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Abstract. Locally Linear Embedding (LLE) is a widely used non-linear
dimensionality reduction (NLDR) method that projects multi-dimensional
data into a low-dimensional embedding space while attempting to preserve
object adjacencies from the original high-dimensional feature space. A lim-
itation of LLE, however, is the presence of free parameters, changing the
values of which may dramatically change the low dimensional represen-
tations of the data. In this paper, we present a novel Consensus-LLE (C-
LLE) scheme which constructs a stable consensus embedding from across
multiple low dimensional unstable LLE data representations obtained by
varying the parameter (k) controlling locally linearity. The approach is
analogous to Breiman’s Bagging algorithm for generating ensemble clas-
sifiers by combining multiple weak predictors into a single predictor. In
this paper we demonstrate the utility of C-LLE in creating a low dimen-
sional stable representation of Magnetic Resonance Spectroscopy (MRS)
data for identifying prostate cancer. Results of quantitative evaluation
demonstrate that our C-LLE scheme has higher cancer detection sensitiv-
ity (86.90%) and specificity (85.14%) compared to LLE and other state of
the art schemes currently employed for analysis of MRS data.

1 Introduction

Due to inherent non-linearities in biomedical data, non-linear dimensionality
reduction (NLDR) schemes such as Locally Linear Embedding (LLE) have be-
gun to be employed for data analysis and visualization. LLE [I] attempts to
preserve geodesic distances between objects, while projecting the data from the
high to the low dimensional feature spaces unlike linear dimensionality reduction
(DR) schemes such as Principal Component Analysis (PCA) which preserve the
Euclidean distances between objects. The low dimensional data representations
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obtained via LLE are a function of k, a parameter controlling the size of the
neighborhood within which local linearity is assumed and used to approximate
geodesic distances. Since LLE is typically used in an unsupervised context for
visualizing and identifying object clusters, a priori, the optimal value of k is
not-obvious. In [I], Roweis and Saul suggest that varying x over a wide range
of values, still yields stable, consistent low dimensional embeddings for dense
synthetic datasets. Our own experiments on real biomedical data, suggest oth-
erwise [2]. Further, for sparsely populated datasets, the most common failure
of LLE is to map faraway points to adjacent locations in the embedding space
depending on the choice of x [I].

Automatically estimating  is largely an open problem, though some researchers
have attempted to adaptively determine a globally optimal & value [3], [4]. How-
ever, these experiments were limited to dense synthetic datasets. We argue that
in general no single global optimal value of x can be applied to learning the low
dimensional manifold over the entire data space. We further contend that different
values of k are required in different regions of the data space to optimally recon-
struct locally linear neighborhood.

In this paper, we present a novel Consensus-LLE (C-LLE) algorithm for cre-
ating a stable low dimensional representation of the data, in a manner analogous
to building classifier ensembles such as Breiman’s Bagging scheme [5]. Instead of
attempting to estimate a single globally optimal  value as in [3], [4] to be applied
to the entire dataset, our scheme aims to estimate the true pairwise object adja-
cency D(c, d) in the low dimensional embedding between two objects ¢, d € C. We
formulate the problem of estimating object distances D(c¢, d) as a Maximum Likeli-
hood Estimation problem (MLE) from multiple approximations D (¢, d) obtained
by varying s, which we assume are unstable and uncorrelated. Our scheme thus
differs from related work in two fundamental ways: (a) C-LLE attempts to recon-
struct the true low dimensional data manifold by learning pairwise object distance
across the entire data space and avoids the x estimation problem, and (b) C-LLE
learns the low dimensional manifold in a locally adaptive fashion, compared to
[3], [4] that attempt to learn an optimal x value which is then uniformly applied
to learning the manifold across the entire data space.

