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Abstract. A p2p streaming system must be able to exploit the locality informa-
tion between peers, in order to deliver a stream quickly to all peers with high 
level of bandwidth utilization. In this paper we propose a locality aware and 
balanced overlay for p2p live streaming which can adapt to the dynamic behav-
ior of the participating peers and the underlying network. Our overlay is created 
and maintained through the use of two algorithms, called the placement and the 
swapping algorithm that we consider as the major contributions in this paper. 
These are responsible for the insertion of a node and the dynamic and distrib-
uted optimization of the overlay in order to reflect the underlying network. The 
proposed overlay is evaluated through extensive simulations that show that the 
bandwidth utilization of the peers and the set-up time are significantly improved 
through locality between peers. 
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1   Introduction 

P2P streaming is a real time application with strict delivery time constraints and very 
demanding in terms of the aggregate bandwidth required for the delivery of the stream 
to the participating peers. In general, a server generates a video stream at a given ser-
vice rate which is then divided into blocks followed by their delivery to a small subset 
among the participating peers. As a final step, all peers exchange these blocks in order 
to reproduce the whole video stream. 

Peers involved in these systems, may have heterogeneous upload bandwidth capa-
bilities while the average upload bandwidth capability of the participating peers  
constrains the maximum service rate of the video stream that can be delivered suc-
cessfully to all peers [12]. An efficient P2P streaming system must be able to deliver a 
video stream with service rate as close as possible to the average upload capability of 
the participating peers with the smallest possible delay, called setup time. With the 
term setup time we define the time interval between the generation of a block from 
the origin server and its distribution to every peer in the system. 

Several approaches that have been recently proposed for creating P2P streaming 
systems may fall into two categories.  



78 N. Efthymiopoulos et al. 

 

The first is based on a formation of forests of trees whereby each node is a leaf in 
every tree but one. Blocks are assigned equiprobably into a number of stripes equal to 
the number of the formed trees. Each tree distributes (pushes) one stripe by propagat-
ing each one of its blocks from parent to its children. In this category blocks are 
pushed according to the overlay topology. SplitStream [4] is a distributed implemen-
tation of this approach that is based on a locality aware DHT called Pastry [10]. Split-
Stream and systems alike have the advantage of being topologically aware (trees are 
formed according to the network distance between nodes) leading to small setup time 
as the propagation of a block from the root of the tree to the leaf nodes is done 
through nodes which are physically close in the underlying network. However these 
systems suffer from two main drawbacks: a) they don’t take into account the hetero-
geneous upload capacities of the peers [17], and b) they can’t cope up with the  
dynamic behavior of the participating peers as well as the underlying network as ob-
served in commercial P2P streaming systems [18],. When a peer leaves the overlay, 
the path between it and its descendants is broken resulting in idle descendants during 
the reconstruction phase of the tree. 

The second category described in [2],[12],[15]. Each node maintains connections 
with a relatively small number of nodes which are considered as its neighbors in the 
overlay. The overlay is constructed randomly or according to the upload capacities of 
the nodes that participate in it. Blocks that are generated by a server have playback 
deadlines. Each peer exchanges and maintains a number of lists (buffers), one per 
neighbor. Each one of these buffers contains those blocks of its neighbor that their 
playback deadline has not expired yet. To this end, a peer is capable at any time  
of making a decision about which block should be transmitted to which neighbor. 
This decision process is implemented by a scheduler running in every node. The char-
acteristic of these systems is that the block transmissions are agnostic to the overlay  
topology. 

Due to their architecture the main advantage of them is their flexibility which al-
lows them to take advantage of the heterogeneity of the participating peers and deal 
with the dynamic behavior of the system leading to higher levels of bandwidth utiliza-
tion. However, these systems can’t exploit the network proximity among the peers 
that exchange blocks. This means that the time required for a block to be transferred 
from one node to another and hence the required time for all nodes to acquire the 
block (setup-time) could reduced if the overlay exploits the locality between peers. 
Another drawback of overlays agnostic to locality is that buffer exchanges between 
neighbors performed with high network latency. This effect leads duplicate block 
transmissions and so to wasted upload bandwidth. 

