
P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 299–304, 2008.
© IFIP International Federation for Information Processing 2008

Transactions in Task Models

Daniel Reichart and Peter Forbrig

University of Rostock, Department of Computer Science
{daniel.reichart,peter.forbrig}@uni-rostock.de

Abstract. In this paper we propose a method to model the behaviour of task
models in error situations. For these purposes we follow the idea of transactions
in database systems. By encapsulating tasks in transactions the atomicity of
complex tasks can be asserted. Corresponding tool support is presented which
includes modelling and simulating task models. The tools themselves were de-
veloped in a model-based way.

Keywords: Transaction, Task Model, Tool Support.

1 Motivation

The diversity of mobile devices and platforms requires new methods to master the
complexity of user-interface development. Abstract models can help to solve many
issues so that model-based user interface development becomes more and more popu-
lar. Task models are widely used to specify interactive software. Many methods and
tools using task models to develop user interfaces. But still there are many problems
that can occur, when generating user interfaces from these models. Task models just
describe interactions between user and system in an idealistic way. Exceptions to this
default behaviour is hard to express or even can not be expressed. But in real world
applications errors occur and developers have to specify fallback behaviour. What
happens, if a system task fails, because a required resource is not available? Which
tasks have to be undone to get back to a consistent state? The cascading selective
undo mechanism presented in [1] can help to address the second question but has
another motivation. Instead of undoing selective, already successfully completed tasks
and their impact on application state we propose an approach to handle error recovery
strategies for task models using the concept of transactions.

2 Transactions

Transactions were originally developed to be used in database management systems
to avoid inconsistencies of data. Such problems can arise when two processes write
the same data concurrently or in case of hardware or network failures. The idea of this
paper is to encapsulate more than one task into one transaction. The three new opera-
tions begin, commit and rollback define the boundaries of the transaction. Transac-
tions in databases are required to ensure the following constraints:

300 D. Reichart and P. Forbrig

• Atomicity: Atomity guarantees, that either all of the operations are performed or
none of them.

• Consistency: The database remains in a consistent state before the start and after
the end of the transaction.

• Isolation: Isolation ensures, that each transaction appears to be isolated from all
other transactions. This means, an operation outside a transaction can not see in-
termediate data of the transaction causing unwanted side effects.

• Durability: Durability guarantees, that once a transaction was performed successful
it will persist.

These so called ACID criteria are too strict to be used in workflow systems or task
models. To loosen some of the restrictions there are advanced transaction models to
specify nested transactions [1], long-living transactions [3] or multi-level transactions
[4]. We make use of some of these ideas and concepts in modeling transactions in
task models.

3 Task Models

The task models we are dealing with are derived from the CTT notation [5].

ModelElement

id : String
name : String
comment : String

(f rom m6 c)

TaskCategory

abstraction
user
interact ion
application

<<enumeration>>

TemporalOperator

notspecified
choice
orderindependence
concurrent
disabling
suspendresume
enabling

<<enumeration>>

Model
(f rom m6c)

TemporalOperation

operator : TemporalOperator

Iteration

min : Integer
max : Integer

InstanceIteration

TaskModel
TaskComposite

1..n

0..1

+children 1..n

0..1

1

0..1

+child
1

0..1

1

0..1

+child
1

0..1

Task

category : TaskCategory

1

0..1

+root 1

+model 0..1 0..1

0..1

+refinement

0..1

0..1

Fig. 1. Task-meta-model

A task model is basically a tree of tasks and subtasks. Iterations and optional tasks
can be specified as well as different temporal relations between subtasks.

Figure 1 shows the important parts of our task-meta-model. This meta model is an
integral part of our tool development process [7, 8]. Using Eclipse [9] and some
frameworks like EMF [10], GEF [11] and GMF [12] we developed a set of model-
based user interface design tools.

 Transactions in Task Models 301

Fig. 2. Task model “write mail”

Figure 2 shows an example task model created with one of our tools. It differs a lit-
tle bit from the CTT notation. Temporal relations and iterations are nodes in our mod-
els instead of attributes respectively associations. One advantage of this notation, that
one can immediately see the order of applied temporal operations without knowing
operator priorities like in CTTE.

3.1 Lifecycle of Tasks

Each task passes different states during its lifetime. A state chart can be used to spec-
ify the states and possible transitions between them, like in [13]. We developed our
own state chart that fits our needs.

Disabled Enabled

Skipped

Suspended

Running

Aborted

Completed

enable

skip | abort

suspend

abort

end

resume abortdisable

skip | abort

start

Fig. 3. Lifecycle of a task

This state chart of Fig. 3 is applicable for basic (leaf) tasks as well as complex
tasks. At the beginning, a task is in the state Disabled. In the default case, the event
enable causes a state change to Enabled, start changes the state to Running and end
results in the final state Completed. Variations of this behaviour arise by using differ-
ent temporal operators. For example, using a Choice operator between two tasks A
and B, skip is send to task A when the user chooses to start task B, effecting in state
Skipped. The operator OrderIndependence takes care that while one task is running
the other task will be temporarely disabled by sending disable. The events suspend

302 D. Reichart and P. Forbrig

and resume occur using the temporal operator Suspend/Resume and abort is sent by
the operator Disabling to cancel task A when task B starts.

To simulate a complete task model, for each task an instance is created first. This
instance contains amongst other things the current state of execution, following the
above state chart. The temporal operators act like agents between these instances and
take care to reproduce the specified behaviour. For example, the temporal operator
Enabling between two tasks A and B achieves this by observing the state of A and
send the event enable to B when A changes his state to Completed.