Prostate MRS is a non-invasive imaging technique used to detect changes in
the concentration of the specific metabolites (choline, creatine and citrate) which
have been shown to be representative of prostate cancer (CaP). Peak detection
algorithms to automatically determine metabolite peaks have been found to be
sensitive to presence of noise and other biomedical signal artifacts. In [6] we pre-
sented a novel hierarchical clustering algorithm employing NLDR to automatically
distinguish between normal and diseased spectra within the prostate. In this pa-
per, we apply the newly developed C-LLE algorithm to distinguishing between
benign and cancerous MR spectra on a total of 18 studies and compare C-LLE’s
performance with LLE and 3 other state of the art MRS analysis methods. A sec-
ondary contribution of this work is the use of Independent Component Analysis
(ICA) to (a) automatically determine search ranges within which to perform peak
detection, and (b) validating the clusters obtained via C-LLE.
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2 Consensus-Locally Linear Embedding (C-LLE)

2.1 Issues with LLE

The objective behind LLE is to non-linearly map objects ¢,d € C' that are
adjacent in the M dimensional ambient space (F(c), F(d)) to adjacent locations
in the low dimensional embedding (S(c), S(d)), where (S(c), S(d)) represent the
m-dimensional dominant eigen vectors corresponding to ¢,d (m << M). If d
is in the x neighborhood of ¢ € C, then ¢,d € C are assumed to be linearly
related. LLE attempts to non-linearly project each F(c) to S(c) so that the s
neighborhood of ¢ € C' is preserved. LLE is sensitive to the choice of k since
different values of k will result in different low dimensional data representations.

2.2 Relationship between C-LLE and Bagging Classifiers

The aim behind constructing ensemble classifiers such as Bagging [5] is to re-
duce the variance and bias across weak classifiers. In Bagging [5], for an input
object ¢ € C, a sequence of weak predictors ¢(c, Si) are generated from K boot-
strapped training sets Sy where 1 < k < K. A strong Bagged classifier $%%9(c)
is obtained by averaging or voting over the multiple weak classifiers ¢(c, S),
k € {1,....K}. An analogous idea is used for C-LLE whereby we combine sev-
eral weak embeddings, Sy (c) across different values of x € {1,....K} to obtain a
comprehensive stable low dimensional data embedding, with lower variance and
bias compared to individual weak embeddings. Our hypothesis is that for any
¢,d € C, the pairwise object distance in the low dimensional space is faithfully
represented in the stable consensus embedding S(c), for ¢ € C.

2.3 Maximum Likelihood Estimation (MLE) of Object Adjacency

The spirit behind C-LLE is the direct determination of pairwise object adjacen-
cies in the low dimensional embedding space as opposed to k estimation. For
each ¢, d the aim is to find the true distance D¥ (¢, d) between ¢,d € C' in some
lower dimensional embedding space, where 1) is an appropriately defined distance
metric. Given multiple lower dimensional embeddings, the distance between ¢, d
can be expressed as a distribution D, (¢, d) where for brevity the metric notation
has been dropped. The problem of determining f)(c7 d) can be posed as a MLE
problem. Thus we can rewrite this problem as,

K
plep|D) = [[ p(DulD); Ve, d € C, (1)

k=1

where ¢p is a set of low dimensional distance estimates between ¢,d € C, and
based on the assumption that the lower dimensional embeddings obtained for
k € {1,..K} are independent. We endeavor to find the MLE of D, D that
maximizes In p(pp|D) for ¢,d € C. Intuitively this corresponds to computing
the peak (mode) of the distribution p(pp|D).
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2.4 Algorithm for C-LLE

Step 1. Multiple lower dimensional embeddings are generated by vary-
ing x € {1,..K} using LLE. Each embedding S,;(¢) will hence represent adja-
cencies between objects ¢;,¢c; € C,i,j € {1,...|C|}, where |C| is the cardinality
of C. Thus ||Sk(c;) — Sk(c;)||y will vary as a function of k.

