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Abstract. Statistical model-based segmentation of the left ventricles
has received considerable attention these years. While many statistical
models have been shown to improve segmentation results, most of them
either belong to (1) static models (SM) that neglect the temporal coher-
ence of a cardiac sequence, or (2) generic dynamical models (GDM) that
neglect the individual differences of cardiac motion. In this paper, we
propose a subject-specific dynamical model (SSDM) that can simulta-
neously handle inter-subject variability and temporal cardiac dynamics
(intra-subject variability). We also design a dynamic prediction algo-
rithm that can progressively predict the shape of a new cardiac sequence
at a given frame based on the shapes observed in earlier frames. Further-
more, to reduce the accumulation of the segmentation errors throughout
the entire sequence, we take into account the periodic nature of cardiac
motion and perform bidirectional segmentation from a certain frame in
a cardiac sequence. “Leave-one-out” validation on 32 sequences show
that our algorithm can capture local shape variations and suppress the
propagation of segmentation errors.

1 Introduction

The segmentation of the left ventricle (LV) from cardiac magnetic resonance
(MR) images is an important prerequisite for quantitative analysis of cardiac
function, such as the measurement of ejection fraction and myocardial motion. To
determine the myocardial boundaries at weak edges, many researchers have pro-
posed the use of statistical models to regularize the segmentation process (see [1]
for an overview). However, most of these models are static models (SM), which
supply a prior just for shape, but not the motion of that shape. To take into ac-
count the information in the time domain, Perperidis et al. extended 3-D models
to 4-D case and built two separate models to account for the inter-subject vari-
ability and cardiac temporal dynamics (intra-subject variability) respectively [2].
While these two models are able to differentiate cardiac sequences from normal
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subjects from patients with hypertrophic cardiomyopathy, they are inadequate
for the segmentation purposes because these two models are unrelated.

At present, there remains limited research concerning the the development of
dynamical shape models. For example, Senegas et al. proposed a linear dynami-
cal model to approximate cardiac dynamics [3]. Sun et al. proposed learning car-
diac dynamics using a second-order nonlinear model [4]. While these dynamical
models are superior to SM, they are homogeneous in time1 and therefore insuffi-
cient in describing complex shape deformations, such as cardiac dynamics. Also,
by supplying a uniform model to all sequences, they ignore the subject variability
of motion patterns. Therefore, they are generic dynamical models (GDM).

This paper offers two major contributions. First, we propose a subject-specific
dynamical model (SSDM) to simultaneously account for the subject-specific vari-
ations of cardiac shapes and inhomogeneous motion. To build this SSDM, we
need to differentiate two factors that cause cardiac shape variability. One is
inter-subject variability, and the other is temporal dynamics caused by cardiac
deformation during a cardiac cycle, as shown in Figure 1. Because conventional
Principal Components Analysis (PCA) and Independent Component Analysis
(ICA) can only focus on one factor, we extend them to higher orders by utilizing
Multilinear PCA (MPCA) [5] and Multilinear ICA (MICA) [6] to decompose the
training set and describe the interaction of inter-subject variability and temporal
dynamics. We also design a dynamic prediction algorithm that can progressively
predict the subject-specific dynamics at the current frame while we gather more
information from earlier frames.

Second, in order to further decrease the accumulation of segmentation er-
rors throughout the entire cycle, we propose a forward-backward segmentation
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Fig. 1. The interaction of cardiac temporal
dynamics and inter-subject variability
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Fig. 2. Overview of landmark propagation

1 A dynamical model is time-homogeneous if the conditional probability of state t given
its previous states only depends on the time difference between those states, i.e.
P (St|St−1,St−2, ..., St−m) = P (St+n|St+n−1,St+n−2, ..., St+n−m) for all n and m.
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strategy that utilizes the periodic nature of cardiac motion and simultaneously
performs bidirectional segmentation from a certain frame in a cardiac cycle.