The primary contribution of this paper is the creation of an overlay where each 
node discovers and exchanges blocks with the nodes physically close to it in the un-
derlying network. The physical network distance is captured by means of a novel, 
locality aware structured P2P graph which is reconfigured dynamically according to 
the latencies between nodes in the underlying network. This overlay can approxi-
mately be seen as a self-organized d-dimensional grid where the position of each node 
in the overlay reflects its position in the underlying physical network. There are two 
algorithms that every node runs. The first is the placement algorithm that each node 
runs only once when it enters the system and is responsible for finding a suitable 
neighborhood of the overlay for this node. The second one, called the swapping  
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algorithm, aims at the distributed and dynamic optimization of the neighborhoods in 
order to reflect the underlying network. 

The rest of this paper is organized as follows. In section 2 we present our proposed 
overlay and we describe in detail the placement and the swapping algorithm in  
Section 3 we describe briefly the scheduler that we use in order to evaluate our over-
lay and in Section 4 we evaluate its performance. At last in section 5 we conclude and 
we point our future work. 

2   The Proposed System 

2.1   Locality Aware P2P Overlay Architecture 

For creating a locality aware P2P overlay where each node has as neighbors the nodes 
in the underlying network that are physically close to it, we have used structured P2P 
overlay, in particular we have use the neighbor table maintenance mechanism from 
CAN [1], CAN is a distributed self-organized overlay, which intuitively approximates 
a d-dimensional grid. In CAN each node holds a random portion of a d-dimensional 
space. It offers three major advantages that explain our architectural decision to use it 
as a substrate for our streaming system. The first is that is guarantees that each node 
will have at least 2*d incoming neighbors and so at least 2*d nodes will provide 
blocks to it. The second is the balanced properties of the overlay (are demonstrated in 
the evaluation section) that means that there are no nodes with a large number of out-
going neighbors and so as we will see later that feature reduces the control overhead 
of live streaming. The third and most important feature of this overlay is that between 
any two nodes there are at least 2*d paths where in each one a different set of nodes 
participates. Given this attribute and by the creation of the appropriate scheduler no 
point of the graph is a bottleneck in live streaming. At last offers a mechanism to for-
mulate our distributed optimization algorithm as we will analyze in section C. 

In contrast, locality aware DHTs proposed so far, lead to overlays where nodes 
have highly unbalanced number of neighbors [8] and so are unsuitable to be used as 
overlays in P2P streaming. 

In order to reflect the underlying network in the d-dimensional space of CAN, thus 
capturing locality, we have developed two algorithms. The first, influenced from [16], 
is called placement algorithm. This is responsible for navigating and placing each 
node that enters our system next to its closest node in the physical network. The sec-
ond called swapping, is responsible for the distributed and dynamic optimization of 
the overlay according to the network latencies between nodes. These two algorithms 
constitute the extension of the original CAN leading to a locality aware overlay called 
L-CAN. 

2.2   The Placement Algorithm 

The placement algorithm is a distributed algorithm responsible for finding a suitable 
neighborhood for each node which enters the system. Its high accuracy is not a critical 
issue, because we do not rely entirely on this algorithm to provide an optimal place-
ment of the nodes (neighbors that are also physically close to each other) in the  
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L-CAN. This is the job of our swapping algorithm that is responsible for an optimal 
dynamic and stable solution. 

Each node, already part of the overlay, must be capable of navigating each new 
node closer to its final position. To do so, each node i in the L-CAN must maintain 
some kind of information about the structure of the overlay. The first source of infor-
mation comes from the neighbors of i as through the exchange of control messages 
with them, node i can get an estimate of the corresponding STTs. In addition to com-
municating with its neighbors, each node communicates with a number of nodes  
Ri uniformly spread in all d dimensions of L-CAN (Figure 1). We call these nodes 
ring nodes. 

