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Abstract. We present a fast, interactive method for separating bones
that have been collectively segmented from a CT volume. Given user-
provided seed points, the method computes the separation as a multi-
way cut on a weighted graph constructed from the binary, segmented
volume. By properly designing and weighting the graph, we show that
the resulting cut can accurately be placed at bone-interfaces using only a
small number of seed points even when the data is noisy. The method has
been implemented with an interactive graphical interface, and used to
separate the 12 human foot bones in 10 CT volumes. The interactive tool
produced compatible result with a ground-truth separation, generated
by a completely manual labelling procedure, while reducing the human
interaction time from a mean of 2.4 hours per volume in manual labelling
down to approximately 18 minutes.

1 Introduction

Segmenting bone tissues from CT volumes is a common and important opera-
tion in various applications, including the measurement of bone mineral density
(BMD). A number of different methodology have been reported for bone segmen-
tation (see a recent survey in [1]). Due to the relatively higher tissue density of
bones (especially cortical and trabecular bones) than other surrounding tissues,
intensity thresholding [2,3] or edge-detection [4,5] are among the most common
approaches in segmenting cortical and trabecular bones in a CT volume. A typ-
ical result of segmentation is shown in Figure 1 (b) for a CT scan of a foot in
(a), segmented by edge-filtering on each transverse slice [5].

Unfortunately, the segmented CT volume using thresholding or edge detection
often cannot be directly used for bone analysis, such as BMD measurement,
which requires delineation of the complete boundary for each individual bone.
The bones in this segmentation (Figure 1 (b)) often exhibit incomplete interiors,
due to bone marrow and the lower density trabecular bone, and neighboring
bones are often connected.

A number of methods can be used for filling the bone interior in a seg-
mented CT volume, notably morphological closing followed by contour filling
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Fig. 1. Bone separation in a segmented CT volume. (a): A transverse slice of a CT
volume. (b): The slice after an edge-detection-based segmentation. (c): The slice after
individual bones (colored differently) are separated in the segmented volume.

[3] or connected-component analysis [2]. In contrast, methods for separating out
each individual bone has been scarce at best. Westin et. al. [2] applied tensor-
filtering to the grayscale CT volume before performing intensity thresholding.
While the number of connections between bones are reduced using this approach,
connections may still exist. Kang et. al. [3] proposed to use a special bone mask
customized to the shape of the bone, such as the femoral head. However, creat-
ing masks for bones with less distinctive shapes (such as cuneiform) and large
inter-subject variability can be as challenging as the separation task itself. In
our experience, bone separation in the human foot where many connections ex-
ist (see Figure 1 (b)) is a labor-intensive process, even with the help of existing
software that provide automated image processing capabilities such as finding
connected-components. In our clinical setting, separating 12 bones in a human
foot from a CT volume by going through each transverse slice and manually
separate voxels belonging to different bones takes an average of 2.4 hours.

In this paper, we propose a fast, interactive method for separating segmented
bones using a graph cut approach. Although graph cut algorithms have been
successfully employed for interactive object/background segmentation [6] and
multiple-objects labelling [7] in grayscale images, the success has largely relied
on the change in image intensity or texture on the interface between the object
and background or between neighboring objects. These assumptions do not hold
for bones in a grayscale CT volume, which exhibit an inhomogeneous texture that
is often indistinguishable from the texture at their interfaces (Figure 1 (a)). Here
we show how graph cut, when applied to a segmented CT volume represented
as a weighted graph, can yield accurate bone separation with a small amount
of user input. The key component of this algorithm is a novel graph weighting
function that captures the density of connections among neighboring voxels in
a binary volume. An example result of our algorithm is shown in Figure 1 (c).

Based on the algorithm, we developed an interactive user-interface for bone
separation. The tool simplifies the tedious manual process of bone-labeling on
each slice to only placing one or more seed points on each bone. In our ex-
periment with separating the 12 bones in a human foot, we observed that the
use of the tool yields compatible results with our previous, completely manual
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labelling approach, while reducing the time needed for human intervention from
2.4 hours to approximately 18 minutes per volume. Such reduction is a significant
improvement in practice.

