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Abstract. With the advance of whole-body medical imaging technolo-
gies, computer aided detection/diagnosis (CAD) is being scaled up to
deal with multiple organs or anatomical structures simultaneously. Mul-
tiple tasks (organ detection/segmentation) in a CAD system are of-
ten highly dependent due to the anatomical context within a human
body. In this paper, we propose a method to schedule multi-organ de-
tection/segmentation based on information theory. The central idea is
to schedule tasks in an order that each operation achieves maximum ex-
pected information gain. The scheduling rule is formulated to embed two
intuitive principles: (1) a task with higher confidence tends to be sched-
uled earlier; (2) a task with higher predictive power for other tasks tends
to be scheduled earlier. More specifically, task dependency is modeled by
conditional probability; the outcome of each task is assumed to be prob-
abilistic as well; and the scheduling criterion is based on the reduction of
the summed conditional entropy over all tasks. The validation is carried
out on two challenging CAD problems, multi-organ detection in whole-
body CT and liver segmentation in PET-CT. Compared to unscheduled
and ad hoc scheduled organ detection/segmentation, our scheduled exe-
cution achieves higher accuracy with faster speed.

1 Introduction

Whole-body Computed Tomography (CT), Positron Emission Tomography
(PET) and Magnetic Resonance (MR) scanning is being accepted for various
clinical applications across different organs, e.g., assessment of cancer metasta-
sis in lymph nodes [I] or bones [2], evaluation of the extent and distribution of
polymyositis [3], and detection of ankylosing spondylitis [4]. While whole-body
scans reveal comprehensive anatomical/functional information of human body,
the vast amount of image data makes the detection of potential disease burden-
some. Accordingly, computer aided detection/diagnosis (CAD) at a whole body
level becomes more desirable to provide useful “second opinions” to radiologists.
In practical clinical applications, whole-body CAD is required to detect/segment
multiple organs or anatomical structures in limited time. (For simplicity, we de-
note organ detection/segmentation as “task” in the remainder of this paper.)
Due to the anatomical context within a human body, the dependency between
tasks can be exploited to increase the efficiency and performance of CAD sys-
tems. For example, the relatively easier task of femoral head localization in CT
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Fig.1. (Left) A representative abdominal CT image. The blue arrow points to an
artificial metal “femoral head”. The red arrows point to suspicious abdominal lymph
node clusters, which are often close to the iliac bifurcation of the aorta. (Right) Liver
model with critical anatomical landmarks.
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(bone is very bright in CT) will facilitate a quick and accurate localization of
the iliac bifurcation of the aorta, which in turn greatly help the detection and
identification of abdominal lymph node clusters .

One way to principally exploit such dependency is to model it as a scheduling
problem. Due to the unique nature of human anatomy, the scheduling problem
of whole-body CAD has three characteristics. First, the scheduling problem is
highly flexible. The accuracy and speed of whole-body CAD, however, is signifi-
cantly different with different schedules. Second, due to missing data, artifacts or
diseases, the scheduler of whole-body CAD must be an active one. In other words,
the scheduling must be adaptive to the specific patient data at the runtime. Re-
fer to the previous example, in general cases, the detector of iliac bifurcation
should be fired next to the “femoral head localization”. However, as shown in
Fig. [ for a patient who has an artificial metal femoral head, the femoral head
detector might not detect it correctly. In this situation, instead of firing the “iliac
bifurcation detector”, the scheduler should trigger the detectors of other organs,
e.g., kidneys, which can be localized accurately without the inference of femoral
heads. Third, the probabilistic factors influence organ detection/segmentation in
two aspects: (1) tasks are often statistically dependent, as the relative locations
of organs are not deterministic; and (2) the outcome of tasks usually embeds
uncertainties.

