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Abstract. In this paper, we propose a generic framework for inter-
subject non-linear registration of 4D time-series images. In this frame-
work, spatio-temporal registration is defined by mapping trajectories of
physical points as opposed to spatial registration that solely aims at map-
ping homologous points. First, we determine the trajectories we want to
register in each sequence using a motion tracking algorithm based on
the Diffeomorphic Demons algorithm. Then, we perform simultaneously
pairwise registrations of corresponding time-points with the constraint
to map the same physical points over time. We show this trajectory
registration can be formulated as a multichannel registration of 3D im-
ages. We solve it using the Diffeomorphic Demons algorithm extended to
vector-valued 3D images. This framework is applied to the inter-subject
non-linear registration of 4D cardiac CT sequences.

1 Introduction

In the last decade, the improvement of medical imaging technologies extended
3D volume acquisitions to 4D time-series volume data such as Cine MRI, Tagged
MRI, 4D CT or 4D ultrasound. They give access to additional information im-
portant for studying the motion of organs (such as cardiac and pulmonary) or
for real-time control during image-guided surgical procedures. Since the tem-
poral dimension cannot be considered as an additional spatial dimension, the
extension of 3D image processing tools to 4D data is not obvious. Thus, the
development of specific algorithms for spatio-temporal data is necessary such as
segmentation [1], tracking [2,3], temporal alignment [4,5] and spatio-temporal
alignment [6,4]. This last task has been widely studied for multi-view camera
registration but mainly limited to linear transformations [6]. Perperidis et al. [4]
proposed a spatio-temporal non-linear alignment algorithm where they deter-
mine a single average free-form deformation between two cardiac sequences for
building probabilistic atlas of shape and motion. In such case, due to the cardiac
motion, the mapping between voxels at corresponding times has no real phys-
ical meaning. In order to correctly handle cardiac motion, a time-dependent
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non-linear transformation is needed to generate an exact mapping between ho-
mologous physical points. Furthermore, to ensure a mapping of the same physical
points over the entire sequence, the transformation has to be temporally con-
sistent with the motion occurring in both sequences and needs to, hence, map
homologous trajectories.

In this paper, we propose a registration framework based on trajectory con-
straints : the trajectories estimated from the motion tracking in each sequence
constrain the mapping to the same physical point over the entire sequence. We
start by introducing concepts about spatio-temporal pairwise registration. Un-
der trajectory constraints, spatio-temporal registration can be formulated as a
multichannel spatial registration. We solve it by proposing a novel multichannel
version of the Diffeomorphic Demons algorithm. Finally, we apply this framework
to the inter-subject registration of two 4D cardiac CT sequences.

2 Trajectory Constrained 4D Registration

2.1 Spatio-temporal Registration

Let Ω × τ ⊂ R
3 × R be the acquisition space-time of the reference time-series

of images I, and Ω′ × τ ′ ⊂ R
3 × R the acquisition space-time in the target

time-series of images I ′.

I : Ω × τ −→ R I ′ : Ω′ × τ ′ −→ R

(x, t) �−→ I(x, t) (x′, t′) �−→ I ′(x′, t′)

When registering the target sequence I ′ to the reference sequence I, the spatio-
temporal transformation S that maps a spatio-temporal position (x, t) of I to
the corresponding spatio-temporal position (x′, t′) of I ′ must be found:

S : Ω × τ −→ Ω′ × τ ′

(x, t) �−→ S(x, t) = (x′, t′)

The spatio-temporal transformation S is a combination of a spatial transfor-
mation x′ = Sspace(x, t) and a temporal transformation t′ = Stime(x, t). We make
the reasonable assumption that the temporal transformation Stime is only time
dependent : t′ = Stime(t). This transformation is determined by the temporal
registration of some quantities that may not be intensity-based. For instance, in
cardiac imaging one can use the ECG or the volume curves of the left ventricle
as proposed by Perperidis et al. [4]. This temporal transformation Stime can be
computed after the spatial transformation Sspace as long as the acquisition time
intervals τ and τ ′ exactly overlap. This can be performed by a global affine tem-
poral transformation that is often implicitly performed in 4D cardiac sequences
acquired from the end of diastole (ED) of a cardiac cycle to the end of diastole
of the next cycle. Without loss of generality, we can assume that both sequences
are already temporally aligned to perform the spatial registration.