 

Fig. 1. Node X0 is already placed in a two dimensional CAN. Its neighbors are nodes {X1.1, 
X1,2, X2.1, X2.2} and communicates with one additional node in each dimension (Ri=1), 
namely, its ring nodes {R1,R2}. 

Every node N, which is already placed in L-CAN, has a structure (called topol-
ogy_list(N) ) that holds the values of the estimated STTs with its neighbors and its 
ring nodes. Methods and algorithms which provide STT estimates through many RTT 
measurements are described analytically in [21]. 

When a node X is to be inserted in our system it makes use of two lists. The first 
one, called closer_list, contains those nodes which our placement algorithm has 
found upon completion of an iteration to be closer to node X up to a maximum num-
ber closer_num. The second one, called check_list, is used and updated at 
every step of the placement algorithm in order to infer from the topology_list of 
those nodes in the check_list additional nodes that happen to be close to X. The 
maximum size of check_list is set to check_num. (Figure 2). 

In order to bootstrap the placement algorithm, the new node X randomly selects a 
node N already in the L-CAN and places it in both lists. Then, the new node performs 
the following iterative steps until its closer_list remains the same for a number 
of stop_check steps. 

For each node Ni in X’s check_list the new node X takes a pre-defined number 
of nodes (cl_num) from Ni’s topology_list which are potentially closer to X. 
This is done by calculating the absolute difference between the STT from Ni to X and 
the STT from Ni to the node which was present in Ni’s topology list 16. Then X probes 
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these cl_num*check_num nodes and if it finds that some of these nodes are closer to 
X than those in its closer_list, it substitutes those nodes in the closer_list 
with the new nodes with smaller STTs. Finally, check_list is assigned the contents 
of the closer_list and the process is repeated until convergence. 

When the algorithm terminates, the first node in the closer_list is the nearest 
to X in the physical network. The pre-defined numbers closer_num, check_num, 
cl_num and stop_check define the trade-off between accuracy and speed of con-
vergence of our placement algorithm. 

 

Fig. 2. At each step 4 actions are performed. The data structures which the new node X main-
tains during its entry in the DHT. Ni denotes the nodes which X asks at each step. 

After the discovery of the physically closest node to X, node K, X sends to K a 
request for insertion. At this point we face another challenge: to create a balanced 
overlay, namely, the number of neighbors of every node must be similar in size. To 
this end, X checks whether a neighbor of K has a zone bigger than K’s zone. If such a 
neighbor exists then the new node will be inserted in the overlay between K and the 
neighbor of K with the bigger zone, otherwise, it will be inserted in the zone of K. By 
doing this we still ensure that  nodes K and X will also be neighbors in L-CAN, while 
we avoid the possibility of a node having a relatively big zone compared with another 
one close to it. In this way the requirement for a balanced overlay in terms of the size 
of neighbors is guaranteed. 
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2.3   The Swapping Algorithm 

The swapping algorithm, aims at keeping L-CAN dynamically updated and optimized 
with respect to locality as opposed to the placement algorithm which is responsible 
for maintaining a balanced overlay during initial node insertion.  

Two events may trigger the need for such a reconfiguration: a) the arrival or depar-
ture of a node, and b) any change in network conditions. Both events result in new 
STT values maintained by L-CAN, which, in turn, invokes the swapping algorithm to 
rearrange the “neighborhoods” in L-CAN. 