Although scheduling problems have been extensively studied in different re-
search areas (A brief review will be presented in section ), the existing meth-
ods can not be directly borrowed to schedule organ detection/segmentation in
whole-body CAD, due to the aforementioned unique characteristics. In this pa-
per, we propose to study the scheduling problem of whole-body CAD from an
information theoretic view. In this framework, tasks are modeled as a set of mea-
surements that aim to achieve the diagnostic information from medical images.
(In this paper, “task”, “measurement” and “operation” share the same meaning
by default.) The principle is to schedule tasks in an order that is optimal in an
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information-theoretic sense. More specifically, we explore the gauge of informa-
tion gain to define the scheduling criterion. Based on this criterion, a sequential
decision making process is employed to schedule tasks in whole-body CAD.

2 Related Work

In the last several decades, the topics of scheduling have been extensively stud-
ied in the areas of operation research [5] and theoretical computer science [6].
Many scheduling rules/methods were proposed to deal with scheduling problems
in various applications, including manufacturing, service industries, transporta-
tion and practical computer systems, etc.. While earlier studies mainly focus on
deterministic systems, more researchers move to flexible and stochastic systems
recently. In [7], the scheduling policies for flexible systems are investigated. That
paper analyzes an open processing network model with discretionary routing and
showed, in general, unbalanced workload routing with priority sequencing gives
better performance than a balanced one. In [§], Chou et al. studied a stochas-
tic single machine problem, where the actual processing time of tasks are not
known until processing is completed. They proved that when task processing
times are mutually independent random variables, weighted shortest expected
processing time among available jobs heuristic is asymptotically optimal for the
single-machine problem. Although these scheduling problems share one or sev-
eral features with that of whole-body CAD, neither of them account all the
aforementioned characteristics of whole-body CAD.

3 Method

3.1 Problem Statement

From an information theoretic view, the scheduling of whole-body CAD is akin to
an extensively studied topic in computer vision, active object recognition. Recall
the previous example, the whole-body CAD aims to gain diagnostic information
(Do the abdominal lymph node clusters exist? Where are they?) through a set
of measurements (femoral heads localization, iliac bifurcation localization and
lymph node clusters detection). It is in analogy to active object recognition,
which aims to identify objects (information) by collecting pictures with dif-
ferent sensor parameters (measurements). Indeed, information theory has been
successfully employed in active object recognition. In Denzlers et al.’s pioneer
work[9], an information theoretic formalism is proposed to select optimal sensor
parameter during iterative state estimation. The benefits of the method were
demonstrated in an object recognition application using an active camera. Al-
though this method is not an off-shelf method to schedule tasks in whole-body
CAD, it inspired us to consider our problem from an information theoretic way.

A whole-body CAD system aims to obtain diagnostic information, by execut-
ing a set of organ detection/segmentation. The diagnostic information is pre-
sented by a set of variables {x;}, e.g., the locations of the organs under study.



316 Y. Zhan et al.

Each task (organ detection/segmentation) in whole-body CAD actually delivers
a measurement y; to decrease the ambiguity of {z;}. Notably, y; usually belongs
to {z;}. In a more general sense, however, y; can be out of {z;}. For example,
y; can be a variable representing the center of a template with multiple organs,
which is not interested by the CAD system but is helpful to organ localization.

From an information theoretic view, the optimal schedule becomes a task se-
quence that maximally gains diagnostic information, i.e., maximally decreases
the uncertainty of {z;}.) Therefore, we model the scheduling problem as a se-
quential decision making process. (Although the sequential process might not
obtain global optimal solution, it has run-time efficiency that is important to
CAD.) At each step, the decision is: “Given the current measurements, what is
the next y;, upon measurement, gains most diagnostic information?”