Step 2. Obtain MLE of pairwise object adjacency: A confusion matrix
W, € RICIXICI representing the adjacency between any two objects c;,c; €
C,i,5 € {1,...,]C|} in the lower dimensional embedding representation S (c) is
calculated as:

Wi(i,j) = Dilci, ¢j) = [[Sx(ci) = Selei)lly, » (2)

where ¢;,¢; € C, for 4,5 € {1,...,|C|},k € {1,..., K}, and v in our case is the
L2 norm. MLE of Dy(c;, ¢;) is estimated as the mode of all adjacency values in
W, (i, j) over all k. This D for all ¢ € C is then used to obtain the new confusion
matrix W.

Step 3. Multidimensional scaling (MDS): MDS [7] is applied to W to
achieve the final combined embedding S(c) for ¢ € C. MDS is implemented as
a linear method that preserves the Euclidean geometry between each pair of
objects ¢;,¢; € C,i,j € {1,...,|C|}. This is done by finding optimal positions
for the data points ¢;, ¢; in lower-dimensional space through minimization of the
least squares error in the input pairwise distances in w.

3 Prostate Cancer Detection on MRS Via C-LLE

3.1 Notation

We define a spectral scene C = (C, f) where C is a 3D grid of spatial locations.
For each spatial location ¢; € C,i € {1,...,|C|}, there is an associated 256-
dimensional valued spectral vector F(c) = [fu(c) | v € {1,...,256}], where f,(c)
represents the concentration of different biochemicals (such as creatine, citrate,
and choline) at every spatial location c.

3.2 Data Description

A total of 18 1.5 T in wvivo endorectal T2-weighted MRI and MRS ACRIN
studied] were obtained prior to prostatectomy. Partial ground truth for the CaP
extent on MR studies is available in the form of approximate sextant locations
and sizes for each study. The maximum diameter of the tumor is also recorded in
each of the 6 prostate sextants (left base, left midgland, left apex, right base, right
midgland, right apex). The tumor size and sextant locations were used to identify
a potential cancer space used for performing a semi-quantitative evaluation of
our CAD scheme. Additional details on identifying this cancer space are provided

in [6].

! http : //www.acrin.org/6659 protocol.html
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Input MRS data Multiple data embeddings, Obtain adjacencies between ¢; and ¢;
Fle)=[f(c)\ue {1,..256)] [|Sdc)ke(1,..K} for F(c),ce CPI Wi, j) =Il S(ci)— Si(ci)ll v
v
Consensus clgstering on S(c), §(d) MDS on Wtf) obtain stable Obtain W(i, 7) mode of
to classify ¢,d € Cinto [“—| . cmbedding space T Wi, j), to obtain “true” object
distinct classes S(c), S(d), for ¢,de C adjacency between i and

Fig. 1. Flowchart showing the C-LLE algorithm and consensus clustering scheme for
CaP detection on prostate MRS

3.3 C-LLE and Consensus Clustering for CaP Detection on MRS

Figure 1 shows the flowchart demonstrating the different steps comprising our
prostate MRS detection scheme. The adjacency matrix (W) is constructed across
K embeddings of the MR spectral space so that for any ¢;,c; € C, where 7, j €
{1,...|C|}, W,(3, j) represents the distribution Dy (c;, ¢;) of the low dimensional
distance between MR spectra F(c;), F(c;), for k € {1,...K}. As described in
Section 2.4, the stable spectral distance matrix W is then obtained and MDS
applied to obtain the stable embedding representation of the spectra, S (¢) for
each c € C.

To overcome the instability associated with centroid based clustering algo-
rithms, we generate multiple weak clusterings V;*, V;2, V3t € {0,...,T} by
repeated application of k-means clustering on the combined low dimensional
manifold S(c), for all ¢ € C. We assume that each prostate spectra could be
classified as one of the three classes: cancer, benign and other tissue classes
(e.g. benign hyperplasia (BPH)). Each cluster, V; is a set of objects which has
been assigned the same class label by the k-means clustering algorithm. As the
number of elements in each cluster tends to change for each such iteration of k-
means, we calculate a co-association matrix H with the underlying assumption
that objects belonging to a natural cluster are very likely to be co-located in the
same cluster for each iteration. Co-occurrences of pairs of objects c;,¢; € C' in
the same cluster V; are hence taken as votes for their association. H (i, j) thus
represents the number of times ¢;,¢; € C, for ¢,j € {1,...|C|}, were found in
the same cluster over T iterations. We apply MDS [7] to H followed by a fi-
nal unsupervised classification using k-means, to obtain the final stable clusters
Vv Ve,

In the following two sections we describe 3 other commonly used MRS analysis
schemes.