2 Method

2.1 The Construction of SSDM

Data Set. We acquired 32 sequences of canine MR images from a GE signa
1.5 Tesla scanner triggered by electrocardiographic (ECG) signals that were
recorded by a MR-compatible ECG sensing device to suppress noises and arti-
facts induced by gradient magnetic fields. The resulting 3-D image set consists
of 16 temporal 3-D frames per cycle, with an in-plane resolution of 1.6mm and
a slice thickness of 5mm. The ENDO- and EPI surfaces were manually out-
lined by our cardiology collaborator using the Bioimage Suite Software [7]. To
align all cardiac shapes to a common coordinate system, we first extracted 1095
landmarks on the ENDO surface and 1200 landmarks on the EPI surface in
the first frame of the the first sequence. Then we propagated this set of land-
marks to all frames in each sequence by mapping those frames to the first frame
of the first sequence using inter- and intra-subject registration, as shown in
Figure 2. We used both an affine transform to account for the global shape
difference and a shape-based non-rigid transform in [8] to accommodate the de-
tailed shape differences. Thus, we obtained 2295 landmarks for each frame. To
maximize the effective size of the training set, we adopted the “Leave-one-out”
approach, which alternately selects one sequence for validation and uses the rest
as the training set.

Shape Decomposition. In this paper, we use MPCA and MICA to decompose
cardiac shapes (see [5,6] for an overview of MPCA and MICA). Here, we denote
the aligned cardiac shapes as a third-order tensor S ∈ R

I×J×K , where I = 31
is the number of subjects, J = 16 is the number of frames within a cardiac
sequence, and K = 2295 × 3 = 6885 is the dimension of landmark vectors. By
applying MPCA to tensor S, we can decompose it as follows:

S � Z ×1 Usubject ×2 Umotion ×3 Ulandmark (1)

where Z ∈ R
P×Q×R is the core tensor which represents the interaction of sub-

ject, motion and landmark subspaces. Matrices Usubject ∈ R
I×P , Umotion ∈

R
J×Q, and Ulandmark ∈ R

K×R are subject subspace, motion subspace, and
landmark subspace respectively. Matrix Usubject contains row vectors usubject

i ∈
R

P (1 ≤ i ≤ I) of coefficients for each subject i, and matrix Umotion contains row
vectors umotion

j ∈ R
Q (1 ≤ j ≤ J) of coefficients for frame j.

While it is reasonable to assume that the subject subspace has a Gaussian dis-
tribution, the motion subspace does not have a Gaussian distribution. Therefore,
we propose utilizing ICA to decompose temporal dynamics to a set of independent
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motion patterns in the motion subspace while using PCA in the subject subspace
and landmark subspace.

S � Z ×1 Usubject ×2 Umotion ×3 Ulandmark

= Z ×1 Usubject ×2 UmotionWT W−T ×3 Ulandmark

= Z̃ ×1 Usubject ×2 Ũmotion ×3 Ulandmark (2)

where the core tensor Z̃ = Z ×2 W−T , and the column vectors of Ũmotion =
UmotionWT are the independent components of the motion subspace Umotion.

To reduce dimensions, we first fixed Q = J and performed MPCA in the sub-
ject subspace and landmark subspace to reduce I = 31 to P = 5 and K = 6885
to R = 15, such that the remaining energy was around 98.2% of the original en-
ergy. Second, we performed MICA in the motion subspace to find independent
variables correspondent to significant shape variations. We selected three most
significant modes: short-axial contraction, twisting of the heart, and long-axial
contraction. We retained around 96.6% of the original energy after decomposi-
tion. Therefore, Q = 3 is identified for our model.

Dynamic Prediction Algorithm. Given the segmentation of a cardiac se-
quence from frame 1 to t − 1, we want to predict the segmentation at frame t.
The idea is to project the given segmentation to the subject subspace in order
to identify the subject vector associated with this sequence, then followed by the
prediction of the segmentation at time t with this subject vector.