2 The Method

We consider a segmented CT volume as a binary volume where each voxel is
classified as either an object or background. The goal is to identify disjoint sets
of object voxels that belong to each individual bone. Our key observation is that
the connections between a bone and its neighboring tissues are usually fewer and
sparser than those that constitute the bone itself (Figure 1 (b)). To identify each
bone, we represent the collection of all object voxels as nodes in a graph where
neighboring voxels are connected by graph edges. Given a set of seed voxels each
labelled as one of the bones, we set up and solve a multi-way graph cut problem
whose solution is a partitioning of the graph into multiple subsets, one for each
individual bone.

In the following, we first review the multi-way graph cut problem and classical
solutions to this problem. Then we present graph construction from a segmented
CT volume, and in particular, two ways to improve an initial, un-weighted graph
with the goal that the computed cut in the graph is likely to be placed at bone-
interfaces. Finally, we present a user-interface that utilizes the algorithm for
interactive bone separation.

2.1 The Multi-way Graph Cut Problem and Solutions

Here we consider a weighted undirected graph G(V, E), where V is a set of nodes
and E is a set of edges, each connecting two nodes in V and associated with a
weight. Given a set T ⊆ V of k terminal nodes, a multi-way cut is a subset of
edges C ⊆ E such that no path exists between any two nodes of T in the residue
graph G(V, E \ C). The multi-way cut problem aims at finding the cut C with
the minimal size |C|, computed as the sum of edge weights in the cut. Intuitively,
a multi-way cut disconnects all terminal nodes in the way that involves the least
amount of change to the graph.

When k = 2, the 2-way cut problem can be solved by a polynomial time
method, notably the Ford-Fulkerson algorithm [8]. However, the general multi-
way cut problem when k ≥ 3 is known to be NP-hard [9]. Several polynomial-
time algorithms have been proposed to compute a near-minimal cut with varying
approximation accuracy [9,10,11]. In our implementation, we adopt the combi-
natoric isolation algorithm of Dahlhaus et. al. [9] that computes the multiple-
way cut as the union of 2-way cuts, each disconnecting one terminal node
from the others. The heuristic, while simple, achieves a provable 2 − 2

k ap-
proximation ratio. To compute each 2-way cut, we adopt an efficient imple-
mentation of the Ford-Fulkerson algorithm [12] that maintains a breadth-first
search tree.
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Fig. 2. (a): The 6 neighbors of a voxel x. (b): A voxel face. (c): A voxel cell.

2.2 Multi-way Graph Cut for Bone Separation

To construct the graph from a segmented CT volume, we create one node for each
object voxel and connect two nodes representing neighboring object voxels by
an edge. We adopt the classical 6-connectivity from digital topology [13], where
each 3D voxel may have maximally 6 spatial neighbors (as illustrated in Figure
2 (a)). To apply the multi-way cut, we ask the user to provide a small number
of object voxels (called seeds), each labelled as one of the k desired bones. Note
that for each bone, the user may specify more than one seeds with that label
(which are useful for dealing with noisy inputs, see Section 3). For each label
i ∈ [1, k], we create one terminal node ti and connect it to all seeds with that
label (Figure 3 (a)). Denoting the graph as G(V, E) and the multi-way cut as C,
voxels belonging to the ith bone are identified as the set of non-terminal nodes
in V that are connected to ti in the residual graph G(V, E \ C) (Figure 3 (b)).

In order for multi-way cuts to be placed at bone-interfaces, the initial graph
structure needs to be further adjusted and weighted. Below we present two spe-
cific modifications to the initial, un-weighted graph constructed above:

Seed expansion: Note that if only a single seed voxel is provided for each bone,
the resulting cuts will most likely enclose just the seed itself due to the small
number of edges (≤ 6) connected to a voxel. To resolve this problem without
requiring the user to specify a large number of seeds, we automatically expand
from a seed voxel x provided by the user to label all voxels connected to x via
a path in the graph of length ≤ α as seeds of the same label, where α is a
user-defined parameter.