3.4 Model Based Peak Integration Scheme Via Independent
Component Analysis (ICA)

Peak detection on prostate MRS is a difficult problem due to noise and spec-
tral contributions from extra-prostatic regions. A secondary contribution of this
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paper is a model based approach to localize choline, creatine and citrate peaks
based on Independent Component Analysis (ICA). ICA is a multivariate decom-
position technique which linearly transforms the observed data into statistically
maximally independent components (ICs). For a set of voxels identified offline
as cancer, Xc.p, C C, we obtain A independent components FI¢ o € {1,...A}
which represent spectral contributions of choline, creatine and citrate for prostate
cancer. The parts per million (ppm) ranges (Vee, Ver) on the X-axis are then
learnt for choline+creatine and citrate from F1¢ a € {1,...A}. Peak detection
is then performed on C to identify choline, creatine and citrate peaks within
the ranges v.. and v.,.. Area under the choline+creatine peak (V..) and under
citrate peak (V) is obtained via integration for all voxels ¢ € C. Zakian index
(v(e)) [§ is then calculated as the ratio of Ve.(¢)/Ver(c). A pre-defined threshold
determined by radiologists [§] is used to classify the spectra as cancer/benign
based on y(¢) for ¢ € C.

3.5 2z-Score and Principal Component Analysis (PCA)

z-scoreis astatistical measure defined as the ratio of the difference between the pop-
ulation mean and individual score to the population standard deviation. For a set
of voxels, " of ¢, #'" C C, the mean spectral vector F* = [f/|u € {1,..256}]is ob-
tained and the corresponding standard deviation vector F7 = [f7|u € {1, ...256}],

where ffl = |q§1m~| Zceqﬁtr fu(c) and f = \/|¢1tr | Zceqf'”‘ [fu(c) - f”(c)]Q' The z-
_ IF(e)=F"2
[1F7]2
&', A predefined threshold 6, is then used to identify each ¢ € C' as cancerous or
not based on whether z(¢) > 6,. PCA attempts to find the orthogonal axes that
contain the greatest amount of variance in the data using eigenvalue decomposi-
tion. Similar to our C-LLE scheme, each ¢ € C'is described by 5 principal com-
ponents, S¥C4(¢) which contain 98% of the data variance. Consensus clustering is
then applied on S¥¢4(¢), to cluster each ¢ € C into one of 3 classes.

score at each ¢ € C'is given as z(c) , where |®'"| is the cardinality of

4 Results and Discussion

4.1 Qualitative Results

Figure 2 shows CaP detection results on a prostate MRS study via C-LLE, LLE,
PCA, z-score, and ICA based peak detection. Figures 2(a)-(c) show the com-
parison of C-LLE (c) with LLE for (a) x = 5, and (b) x = 7 on a single 2D T2
weighted MRI slice. Figures 2(d), (e), (f) show the clustering results obtained
via ICA peak detection, z-score and PCA respectively. At each spatial location
on the MRI slice a spectral signature was analyzed and that corresponding lo-
cation was assigned one of 3 colors (for C-LLE, PCA) and one of the two colors
(for z-score, ICA based peak detection) based on clustering/classifier results.
The white box superposed on 2(a)-(f) show the potential cancer space for cor-
responding slices. In each of Figures 2(a)-(f) the red cluster represents the one
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(e) (h) (i)

Fig. 2. Clustering results for (a) LLE (k = 5), (b) LLE (k = 7), (¢) C-LLE, (d) ICA
based peak detection, (e) z-score, and (f) PCA. The white box superposed on the
T2 MR image corresponds to the ground truth region. In each image the red cluster
corresponds to the locations identified as cancer by each of the methods. Figure 3(g)
Typical CaP MR spectra, (h) IC obtained from clusters identified as CaP in C-LLE,
and (i) corresponding IC obtained via PCA.

