% 42.1% mkNN 7.2 x 107° 5
ESL 30.1% 29.7% mkNN 0.890 5
Machine 37.8% 34.5% mkNN 0.324 3
Windsor 51.8% 46.5% mkNN 0.009 3

Table 8. Comparison of error rates of KNN and monotone kNN for problems with more than two
classesand k = 1

dataset kNN mkNN Winner p-value
AutoMPG 22.2% 21.9% mkNN 1

Boston  50.0% 44.5% mkNN 0.0015

ESL 45.1% 30.5% mkNN 2.231 x 10~ *
Machine 39.7% 33.5% mkNN 0.066
Windsor 52.4% 46.2% mkNN 0.0017

We conclude on the basis of these experiments that enforcing the monotonicity con-
straint does not lead to a deterioration of predictive accuracy, on the contrary, we have
found it usually leads to an improvement. In addition, the monotone models are much
more likely to be accepted by their intended users, since its predictions are in accor-
dance with their qualitative domain knowledge.

7 Conclusion

We have proposed an adaptation of the k-nearest neighbour rule, to allow for the inclu-
sion of monotonicity constraints. Such constraints can often be elicited reliably from
subject area experts. We have shown that the use of monotonicity constraints can give
substantial improvements in predictive performance over the standard k-nearest neigh-
bour classifier. More importantly, the resulting models are much more likely to be ac-
cepted by their intended users, because their predictions are in accordance with their
qualitative domain knowledge.

The results we obtained encourage us to explore further possibilities in this direction.
One could, for example, investigate how minimization of L; or Lo loss in the relabeling
phase (as proposed by Dykstra et al. [11]]) would influence the predictive performance
of the monotone nearest neighbour rule. Minimization of the error rate on the training
sample (as performed by the current relabeling algorithm) does after all not necessarily
lead to the lowest error on a test sample. Another possibilty is to look for improvements
in the relabelling phase. Currently, points are relabelled to arbitrary values from their
allowed intervals. More sophisticated alternatives could be considered here.
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