The temporal discretization of the 4D registration is illustrated in Fig. 1 where
the spatial transformations Sj maps the reference volume Ij to the target volume
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Fig. 1. [Left] Discretization of the 4D registration with the shape transformations
Sj between the sequences and the motion transformations Mj,j+1 and M ′

j,j+1 between
consecutive frames of a sequence at a given time tj ; [Right] The simultaneous regis-
tration of two pairs of images through the transformations S1 and S2 knowing the
transformations T and T ′ can be formulated as a multichannel registration where S2

is computed from S1 to satisfy the trajectory constraint: S2 = T ′ ◦ S1 ◦ T−1

I ′j at time tj knowing the trajectories of points given by the motion tracking
Mj,j+1 and M ′

j,j+1 between the times tj and tj+1 respectively in the reference
and target sequences. In the remainder, we formulate the 4D image registration
as the minimization of a functional that includes trajectory constraints.

2.2 Including Trajectory Constraints

To be physically meaningful when determining the time-dependent spatial trans-
formation Sspace, the same physical points should be mapped at different time
points in both sequences. Using the notations introduced in the previous section,
this is equivalent to stating that if a point x in image Ij maps a point x′ in I ′j by
shape transformation Sj , then the remaining shape transformations Sj+1 should
map the displaced point Mj,j+1(x) to the displaced point M ′

j,j+1(x
′). This trans-

lates into a set of constraints that link the shape transformations Sj and Sk to
the motion transformations Mj,k from Ij to Ik and M ′

j,k from I ′j to I ′k :

Sk ◦ Mj,k = M ′
j,k ◦ Sj (1)

When determining the shape transformation Sj , the classical approach is to
minimize the image similarity measure between image Ij and I ′j :

S3D
j = argmin

S

(∫
ν∈Γj

Sim( Ij(ν), I ′j ◦ S(ν) ) dν

)
(2)
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We call this shape transformation S3D
j the solution to the 3D registration prob-

lem that only involves one pair of images (Ij , I
′
j). To take into account the

fact that Sj should map homologous point trajectories and not only homolo-
gous points, the trajectory constraints of Equation 1 should be satisfied. Those
constraints may be reformulated as Sk = M ′

j,k ◦ Sj ◦ M−1
j,k which may be in-

terpreted as follows : to satisfy the trajectory constraints, the transformation
M ′

j,k ◦Sj ◦M−1
j,k should map image Ik into image I ′k. Therefore, we minimize the

following functional to determine the 4D shape transformation S4D
j :

S4D
j = argmin

S

⎛
⎜⎜⎝

∫
ν∈Γj

Sim( Ij(ν), I ′j ◦ S(ν) ) dν +
∑
k �=j

∫
ν∈Γk

Sim( Ik(ν), I ′k ◦ M ′
j,k ◦ S ◦ M−1

j,k (ν) ) dν

⎞
⎟⎟⎠

Making the following change of variable ν = Mj,k(ω), the 4D shape registration
can be formulated as the minimization of similarity criterion between several
pairs of images (cf. Fig. 1):

S4D
j = argmin

S

⎛
⎜⎜⎝

∫
ν∈Γj

Sim( Ij(ν), I ′j ◦ S(ν) ) dν +
∑
k �=j

∫
ω∈Λj

Sim( Jj,k(ω), J ′
j,k ◦ S(ω) )|Jac(Mj,k)(ω)| dω

⎞
⎟⎟⎠ (3)

where Jj,k = Ij ◦Mj,k and J ′
j,k = I ′j ◦M ′

j,k are respectively the images at frame
k transformed into the geometry of the image at frame j in the reference and
target sequences, Λj ∈ Γj is part of image Ij and Jac(Mj,k) is the Jacobian
of transformation Mj,k. In other words, the shape transformation S4D

j must
optimize the sum of similarity criteria between the pair of images (Ij , I