Edge weighting: The weighting of the graph edges directly influences the place-
ment of the optimal cut. To ensure that each seed retains its label after the cut,
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Fig. 3. (a): A graph with 3 labelled seeds (2 red and 1 blue) and 2 augmented terminals
t1, t2. (b): Removing cut edge C partitions the graph into two labelled components.
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Fig. 4. The effect of edge-weighting on graph cut: (a) The input volume with two seeds
on two slices. (b) Separation as a result of graph cut on a uniformly weighted graph.
(c) Improved cut using non-uniform weighting that correctly separates the metatarsal
2 (green) from cuneiform 2 (blue).

edges connecting seeds and terminal nodes will be associated with an infinitely
large weight. For the remaining edges in the graph that connect neighboring
voxels, a straight-forward approach is to associate each edge with a same pos-
itive weight. The resulting cuts of this uniform weighting scheme essentially
minimize the number of edges in the cut, and therefore likely to reside at the
bone-interfaces when the connections between bones are few. However, we have
observed that it is not uncommon for the number of connections between two
bones to exceed those at a cross-section of one of the bones, causing the cut to
be misplaced in the middle of that bone, as shown in Figure 4 (b).

For more robust separation, we adopt a different, non-uniform weighting
scheme to prevent cuts in the middle of a bone. The key observation is that
the voxels in the cortical bone usually form a contiguous, shell-like shape, while
connections between bones are typically sparsely located. As a result, a weight-
ing scheme that gives larger weights to edges that are more densely surrounded
by other edges would favor the cuts between the bones. In practice, we charac-
terized the local density of edges by the presence of voxel faces and voxel cells,
as shown in Figure 2 (b,c). A voxel face is a group of 4 neighboring voxels that
form a square, and a voxel cell is a group of 8 neighboring voxels that form a
cube. To compute the weight at a graph edge that connects two voxels x, y, we
use a simple linear sum w0 +w1 ∗ f + w2 ∗ c of the number of voxel faces, f , and
voxel cells, c, that contain both voxels x, y, where wj are pre-defined parameters.
In our tests, the non-uniform weighting scheme effectively avoids cuts through
the middle of cortical bones. In the example of Figure 4 (c), the improved cut
correctly separates the metatarsal 2 (green) from cuneiform 2 (blue).

2.3 Interactive Tool

Using the proposed method, we have developed an interactive tool for simulta-
neous separation of multiple bones in a segmented CT volume (Figure 5 left).
Given an input volume, the user first places one or more seeds for each bone, by
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Fig. 5. The interactive tool for bone segmentation (left), where 5 seeds are placed on
one transverse slice, other slices (middle) on which the user placed the seeds, and the
color utilized to delineate each bone (right)

Fig. 6. A transverse slice (left) and a sagittal slice (right) before and after interactive
separation using the seeds shown in Figure 5

“painting” the voxel on a 2D slice with a color associated with that bone. The
tool then automatically computes a separation between the bones and displays
the voxels colored by their corresponding labels (Figure 6 (b,d)). The user can
further adjust the result by labelling more voxels on the input volume, and the
separation will be updated using the expanded set of seeds.

3 Results and Validation

We tested the method and the graphical tool’s ability to separate the 12 human
mid-foot bones that have been collectively segmented from CT scans. The 12
bones and their corresponding color labels are shown on the right of Figure 5.
We used parameters α = 8 and {w0, w1, w2} = {1, 4, 16} for graph construction.
These parameters were selected empirically using one CT volume, and used for
all volumes. All tests were performed on a PC with 2GHz CPU and 2GB memory.
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Fig. 7. The tool allows the user to interactively add new seeds when the initial sepa-
ration is unsatisfactory. See Section 3.