(d)

Choline

Creatine

e

identified as cancer by each of the different methods. Note in Figure 2(c) that
the C-LLE result shows excellent sensitivity and specificity and also appears to
reduce the variance and instability in the individual weak embeddings shown
in 2(a), (b). Figures 2(d)-(f) corresponding to results obtained via ICA-based
peak detection, z-score method and PCA respectively, show low sensitivity and
specificity compared to our C-LLE scheme (Figure 2(c)). To assess the validity of
C-LLE and PCA, we employed ICA to isolate independent components (IC) from
clusters identified as CaP by the two schemes. Figure 2(h) shows an IC obtained
from the cluster identified as CaP by C-LLE (shown as red in 2(c)); Figure 2(i)
shows the corresponding result obtained via PCA. Note the strong correlation
between the ICs obtained via C-LLE (2(g)) and a known CaP MRS signature
2(h) according to the 5-point scale defined in [9]. Note also the dissimilarity
between the spectra obtained by PCA and shown in 2(i) compared to those in

2(g),(h).
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4.2 Quantitative Results

Table 1 shows average CaP detection sensitivity and specificity over 18 studies
obtained from C-LLE (m = 4), ICA based peak detection, PCA and z-score. Ta-
ble 1 (b) shows the sensitivity and specificity results averaged across 18 datasets
for C-LLE (m = 3,4,5) compared to LLE by varying the number of dimensions.
Note that the C-LLE scheme has a higher sensitivity and specificity across all
dimensions which suggests the efficacy of the scheme. The effectiveness of our
scheme for detection of prostate cancer is evident from the quantitative results
(Table 1) with both sensitivity and specificity of close to 87% and 85% respec-
tively compared to current state of the art methods peak detection, PCA and
z-score. Table 1(b) reveals that C-LLE consistently outperforms traditional LLE
across multiple dimensions (m = 3,4, 5).

Table 1. (a) Average CaP detection Sensitivity and Specificity of C-LLE (m = 4),
compared to ICA based peak detection, z-score, and PCA, averaged over a total of 18
MRS studies using the top 7 eigen values. Table 1(b). Average CaP detection Sensitivity
and Specificity results of C-LLE compared to LLE for dimensions 3, 4 and 5.

Method  Sensitivity Specificity ™ Sensitivity Specificity
C-LLE 86.90 85.14 C-LLE LLE C-LLE LLE
Peak detection  45.29 76.62 3 83.20 82.07 84.81 81.89
PCA 66.95 77.89 4 86.90 83.38 85.14 81.77
z-score 74.74 49.75 5 84.88 82.10 85.60 81.70
(a) (b)

5 Concluding Remarks

In this paper we presented a novel C-LLE algorithm which aims to overcome
the limitations of traditional LLE by obtaining a stable low dimensional repre-
sentation of high dimensional data by integrating object adjacencies from across
multiple low dimensional unstable data projections. The spirit behind C-LLE,
is rooted in the classifier ensembles literature where multiple weak classifiers
with high variance and bias are combined to create a strong classifier with low
bias and variance. Experimental results demonstrate excellent performance of
our algorithm for CaP detection on prostate MRS compared to ICA based peak
detection scheme, PCA, z-score, and traditional LLE. One issue we have not
addressed in this work is the intrinsic dimensionality at which to combine the
multiple weak embeddings in C-LLE. While, C-LLE is computationally more
expensive compared to traditional LLE, it is not computationally prohibitive
except for very large or dense datasets. In future work we will address some of
these issues and also explore the applicability of C-LLE to other classification
problems.
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