′
j) and all

pairs of images (Jj,k, J ′
j,k). Note also that Jac(Mj,k) appears to take into account

volume change of voxels when transforming Ik (resp. I ′k) into Jj,k (resp. J ′
j,k)

and acts as a voxel-wise confidence map in each similarity criterion.
Therefore, we have shown that including trajectory constraints in the esti-

mation of the shape registrations Sj transforms a 4D registration problem into
a 3D multichannel registration problem associated with pair of images (Ik, I ′k)
transformed in the space of images Ij and I ′j . A novel multichannel registration
algorithm based on the Diffeomorphic Demons is presented in the next section.

3 Multichannel Diffeomorphic Demons

The Demons algorithm [7] based on optical flow registers the target 3D volume
V ′ to the reference 3D volume V determining an update vector field u of the
current transformation S that minimizes the energy:

E(u) =
1

2|Ω|
∫

ω∈Ω

∥∥∥∥∥
[
V (ω) − V ′ ◦ S(ω)

0

]
+

[
JT (ω)
σ(ω)
σx

Id

]
.u(ω)

∥∥∥∥∥
2

α(ω) dω
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where Ω is the overlap between V and V ′ ◦ S, ω is the voxel position, J is the
gradient vector in the reference image V , σx is the spatial uncertainty on the
correspondences, and α the voxel-wise confidence map. A closed form solution

of this minimization is given by the update vector field u = − V − V ′

JT .J + σ2

σ2
x

J.

The Diffeomorphic Demons algorithm [8] constrains the deformation field to
be diffeomorphic by projecting the update vector field to the one-parameter
subgroup of diffeomorphisms with stationary speed vector fields.

An extension of the Demons algorithm to multichannel registration was pro-
posed for DT-MRI registration based on transformation invariant tensor charac-
teristics [9]. The update vector field is computed independently for each channel
and then averaged. With this approach, the averaging approximates the coupling
between the channels. Yeo et al. [10] preserved their coupling by extending the
Demons algorithm to vector-valued images. They also included the finite-strain
differential to take into account the reorientation of diffusion tensors. In our
case, we work on data that do not need to be reoriented, but we include a voxel-
wise confidence map for each channel. Thus, we can formulate the multichannel
Demons functional as follows:

E(u)=
N∑

j=1

(
1

2|Ωj |
∫

ω∈Ωj

∥∥∥∥∥
[
Vj(ω) − V ′

j ◦ S(ω)
0

]
+

[
JT

j (ω)
σj(ω)

σx
Id

]
.u(ω)

∥∥∥∥∥
2

αj(ω) dω

)

where N is the number of channels, Ωj is the overlap between Vj and V ′
j , Jj is

the gradient vector in the reference image Vj , and αj > 0 the voxel-wise confi-
dence map for channel j. Its minimization gives the following equation to solve

at each voxel
∑N

j=1 αj(Jj .JT
j + σ2

j

σ2
x
Id) u = −∑N

j=1 αj(Vj − V ′
j ◦ S) Jj . Con-

sidering the eigen decomposition
∑3

i=1 λ2
i ei.eT

i of the 3 × 3 symmetric positive

matrix D =
∑N

j=1 αjJj .JT
j , the update vector field becomes u =

3∑
i=1

Pi

λ2
i + σ2

σ2
x

ei,

where Pi =
(∑N

j=1 αj(Vj − V ′
j ◦ S) JT

j

)
.ei and σ2 =

∑N
j=1 αjσ

2
j . The coupling

between channels relies on the eigen decomposition of the sum D of the dyadic
tensors αjJj .JT

j .