3.2 Scheduling Criterion Based on Information Gain

Assume that {z;} are the variables of interest for a CAD system. The distri-
bution of y; is ¥ prior to the measurement process. After the measurement, its
distribution shrinks, or changes in general, to @. According to the information
theory [I0], the information gain after this particular measurement of y; is:

1Gy, = 3 (H il €0) — [ Haily; € P)ply)ay) (1)

Here we use the expression y; € ¥ to mean “y; has the support ¥” or “y;
has the distribution ¥”. And H(z;|ly; € ¥) and H(x;|y; € @) are conditional
entropies defined in the following form:

Ay e @) == [ ply) [ Hy)dndy 2

- / p(y;) / p(aily;) log p(aily;)dmidy;  (3)
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If y; is taken from the set {xz;}, the first term in Eq. () goes away because it
becomes constant for all ;. In general, however, we can have y;’s outside of
{z;}. Then, Eq. () is meaningful in its complete form.

The basic principle of our IG-based scheduling rule is that a particular mea-
surement operation y;- € {y;} will be preferred over others if it delivers a max-
imal value for IG. The justification behind this principle is described as follows.
According to Eq. (), information gain is determined by three factors: (1) the
support of y; before measurement, ¥, (2) the measurement uncertainty of y;, @,
and (3) the dependency between y; and {z;}, p(z;|y;). Indeed, it is the interplay
of all these three factors that determine the speed and the accuracy of multiple
organ detection/segmentation. Importantly, since information gain embeds all
probabilistic factors that influence the speed and performance of whole-body
CAD, the IG-based scheduling method is expected to achieve better perfor-
mance than ad hoc strategies, such as “pick the most confident operation first”
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or “pick the task that other tasks mostly depend on”. In Fig. Bl we present a
rather simplified but intuitive example to show the effectiveness of the IG-based
scheduling criterion. In this example, the system aims to localize four organs:
carina of trachea, left femoral head, right femoral head and L1 vertebra. The de-
pendency between different organ localization is modeled by the relative spatial
locations between different organs. More specifically, the positions of the local-
ized organs are used to estimate the positions of the remaining ones to reduce
the search range of organ localizers. Let us assume the carina of trachea has
been localized. As shown in Figl2 (a), the estimated position of the L1 vertebra
has the minimum support (denoted by the red dashed ellipses). If we use an ad
hoc schedule strategy that prefers the task having the minimum support, the
next organ to be localized should be the L1 vertebra. However, since the neigh-
boring anatomical structures, e.g., the L2 and the T12 vertebra, usually have
similar appearance as L1, the L1 localizer has large uncertainty in the vertical
direction (Gaussian-fitted uncertainty is denoted by the blue dashed ellipses in
Figl (a)) and gets the wrong result (denoted by the red point in Fig. I (a)).
In other words, the “uncertain” measurement of L1 is not expected to deliver
large information gain. According to our /G-based scheduling criterion, instead,
the two femoral heads that have stronger “shrink” from ¥ to & are preferred
as the next organs to be localized. (The supports of ¥ and @ in Eq. () are
defined by the red and blue dashed ellipses in Fig. I (a), respectively.) After
localizing the two femoral heads, the support of the “un-measured” L1 vertebra
is significantly reduced (denoted by the red dashed ellipses in FigPl (b)) and the
localizer is able to successfully localize it (denoted by the green point in Fig.
(b)) without being confused by L2 or T12 vertebra.
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To effectively evaluate Eq. (), we employ a Monte-Carlo simulation method.
Instead of estimating the conditional probability density function, we sample
the conditional entropy using p.d.fs that describes detection/segmentation un-
certainty and probabilistic relations between different tasks. As all of these p.d.fs
can be learned off-line, the Monte Carlo simulation method has run-time effi-
ciency in evaluating information gain.

4 Results

We start the validation from a relatively uniform task set, the localization of
multiple organs in whole-body CT images. In this system, each organ is local-
ized by a generic, learning-based localizer. (The learning-based localizer is a 3D
extension of Viola and Jones’s detection method [I1] with expanded feature sets.
The details of the localizer are omitted due to the limited space.) The depen-
dency between organ localization is modeled by the spatial relations between
different organs. More specifically, the positions of the localized organs are used
to estimate the positions of the remaining ones to reduce the search range of
organ localizers. The uncertainty of the organ localizers (¥(.) in Eq. (), and
the spatial relations between different organs are learned from 40 training sam-
ples. Multi-variant Gaussian distribution is used to model the estimation and
localization uncertainty.