The L-CAN swapping algorithm is based on a function, we call energy function, 
denoted as E(i,j), where i is a node in L-CAN and j is the zone that this node occupies, 
iא ܰ ܽ݊݀ ݆ א ܼ where N,Z the sets of the nodes and the zones in L-CAN respectively. 
Additionally each zone j in L-CAN is adjacent with a set of zones noted as Zneigh(j) 
and the nodes that hold these zones defined as Neigh(i). Accordingly, the energy 
function of a node i that holds a zone j is defined as: ܧሺ݅, ݆ሻ ൌ ∑ ሾܵݐݐሺ௞ୀ|ே௘௜௚௛ሺ௜ሻ|௞ୀଵ ݅, ݇ሻ | ݇ א ሼ݄ܰ݁݅݃ሺ݅ሻሽሿ                           (1) 

This small subset Neigh(i) of N is the nodes that i uses in order to exchange blocks. If 
we assume that links between neighbors are used with equal probability in streaming 
the performance of the streaming application is based on the metric: Eୟ୪୪ ൌ ∑ ሾEሺi, jሻ |׊i1 ് i2 ՜ j1 ് j2୧א୒ ]                                   (2) 

If we minimize Eall the overlay would minimize the average latency and consequently 
it would also minimize the average probability for duplicates The algorithmic com-
plexity of such problem is O(|N|!) provided that we apply an exhaustive search of all 
possible combinations among  all nodes and zones of L-CAN. To this end, there is a 
need for a distributed algorithm that will minimize Eall or at least it will converge in a 
good sub-optimal value for Eall. So we propose an algorithm that dynamically rear-
ranges “neighborhoods” in L-CAN. Accordingly our swapping algorithm starts from a 
node that we called as the initiator. In a swapping process the nodes that participate is 
the initiator and all of its neighbors. The goal of our swapping algorithm is an optimal 
assignment between these nodes and their zones that we denote with the set Nswap 
and Zswap respectively. As optimal assignment we define the assignment that results 
in the minimum sum of energy of the participating nodes in the swapping process. In 
order to reduce the complexity of such an assignment that is O(|Nswap|!) we formu-
late this process as a linear integer programming problem that solved with a polyno-
mial complexity. In the rest of this section we describe this formulation in detail. 

More specifically, Figure 3 illustrates an example of swapping among 5 neighbor-
ing nodes, Nswap={x0,x1,x2,x3,x4} that occupy zones Zswap ={p0,p1,p2,p3,p4}  
respectively, in a 2-dimensional L-CAN. x0 is considered the initiator of a swapping 
process.  

Initially, nodes x0-x4 exchange with each other the set of their own neighbors. For 
instance, node X1 and X3 exchange Neigh(x1) = {a1,a7,a8,x0}, and Neigh(x3) = 
{a3,a4,a5,x0}, respectively. After all nodes that belong to Nswap have been notified 
of all these neighbor sets in each position, each one measures its STT in the nodes that 
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Fig. 3. A two-dimensional CAN where nodes {X0, X1, X2, X3, X4} perform a concurrent 
swapping, where X0 is the initiator 

presented in every set Neigh(i) where iאNswap and send the measurements to the 
initiator as this is the node that carries out the execution of the swapping algorithm. 
Now the initiator is capable of calculating the optimal assignment between nodes 
Nswap and positions Zswap. In order to formalize the swapping process we note now 
as Zneigh(i) the set of nodes that are adjacent with a zone i and do not participate in 
the swapping process (Ex. Zneigh(P2) ={a1,a2,a3}).For the calculation of energy in 
every zone except the central one (P0 in our example) we use the set Zneigh this set 
excludes the node that will be moved to the central position as it is unknown yet. For 
instance, the energy of x1 to position P2 is calculated for the needs of the swapping 
as: 

E(x1,p2)=Stt(x1,a1)+Stt(x1,a2)+Stt(x1,a3)                              (3) 

The problem with (3) is that we do not know which of the x0, x2, x3, and x4 
moves to the central position P0. Four outcomes are possible, but we will describe 
later how we tackle this problem. 

The case where a node moves to the central position P0, is simpler as each node of 
the calculation of its energy uses the set Nswap that participate in the swapping proc-
ess except itself. That’s because as we observe from the Figure 3 if this node moved 
to the central position will have as its neighbors these nodes. Again, if X1 moves to 
P0 its energy function becomes: 

E(x1,p0)=Stt(x1,x0)+Stt(x1,x2)+Stt(x1,x3)+Stt(x1,x4)                        (4) 

We are now able to determine the energy of each node in a more abstractive way in 
order to formulate the swapping algorithm. In order to find the optimal assignment of 
the nodesא אand their zones ݌ܽݓݏܰ  we have to calculate the energy of each ݌ܽݓݏܼ
node in each potential position. 