We found that a reasonable separation of the majority of the bones can be
achieved in most volumes by using only 1 seed per bone plus a number of back-
ground seeds (gray-colored in Slice 87 and 318 of Figure 5) that indicate the
non-bone tissues. The top images in Figure 6 show the separation result, viewed
from a transverse and a sagittal slice, using just the seeds shown in Figure 5. In
the close-up views of the bone interface between metatarsal 4 (blue) and cuboid
(green) at the bottom of Figure 6, the arrows on the transverse and sagittal slice
point to the same voxel in 3D. While it is difficult even for a human user to de-
termine what bone this voxel belongs to by only examining the transverse slice,
the algorithm makes a correct decision by considering the full 3D connectivity.

Figure 7 demonstrates incremental improvement of separation using the tool.
Here, the second-to-left column shows two consecutive slices of the initial sepa-
ration computed from the seeds shown in Figure 5. Note that the cut between
metatarsal 2 (green) and cuneiform 3 (red) has been incorrectly placed in the
proximal end of metatarsal 2, due to a strong connection between the two bones
there in the input volume and the weak connection within the cortical shell
for the proximal end of metatarsal 2. After providing one more seed (middle
column), the new cut is placed at the desired location (middle-right column).

The tool was tested with two users in 3 different sessions on 10 CT vol-
umes (e.g., one of the users processed the volumes twice at different times), and
the results were compared with that of a prior process where a user manually
separated bone voxels on each transverse slice (Table 1). The error between an
interactively separated volume, I, and the ground truth volume, M , is computed
using the Dice’s coefficient [14] 1 − 2|I∩M|

|I|+|M| , where |I| is the number of labelled
voxels in I and I ∩ M is the number of object voxels that have the same bone
label in both I and M . The maximum error among all 10 CT volumes is less than
1.5% with no more than 0.25% differences between sessions. The main source
of this error arises from the fact that the separation of neighboring bones can
be achieved by either removing the voxels between them (Figure 1 (c) bottom
right) or labelling these voxels to be one of the bones (Figure 1 (c) top right).
Such choices are automatically determined by the graph-cut algorithm in our
interactive tool, but have been made subjectively by the human operator when
creating the ground-truth volume.
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Table 1. Accuracy of interactive separation of 12 bones in 10 CT volumes performed
by 2 users in 3 different sessions (T1,T2,T3), compared to ground truth, slice-by-slice
manual separation

ID Dimension # Object # Seeds Error # Seeds Error # Seeds Error Max
Voxels T1 T1 T2 T2 T3 T3 Diff.

1 180×352×204 478788 30 0.90% 28 0.82% 29 0.85% 0.08%
2 176×383×215 515706 28 0.78% 28 0.94% 31 0.95% 0.17%
3 169×407×176 463207 25 0.71% 27 0.72% 32 0.68% 0.04%
4 179×373×169 430627 32 0.72% 36 0.85% 44 0.77% 0.13%
5 193×450×153 598157 29 1.32% 31 1.26% 35 1.32% 0.06%
6 193×336×216 480429 40 0.99% 29 0.74% 27 0.91% 0.25%
7 160×361×214 518369 41 0.94% 29 0.99% 32 1.16% 0.22%
8 216×388×177 468017 24 0.74% 29 0.79% 27 0.75% 0.05%
9 184×379×165 807342 42 1.43% 41 1.46% 47 1.30% 0.16%
10 166×447×172 602184 46 1.04% 34 1.20% 43 1.24% 0.20%

The key advantage of the interactive tool versus manual separation is the
efficiency, as the user only needs to provide < 50 seed voxels in the whole volume,
in contrast to manually separating individual bones on every transverse slice.
Using the tool, all 3 sessions took less than 3 hours for all 10 volumes (e.g.,
approximately 18 minutes per volume), while the manual labelling that generated
the ground truth took approximately 1.5 to 3 hours for each volume.

4 Conclusion

We presented a graph-cut method for interactive separation of bones that have
been collectively segmented from a CT volume. The core of the method is a novel
construction of a weighted graph from a binary volume so that the computed
multi-way cuts properly reside on the bone interfaces. The resulting tool has been
shown to be effective in segmenting practical data while dramatically reducing
the human labor in this process. The method can be used as a pre-process to
existing approaches [2,3] that further fill the interior of individual bones.
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