The experiment is carried out to localize of six organs (carina of trachea,
L1 vertebra, left kidney, right kidney, left femoral head, right femoral head)
from 18 whole-body CT scans (resolution:0.927mm x 0.927mm x 2.5mm). We
compare the speed and the accuracy using three different scheduling methods:
(1) Unscheduled independent organ localization, (2) Ad hoc scheduled organ
localization (The ad hoc scheduling rule prefers the organ whose location is most
correlated with other organs.), and (3) IG-based scheduled organ localization.
As shown in Fig. @l and Table [l our method achieves the best accuracy with the
fast speed.

In the second set of experiments, our scheduling method is carried onto an-
other CAD problem: liver segmentation in PET-CT scans. To initialize the de-
formable model, our method detects seven anatomical landmarks as shown in
Fig. ). Here, each task is the detection of an individual landmark. Again, the

Table 1. Quantitative comparison of organ localization error

Unscheduled Ad hoc Scheduled  IG-based Scheduled
organ localization organ localization organ localization
Avg. Max Avg. Max Avg. Max
Err. (mm) Err. (mm) Err. (mm) Err. (mm) Err. (mm) Err. (mm)
Trachea Carina 1.97 4.20 2.02 7.14 1.97 4.20
Femoral Head 4.47 10.40 4.67 11.08 4.60 9.96
Kidney 9.98 19.66 9.15 21.09 8.97 19.00

L1 Vertebra 5.58 36.00 5.47 36.85 3.37 7.03
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organ localization using different schedul-
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generic learning-based landmark detectors and the modeling of the dependency
between different tasks are similar to the first experiment.

The experiment is carried on 40 whole-body CT scans (CT resolution: 1.36mm
x 1.36mm x 5mm, PET resolution: 5.3mm x 5.3mm x 5mm). We found the
IG-based scheduling method is actually adaptive to image data. As shown in
Fig. Bl the relative locations between the detected hepatic dome and left lobe
lateral seg. are different in two scans. Based on the prediction from two detected
landmarks, the estimated position (prior distribution) of right lobe posterior
seg. has more compact support in case 1 (Fig. [Bh). “Localization of right lobe
anterior seg.” is thus expected to achieve less information gain in case 2 than in
case 1. Therefore, while the detection order in case 1 is “...—right lobe ante-
rior seg.—right lobe posterior seg.”, the detection order in case 2 becomes
“...—right lobe posterior seg.—right lobe anterior seg.”. The quantitative
comparison is shown in Fig. @l and [l Again, our method is superior to other two
in terms of detection accuracy and speed.
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Fig. 6. Quantitative comparison of the localization of multiple liver landmarks using
different scheduling methods. (Left) Average landmark detection error of 40 PET-CT
cases. (Right) Maximum landmark detection error of 40 PET-CT cases.
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5 Conclusions

In this paper, we proposed a rigorous formula to address the scheduling prob-
lem of multi-organ detection/segmentation in whole-body CAD. The key idea is
to schedule tasks in an order that each operation achieves maximum expected
information gain over all the tasks. Our method has two major advantages in
scheduling multiple organ detection/segmentation. First, various probabilistic
factors that influence the performance and speed of whole-body CAD are in-
corporated in the scheduling criterion. Therefore, the scheduled system is able
to achieve more accurate results with less computational cost. Second, in our
scheduling method, the next task is always determined based on current system
status. Accordingly, the whole-body CAD is scheduled in an active way and
thus adaptive to different patient images. Experimental results showed that our
method achieves the best performance with fastest speed. Due to the generality
of this framework, we plan to extend this method to CAD systems with more
complicated task set.
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