So for the zone of the initiator, noted as position 0, the node i that will be swapped 
there will have energy: ܧሺ݅, 0ሻ ൌ ∑ ሾܵݐݐሺ݅, ݆ሻ| ݆ א ,݌ܽݓݏܰ ݅ ് ݆ሿ௝ୀ|ே௦௪௔௣|ିଵ௝ୀଵ                      (5) 
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For the other zones kא{Zswap-0} the energy of the potential node i that will be 
swapped there is: 
,ሺ݅ܧ  ݇ሻ ൌ ,ሺ݅ݐݐܵ ݆0ሻ ൅ ∑ ሾܵݐݐሺ݅, ݆ሻ| ݆ א ܼ݄݊݁݅݃ሺ݇ሻ௝ୀ|௓௡௘௜௚௛|௝ୀଵ ]            (6) 
 

With j0 we note the node that will be swapped to the central position after the 
swapping process. As we observe the first term of this equation ܵݐݐሺ݅, ݆0ሻ is inde-
pendent from the position k and it depends only in the node that will take the position 
of the initiator that noted position 0. If we examine these factors we will observe that 
there will be |Nswap|-1 of them and each one expresses the Stt between the node that 
will placed in zone 0 and each node except it that belongs to Nswap. If now we ob-
serve E(i,0) we will find that it is equal with the sum of these factors as we observe 
from the equation 5. After this observation we have prove that by the selection of a 
node for the central position we determine a factor: 
,Ԣሺ݅ܧ  0ሻ ൌ 2 כ ,ሺ݅ܧ 0ሻ                                             (7) 
 

While the selection of a node for the other positions k determines a factor: 
,Ԣሺ݅ܧ  ݇ሻ ൌ ∑ ሾܵݐݐሺ݅, ݆ሻ|݆ א ܼ݄݊݁݅݃ሺ݇ሻ௝ୀ|௓௡௘௜௚௛|௝ୀଵ ሿ                       (8) 
 

After these calculations in order to perform the swapping process we want to 
minimize: 

 ∑ ∑ ܽሺ݅, ݆|௓௦௪௔௣|௝|ே௦௪௔௣|௜ ሻ כ ,ᇱሺ݅ܧ ݆ሻ                                   (9) 
 
Where a(i,j)א ሼ0,1ሽ and for each node i and each position j holds that: 
 ∑ ܽሺ݅, ݆ሻ ൌ 1௝ୀ|௓௦௪௔௣|௝ୀଵ  and ∑ ܽሺ݅, ݆ሻ ൌ 1௜ୀ|ே௦௪௔௣|௜ୀଵ                         (10) 
 

These are the constraints of the problem and intuitively express that each node will 
be placed in exactly one position and also in each position j will be placed exactly one 
node. As the nodes and the positions are equal this is an integer linear programming 
problem always feasible. After its solution for each a(i.j)=1 node i will be placed in 
position j. If it will moved in the central position t will take as neighbors the set 
{Nswap–i} and in the other positions j the set Zneigh(j) and the node that will move 
to the central position. This is a well know problem of linear programming and we 
refer to [20] for its solution. 