4 Experiments on Cardiac CT Sequences

We apply this framework to a pair of 4D cardiac CT sequences acquired at a
spatial resolution of 0.825 × 0.825 × 1.00 mm3 with 256 × 256 × 231 voxels.
The temporal acquisition is synchronized to the ECG from ED over a cardiac
cycle with 20 frames. Given this acquisition process, the affine temporal registra-
tion between both sequences is already performed. We performed an anisotropic
smoothing and downsampled the data to 1.65×1.65×3.0 mm3 with 128×128×64
voxels while preserving the temporal resolution. The Diffeomorphic Demons [8]
is performed on pairs of successive frames to determine each motion transforma-
tions Mj,k and M ′

j,k in the reference and target sequences. The transformation
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Fig. 2. Cumulated histograms over the entire sequence for the 3D (dashed red curve)
and 4D (continuous blue curve) registrations: [Left] Trajectory deviations between two
different paths (in mm); [Right] Absolute intensity differences after registration

Fig. 3. Results of 4D registration at ED (Top Row) and ES (Bottom Row): [Left]
Reference sequence; [Center] Target sequence before registration; [Right] Target se-
quence after registration. Segmentations of the endocardium (continuous white lines)
are computed in the reference sequence and overlayed over the reference sequence and
the transformed target sequence to illustrate the quality of the registration.

S4D
1 is computed under trajectory constraints following Equation 3. Once S4D

1 is
computed, we can determine the other Sj satisfying the trajectory constraints:
S4D

j = M ′
1,j◦S4D

1 ◦M−1
1,j . We compared this 4D method to the 3D approach with a

direct and independent registration of corresponding frames based on Equation 2
and optimized with the Diffeomorphic Demons. On a biprocessor Dual-Core @
1.86 GHz with 3 GB RAM, the computation time of direct 3D registration of 20
frames is about 20 minutes. The 4D registration is about 50 minutes, mainly due
to the computation of the tracking (about 20 minutes in each sequence). Both
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Fig. 4. To visualize the trajectories deviation, segmentations of endocardium and
epicardium at the initial time of the reference sequence are propagated to the initial
time of the target sequence through different paths of transformations S1 and Tj for j >
1. [Top Row] The diagram shows the different paths used to propagate the segmentation
from I1 to I ′

1; [Bottom Row] The transformed segmentations using the transformations
S4D

j from 4D registration (continuous white lines) are more consistent than the ones
using the transformations S3D

j from 3D registration (continuous brown lines).

approaches are highly parallelizable. Fig. 2 compares their performances using
two metrics: one for the trajectory constraint and one for the image similarity
between I ′j and Ij ◦Sj . For the trajectory constraint, we measure the trajectory
deviations ‖S1(ν) − Tj(ν)‖ between two different paths from I1 to I ′1 through
transformations S1 and Ti = M ′−1

1,j ◦ Sj ◦ M1,j as shown in Fig. 4. We accumu-
late it in a histogram for all transformations Tj. Our method clearly improves
the consistency of the transformations over the sequence through the trajectory
constraints (mean value 0.20 mm for 4D and 2.79 mm for 3D), whereas the
error of intensity similarities slightly increases due to the compromise between
trajectory and intensity constraints. In Fig. 3, we show the reference, target and
transformed target images at two different time points: end of diastole (ED)
and end of systole (ES). The segmentations of the endocardium and epicardium
in the reference images are overlayed over the reference and transformed tar-
get images to visualize the quality of the registration. The segmentations in the
transformed target image fit the structures segmented in the reference sequence.
We further illustrate in Fig. 4 these results by tracking the segmentation of the
endocardium and epicardium at the initial frame of the reference sequence. These
segmentations are then transformed to the initial frame of the target sequence
using different paths through transformations T1 = S1 and Tj for j > 1 as shown
in the diagram of Fig. 4. The tracking of the segmentations using 4D registra-
tion transformations S4D

j shows a lower dispersion than using 3D registration
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transformations S3D
j . This observation is highly significant in low gradient area

where the tracking regularizes the inter-subject registration.

5 Discussion

We proposed a framework for the spatio-temporal registration of 4D sequences
(or any time-series images such as longitudinal studies) that non-linearly matches
corresponding frames of the sequences and preserves the homology between phys-
ical points over time. In this way, the trajectory constraints act as a regular-
ization of shape transformations consistent with motion transformations. The
temporal registration strategy still remains to be studied for a complete spatio-
temporal alignment. The statistical analysis of the motion and shape transforma-
tions across a population would help for a better understanding of inter-subject
cardiac motion and shape variabilities.
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