3.2 Transactions in Task Models

The reason to introduce the concept of transactions into task models was to model the
behaviour in case of an error. First, we had to reflect error situations in our runtime
models. We inserted a new state Failed into the state chart and a transition from Run-
ning to Failed, reflecting an error situation. When a task enters the state Failed, inter-
esting questions arise: What happens with the state of following tasks and the parent
task? How can the task model get back to a consistent state?

We take a look at some examples first: Let’s assume, in figure 2 the task send mail
cannot be performed due to connection problems. The reasonable behaviour here is to
give the user the opportunity to retry the task send mail when the network connection
is working again.

In another task model we describe a complex calculation. If on of it steps cannot be
performed, e.g. if some data is missing, the whole calculation fails due to missing
intermediate data.

A third task model contains the task of booking a journey. This includes amongst
other things the booking of a flight, a hotel and a rental car and the payment process.
If one of these steps goes wrong (no hotel available, not enough money, …) any al-
ready performed task has to be undone. This behaviour is similar to the rollback op-
eration of a transaction.

There may be other strategies to handle errors in task models but we will focus upon
the three strategies described above: try again, abort and roll back. We extended our
task models by adding an attribute for each task to specify, which strategy to apply.

Disabled Enabled

Skipped

Suspended

Running

Aborted

Completed

enable

skip | abort

suspend

abort

end

Failed Rolledback

fail

resume abort

rollback

disable

skip | abort

start

rollback

rollback

Fig. 4. Extended lifecycle with transaction concepts

 Transactions in Task Models 303

Figure 4 shows the extended lifecycle of a task, including the two new states,
Failed and Rolledback. We also defined for each combination of temporal operator
and strategy, how to behave, when a tasks state switches into the state Failed.

The strategy “Abort” generally causes a failure of the task when a subtask fails.
Using this strategy all over the task model, each failure in one of the subtasks causes
the whole model to fail.

“Try again” resets the task and all of its subtasks when a subtask fails. Using this
strategy we can stop the error propagation from a leaf task to the root task resulting
from the application of the strategy “Abort”.

The strategy “Roll back” revokes already performed tasks by executing the oppo-
site tasks in reversed order, for example the cancelation of orders or accounting trans-
actions. Using this strategy we create an effect similar to transactions in database
systems: Either the whole tasks is performed or nothing. Of course, not all criteria of
database transactions are fulfilled, but this is not required.

3.3 Tool Support for Transactions in Task Models

To test the above ideas we implemented them in a few of our tools. First of all, we en-
hanced the meta model in figure 1 and added an attribute to specify for each task, which
strategy to apply and how many times the user can retry a task. For example, the task
model designer can specify, that the user has 3 attempts to perform “enter PIN”, until
this task fails finally. These meta-model-changes are reflected directly in our editors.

Further modifications are related to our task model simulation engine: The intro-
duction of the new task states Failed and Rolledback and the implementation of error
strategies. The user interface to control the task model simulation has changed too:
Users are able to send the message Crash to a task to simulate an error as seen in
figure 5.

Fig. 5. Simulation of a task model

304 D. Reichart and P. Forbrig

Additionally, the order of already performed tasks can be seen now on the right
side to keep an eye on how the rollback mechanism works. In this example, the tasks
enter mail address, write text, write subject and drop file from explorer (hidden by the
popup menu) are already completed.

4 Summary and Future Work

The paper discussed an approach to address error situation in task models, using ideas
from the concept of transactions. In the process of developing user interfaces we need
to use this method to specify non-standard cases in task execution. This approach
works on a very basal level. It does not consider consistency on the object level. For
example, if a task modifies the state of an object and is rolled back later, the object’s
state will not be restored.

In the future we want to readjust our other tools, like the dialog graph editor [8] to
the task model transaction approach. We have to develop new concepts for dialog
graphs in order to react reasonable to error situations in task models.

References

1. Cass, A., Fernandes, C.: Using Task Models for Cascading Selective Undo. In: Coninx, K.,
Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 186–201.
Springer, Heidelberg (2007)

2. Moss, J.: Nested Transactions and Reliable Distributed Computing. In: Proc. Of the 2nd
Symposium on Reliability in Distributed Software and Database Systems (1982)

3. Garcia-Molina, H., Salem, K.: Sagas. In: Proc of ACM SIGMOD Conference on Manage-
ment of Data (1987)

4. Weikum, G., Schek, H.: Concepts and Applications of Multilevel Transactions and Open-
nested Transactions. In: Database Transaction Models for Advanced Applications (1992)

5. CTTE: The ConcurTaskTree Environment,
http://giove.cnuce.cnr.it/ctte.html

6. Sinnig, D., Wurdel, M., Forbrig, P., Chalin, P., Khendek, F.: Practical Extensions for Task
Models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 42–55. Springer, Heidelberg (2007)

7. Brüning, J., Dittmar, A., Forbrig, P., Reichart, D.: Getting SW Engineers on Board: Task
Modelling with Activity Diagrams. In: EIS 2007, Salamanca, Spain (2007)

8. Forbrig, P., Reichart, D.: Ein Werkzeug zur Spezifikation von Dialoggraphen. Mensch and
Computer 2007, Weimar, Germany (2007)

9. Eclipse (visited: June 8, 2008), http://www.eclipse.org
10. Eclipse Modeling Framework (visited: June 08, 2008),

http://www.eclipse.org/emf
11. Graphical Editing Framework (visited: June 08, 2008),

http://www.eclipse.org/gef
12. Graphical Modeling Framework (visited: June 08, 2008),

http://www.eclipse.org/gmf
13. Bomsdorf, B.: The WebTaskModel Approach to Web Process Modelling. In: Winckler,

M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 240–253.
Springer, Heidelberg (2007)

	Transactions in Task Models
	Motivation
	Transactions
	Task Models
	Lifecycle of Tasks
	Transactions in Task Models
	Tool Support for Transactions in Task Models

	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