There is an analytical proof that our algorithm converges but due to the restricted 
space we just describe that each time that the algorithm is executed to a neighborhood 
the energy of this neighborhood is reduced and so the total energy of the system. As a 
result of this property and the fact that the total energy is a positive number the whole 
system will converge to an assignment between nodes and positions will the low  
total energy and as we observe for our simulations it converges to a very attractive  
suboptimal. 
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3   P2P Live Streaming Systems 

Without loss of generality we assume that in a P2P streaming system there is a boot-
strap node which is used for the entrance of the nodes in the system while it acts as a 
source for providing the video stream. Furthermore, the video stream is divided into 
blocks. The block size depends on the service rate, say μ (measured in bps that the 
video playback requires), and the number of blocks in which the bootstrap node di-
vides one second of video. We define this number as Nb blocks/sec representing also 
the frequency of new blocks generated by the source. So each block is generated 
every 1/Nb seconds at the bootstrap node, with a size equal to Lb=μ/Nb bits. 

Every block is also associated with a time stamp indicating the time of its genera-
tion. All peers reproduce (play) the video with a delay called set-up time which we 
denote it as ts. As mentioned previously, setup time is the time that elapses from the 
generation of a block at the source until its distribution (propagation) to every node in 
the P2P system. Accordingly, at every time instant every peer plays the block that was 
generated ts times before in the origin server, provided of course that this block has 
eventually reached its destination. 

 

Fig. 4. Snapshot of a buffer in a node with the states of the blocks 

During this setup time a number of blocks have been generated, equal to Nb*ts, the 
first of which will be played by every node after ts seconds. Therefore, at every instant 
every node is required to keep track of all Nb*ts blocks generated within a sliding 
window of ts seconds. For this reason every node maintains a buffer of size Nb*ts that 
holds the state of these blocks. Two states are of interest: received blocks and missing 
blocks (not delivered yet). Figure 4 provides a snapshot of the states of blocks of a 
buffer in a node. 

More specifically, each node upon reception of a new block, propagates this infor-
mation to all of its neighbors. Therefore, every time that a node wants to transmit a 
new block knows the blocks that it has and the blocks that their neighbors have. A 
scheduler, described in [2], proposes the transmission of a block to the neighbor that 
misses the largest number of blocks among those that the transmitting node has.  
According to it, each node i has to decide which neighbor j must serve first, by  
calculating the difference(i,j) of the blocks that each neighbor j misses and are present 
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in node i. The node with the largest difference is the one selected for block transmis-
sion while ties are resolved arbitrarily. Finally, the block to be transmitted is selected 
randomly with a uniform distribution.  

4   Evaluation 

For the evaluation of our P2P streaming system we have used OPNET Modeler [24] 
in order to avoid the imperfections of a custom made simulator. We have tested our 
proposed system under various underlying network topologies. Here we present its 
performance based on a topology from [5], where the provided round trip time meas-
urements were gathered using the King method between globally distributed DNS 
servers. We have opted for this particular real data set in order a) to avoid inaccurate 
conclusions which a network model may introduce, and b) to use a real topology of 
globally distributed nodes and so have a fair benchmark for a locality aware overlay. 
In the rest of this section we present a system with 2000 nodes.  

Before examining our system and its performance in live streaming, we present the 
results that show the cumulative density function of the number of neighbors that each 
node has for a random mesh and for our overlay. As we observe in Figure 5 our over-
lay is more balanced than a mesh although the nodes are placed according to their 
position in the underlying network. At this point we want to clarify that we don’t 
claim that nodes have similar zone sizes (ex. In network regions with high density of 
nodes the zones of LCAN may be smaller) as we don’t want to use L-CAN as a DHT 
in order to store keys in it. In contrast we want to have a balanced overlay in terms of 
the neighbors that each node has. We achieve this goal due to our placement algo-
rithm as described earlier. 

Now in Figure 6 we demonstrate the performance of our overlay in live streaming 
compared with the performance of a randomly created mesh. We examine two scenar-
ios: a) all the participating nodes have homogeneous upload capacities, and b) the 
upload capacities of the nodes conform to those in [3] that have been collected from 
users of a real P2P system and they are heterogeneous. 

 

Fig. 5. Cumulative density function of the number of neighbors that each node has in a random 
mesh (black line) and in L-CAN (red line) 
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Fig. 6a. Maximum achievable service rate (as a percentile of the average upload bandwidth) of 
each system under various setup time intervals. Nodes contribute equal upload bandwidths. 