Let S1:t−1 = {S1,S2, ...,St−1} denote the observed segmentation of a new
cardiac sequence, the subject vector associated with this sequence can be repre-
sented as

ûsubject = B ×1 S1:t−1 (3)

where the “projection tensor” B is obtained by retensorizing matrix B(1) =
T−T

(1) (the matrix T(1) is the 1-mode unfolding of tensor T = Z̃ ×2 ũmotion
1:t−1 ×3

Ulandmark.).
With this subject vector, we can predict the segmentation at frame t as

S∗
t = Z̃ ×1 ûsubject ×2 ũmotion

t ×3 Ulandmark (4)

2.2 Forward-Backward Segmentation

Assume that we are given consecutive cardiac images I1:t = {I1, I2, ..., It}. Also,
we denote St as the segmentation at frame t. Thus, the forward segmentation of
frame t can be addressed by maximizing the conditional probability: P (St|I1:t) ∝
P (It,St|I1:t−1) = P (It|St, I1:t−1)

∫
P (St|S1:t−1)P (S1:t−1|I1:t−1) dS1:t−1

(a)
≈

P (It|St)P
(
St|Ŝ+

1:t−1

)
.

As explained in [9], we make two assumptions at step (a): (1) I1:t are mutually
independent, i.e. P (It|St, I1:t−1) = P (It|St); and (2) the distribution of previous
states to be strongly peaked around the maxima of the respective distributions:



454 Y. Zhu et al.

P (S1:t−1|I1:t−1) ≈ δ
(
S1:t−1 − Ŝ+

1:t−1

)
, where Ŝ+

t−1 = arg maxP (St−1|I1:t−1) is
the result from forward segmentation, and δ (·) denotes the Dirac delta function.

Similarly, we haveP (St|It+1:N )=
∫
P (St|St+1:N )P (St+1:N |It+1:N ) dSt+1:N =

P
(
St|Ŝ−

t+1:N

)
, where Ŝ−

t+1 = argmaxP (St+1|It+1:N ) is the result from backward
segmentation. With all image data I1:N in the entire sequence, we now combine the
forward and backward segmentation by maximizing the conditional probability
P (St|I1:N ). As explained in [10], this conditional probability can be simplified as

P (St|I1:N ) ∝ P (St|I1:t)P (St|It+1:N ) ∝ P (It|St)︸ ︷︷ ︸
data adherence

P
(
St|Ŝ+

1:t−1

)

︸ ︷︷ ︸
forward dynamics

P
(
St|Ŝ−

t+1:N

)

︸ ︷︷ ︸
backward dynamics

(5)

2.3 Data Adherence

To decide the intensity distribution of cardiac MR images, we partition the en-
tire the image by the ENDO- and EPI surfaces into three regions - LV blood
pool, LV myocardium, and background. The LV blood pool and myocardium
have homogenous intensities, and can therefore be modeled with a unimodal
distribution. The most common distribution for MR images is Gaussian (Nor-
mal) distribution P (I; μl, σl) = 1√

2πσl
exp

{
− (I−μl)

2

2σ2
l

}
, where μl is the mean of

Gaussian distribution, and σl is its deviation. For l = 1, it models the intensity
distribution in LV blood pool. For l = 2, it models the intensity distribution in
LV myocardium.

The background, however, is inhomogeneous because it contains more than
one tissues (RV blood pool, RV myocardium, and lung air). Therefore, we use

a mixture model P3 (I; μ3, σ3) =
M∑

k=1

αkP3,k (I; μ3,k, σ3,k), where M is the num-

ber of components, αk is the mixture proportion of component k that satisfies
M∑

k=1

αk = 1, μ3,k and σ3,k are the mean and standard deviation of its component

Gaussian distribution. Here, we use M = 3 for the background of the cardiac
MR images.

Let Ωt,1, Ωt,2, and Ωt,3 denote the LV blood pool, LV myocardium, and
background in each frame t respectively. Thus, the data adherence term can be

defined as a log-likelihood function logP (It|St) =
3∑

l=1

∫
Ωt,l

logP (It; μl, σl) dx.