 

Fig. 6b. Maximum achievable service rate (as a percentile of the average upload bandwidth) of 
each system under various setup time intervals. Nodes contribute heterogenous upload band-
widths. 

Based on these two scenarios we have evaluated three different systems. The first 
system, denoted as MD, is a mesh overlay where each node has 10 neighbors, while 
the exchange of blocks among nodes is performed according to the most deprived 
node scheduler [2] as described earlier. The second system, denoted as LD, uses the 
same scheduler as MD, but it relies on our topology aware overlay L-CAN with  
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5-dimensions (each node has approximately 10 neighbors) which replaces the mesh 
overlay. In the third system, denoted as LS, we have maintained the L-CAN overlay 
and we have substituted the scheduler in MD with our own. 

This new scheduler we propose, though simple, exploits in its logic the existence 
of a locality aware overlay and in particular every node’s likely network position re-
flected in the L-CAN. According to it, each node keeps an incremental list of its 
neighbors according to STT between them. The probability with which each one of its 
neighbor is selected for a block transmission is proportional to its rank in the list.  
Figure 6 shows the ratio between the maximum achievable service rate that each sys-
tem can deliver and the average upload bandwidth of the participating nodes, for vari-
ous setup time values given a constant rate for block generation (Nb=10 blocks/sec). 
For the first graph we have used homogenous upload capacities whereas the later is 
based on heterogeneous. Inspecting the two graphs in figure 6, we observe that the 
same performance trend emerges from either case i.e. homogeneous and heterogene-
ous upload capacities. Furthermore, all systems perform slightly worst in case of het-
erogeneous upload capacities. 

As predicted by our analysis applying a locality aware overlay, L-CAN, results in a 
significant increase in the achievable service rate (LD), as opposed to a mesh overlay 
(MD), because of the smaller STT values that exist between the neighbors in L-CAN. 
Further improvement especially for not very small set-up time values is obtained when 
we apply our scheduler in (LDS) as we see observe from the blue line in figure 6.  

Finally, the control overhead of our scheduler is trivial. Every time that a node re-
ceives a new block it sends to all of its neighbors a control packet with the contents of 
its buffer. The frequency of this transmission is equal to Nb by the definition of the 
scheduler. Additionally the size of the buffer is ts*Nb and is modeled with one bit of 
information for each block (ex. One for its presence and zero for its absence). So the 
control bandwidth that is consumed in each node in order to update the other nodes 
for the new block arrivals is approximated by: 

 
C.B.=(Header_size+ts*Nb)*Nb*Number_of_neigh 
 

where Header_size+ts*Nb is the size of each control packet Nb is the frequency that 
this is transmitted and Number_of_neigh is the number of neighbors in which the con-
trol packets are send. By the value of Nb=10 blocks/sec as, ts=5sec and Num-
ber_of_neigh=10 the control bandwidth that consumed in each node is has a value 
around 30 kbps and its independent from the upload capacities. This means that with 
higher upload capacities of peers the overhead that is consumed from the buffer ex-
change lowers as a percentage of the upload bandwidth. 

5   Conclusions and Future Work 

As we have observed though our evaluation L-CAN greatly improves the set-up time 
and the bandwidth utilization in live streaming. Additionally combined with our pre-
vious work in [22] enables locality in CAN and the whole system can be used in other 
applications such as multi-attribute range queries. Furthermore we will modify and 
apply our algorithms in other overlays in order two evaluate them in these. 
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In live streaming our future work is focused in two major areas. The first is the 
creation of a sophisticated scheduler that exploits locality and the information that is 
infused in any node during the buffer exchanges by selecting the appropriate block for 
transmission and not only the appropriate node. The second is the selection of the 
appropriate number of neighbors and the adjustment of the block size in order to fur-
ther improve the performance of our system. At last we plan to evaluate our system in 
dynamic network conditions to demonstrate its adaptive behavior. 
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