2.4 Forward and Backward Dynamics

As shown in Section 2.1, we can predict the ENDO- and EPI surfaces at frame
t from previous frames using Equations 3 and 4. Thus, the forward and back-
ward dynamics can be defined as P

(
St|Ŝ+

1:t−1

)
∝ exp

{
−α

2

∫ ∥∥St − S+∗
t

∥∥2
}

and

P
(
St|Ŝ−

t+1:N

)
∝ exp

{
−α

2

∫ ∥∥St − S−∗
t

∥∥2
}
, where α is a weighting parameter,
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and S+∗
t and S−∗

t are the predicted contours in forward and backward direc-
tions from the dynamic prediction algorithm described in Section 2.1. We found
in the experiments that 0.5 ≤ α ≤ 2 is applicable for most of the data sets. In
the experiments, the first frame of the sequence was manually segmented , and
the segmentation of the current frame was initialized by the segmentation of the
previous frame.

3 Experiments

Let A and B be two surfaces from automatic and manual segmentation respec-
tively. Suppose A and B are represented by point sets, i.e. A = {a1, a2, ...,aN}
and B = {b1,b2, ...,bM}. The difference between these two surfaces can be

described by mean absolute distance as MAD(A, B) = 1
2

{
1
N

N∑
i=1

d (ai, B)+

1
M

M∑
j=1

d (bj , A)

}
, and Hausdorff distance as HD (A, B) = 1

2

{
max

i
d (ai, B)+

max
j

d (bj , A)
}

, where d (ai, B) = min
j

‖bj − ai‖. While MAD is a global mea-

sure of the match of two surfaces, HD reflects their local similarities. We also
computed the percentage of correctly segmented voxels as PTP =Volume(ΩA∩ΩB)

Volume(ΩA) ,
where ΩA and ΩB are the two volumes enclosed by the surfaces A and B re-
spectively.

3.1 SSDM Versus SM and GDM

Figure 3 provides a visual comparison of the results obtained with SM and
SSDM, while Figure 4 provides a visual comparison of the results obtained with
GDM and SSDM. It can be seen that SM is biasd in the global sense because
it is trapped easily in the local minima. Figure 5 (black and red lines) provides
a quantitative evaluation of segmentation results over the entire cardiac cycle.
It shows that for ENDO boundaries, when SSDM is used, MAD improves by
0.38mm and HD by 1.97mm. For EPI boundaries, when SSDM is used, MAD
improves by 0.11mm and HD by 1.63mm. This implies that while GDM can
capture global shape deformations, it misses out on the local shape variations.

Fig. 3. Comparing the segmentation re-
sults using SM (blue) and SSDM (red)

Fig. 4. Comparing segmentation results
using GDM (blue) and SSDM (red)
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3.2 Forward Versus Forward-Backward Segmentation

Figure 6 shows the qualitative results over an entire cycle with and without the
backward strategy, while Figure 5 (red and green lines) illustrates the quantita-
tive results. At the end of a cycle, when the backward strategy is added, MAD
and HD improve by 0.90mm and 1.52mm, respectively, for the ENDO bound-
aries. Also, MAD and HD improve by 1.01mm and 2.04mm, respectively, for
the EPI boundaries. This shows that forward-backward segmentation produces
more consistent and robust delineation of LV boundaries over the full cardiac

Fig. 5. Comparison among three algorithms over 32 sequences

Frame 2 5 8 12 16

Fig. 6. Qualitative validation over an entire cardiac cycle (shown at frame 2, 5, 8, 12,
and 16): automatically segmented contours (cyan solid lines), manual contours (red
dotted lines). Upper: forward segmentation; Lower: forward-backward segmentation.
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cycle despite the slight increase of error in the middle frames of a cycle. Also,
the EPI boundaries are more difficult to segment. The segmentation errors of
EPI boundaries in one frame quickly accumulate when the backward strategy is
not added.

4 Conclusion

In this paper, we have proposed a subject-specific dynamical model (SSDM) to
decompose training samples into subject subspace, motion subspace, and land-
mark subspace using MPCA and MICA. Given a new cardiac sequence, it can
first identify the subject vector associated with this new sequence, and then use
this subject vector to predict the LV contours in the future frames. To reduce
the propagation of segmentation errors throughout the entire cardiac sequence,
we proposed to perform forward-backward segmentation simultaneously from
one frame in a cardiac sequence. We integrated the SSDM and the forward-
backward strategy into the LV segmentation process on the basis of recursive
Bayesian framework. Future work includes the extension of this approach to
other modalities, such as CT and ultrasound images.
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