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Abstract. We present a method for automatic localization and rough
segmentation of the left ventricle blood pool in cardiac cine magnetic
resonance images. The method first detects the whole heart using time-
based Fourier analysis. It then segments the left ventricle blood pool by
grouping connected components across slices using isoperimetric cluster-
ing. The system was tested on 253 datasets and failed in only 2 cases.

1 Introduction

Cardiovascular disease has become the largest cause of death in the modern
world and is an important health concern. Imaging technologies such as magnetic
resonance (MR) imaging allow physicians to non-invasely observe the behavior of
the heart. Physicians are particularly interested in the left ventricle (LV) because
it pumps oxygenated blood out to the rest of the body. Ideally, they would like to
quantify the volume of the blood pool over time and estimate its ejection fraction,
cardiac output, peak ejection rate, filling rate, and myocardial thickening. These
quantities are easy to compute once the left ventricle is outlined in all images.
Manual outlining is very cumbersome however, and most physicians limit it
to the end-diastolic and end-systolic phases. This allows the system to calculate
ejection fraction and cardiac output, but it is not enough information to estimate
peak ejection rate or filling rate. Therefore, for complete patient care, it is very
important to provide an automatic segmentation system.

This paper is concerned with the localization of the LV blood pool in the
images of the 3D+T dataset (10 slices with 20 phases on the average). This is
an important problem because the localized blood pool can be used to initialize
a more elaborate LV segmentation algorithm. Therefore, the solution should be
very robust. It is a difficult problem because MR intensities are not consistent
across acquisitions and blood pixels cannot easily be identified in the images. In
addition, most acquisitions cover slices beyond the LV itself to guarantee that
it is seen in all phases. This means that some slices can be below the apex and
contain no blood pool, and some slices can be above the mitral valve and contain
the left atrium blood pool.

There has been many publications in the field of cardiac MR image segmen-
tation. Some researchers have constructed models to help in the initialization
process. Lorenzo-Valdés et al. [1] use a 4D probabilistic atlas of the heart and
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a 3D intensity template which they propose to register to the ED frame to lo-
calize the left and right ventricles. Mitchell et al. [2] use a hybrid active shape
and appearance model and locate the heart using the Hough transform. Un-
fortunately, both these methods are too slow for clinical practice. In addition,
models have difficulty capturing variability outside the training sets. This means
that pathological cases which fall outside the standard set of shapes might not
be recognized and appearance models have to be re-trained for new acquisi-
tion protocols and sequences. The solution proposed by Jolly [3] is faster, and
actually used in clinical practice, but it still depends on a learned appearance
represented by a Markov chain. Kaus et al. [4] combine a statistical model with
coupled mesh surfaces. They originally had 169 datasets for testing but had to
drop 48 of them because they exhibited breathing artifacts and through-plane
motion which violated their model continuity assumption. They initialize their
model by assuming that the heart is located in the center of the image which is
definitely not a valid assumption.

To avoid the restriction imposed by a model, other researchers have chosen
to use simple image processing techniques. These solutions however have been
minimally tested [5,6] and tend to be less robust. Cocosco et al. [7] make a very
restricting assumption that the coverage of the short-axis image stack should
stop at the mitral valve and not go into the atrium. This is quite unreasonable
as physicians tend to increase the coverage of the image stack to correct for
potential motion after the acquisition of the localizer images and make sure that
the LV is completely seen during all phases. Indeed, in 5 of their 32 cases, the
top slice extended into the atrium and the algorithm could not separate the LV
from the right ventricle (RV) without user intervention at the mitral valve. Lin
et al. [8] also use simple image processing techniques and report only one failure
out of 330 cases. This is the type of outstanding performance that is required
for clinical practice. Unfortunately, we were not able to reproduce their results
on our noisier datasets.

In this paper, we propose a new method to automatically detect and roughly
segment the LV blood pool. We do not make any assumption on the quality of the
acquisition or position of the heart in the images. First, the heart is localized in
the images using motion information. Second, the LV blood pool is localized and
roughly segmented within the heart. We tested our algorithm on 253 datasets
and compared it with Argus (commercialized by Siemens Medical Solutions).
Note that the goal of this work is not to segment the LV in all the images, but
just to recover it in enough slices to be able to initialize a more sophisticated
segmentation process.

2 Heart Localization

The first part of the algorithm consists in localizing the heart in the images
and generating a region of interest to be used in the rest of the processing. We
follow the recommendation from Lin et al. [8] and compute the first harmonic of
the Fourier transform over time for each slice. These Hs

1 (x, y) images highlight
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Fig. 1. Automatic heart localization: first row: first harmonic of the Fourier transform
with the region extracted after 3D line fitting and distant artifact removal; second row:
white connected components were kept and gray ones were discarded; third row: region
of interest localizing the heart

the moving structures (cardiac chambers and great vessels). We then want to
eliminate the distant moving artifacts. As in [8], a 3D line is fitted through the
2D centroids of the Hs

1 images. Then, the distances weighted by the Hs
1(x, y)

values are histogrammed and thresholded to remove the farthest points. This
procedure is repeated until the 3D centroid of the Hs

1 images becomes stable.
Then, for each slice, we compute the average response Hs

1 of the first harmonic.
Each Hs

1(x, y) image is thresholded at 2Hs
1 to retain only the strongly moving

areas. Connected components (CC) are extracted and the next step consists of
grouping them between slices to generate regions of interest that are consistent in
space. To this end, the CC with largest average motion (Hs

1 (x, y) over all pixels)
is identified in each slice and the relative motion of the other CCs is computed. In
the same manner, we compute the relative size of each CC. The confidence is then
defined as the relative motion times the relative size. The CCs with smallest confi-
dence are removed one at a time until a slice containing a single CC (denoted Ĉ) is
identified. In the other slices, the 2D overlap between each CC and Ĉ is computed
and the confidence becomes the relative size times this overlap. Connected com-
ponents with a confidence lower than 0.1 are discarded. The final region of interest
(ROI) is defined as the convex hull of the retained CCs in each of the slices.

Fig. 1 shows the process of heart localization on the first phase of the 9 slices
of an example dataset. The first row shows the first harmonic image with the
region that was extracted after 3D line fitting and distant artifact removal. The
second row shows the connected components (the gray ones had low confidence
and were discarded). Finally, the third row shows the detected ROI.

3 Left Ventricle Blood Pool Segmentation

In the second part of the algorithm, the system isolates the blood pool of the
left ventricle inside the region of interest. The process is divided into 2 steps:
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1) thresholding and connected component analysis, and 2) clustering to find the
best set of connected components to describe the blood pool.

In the first step, each slice is processed one at a time. The images are thresh-
olded inside the ROIs using Otsu’s algorithm [9]. Then, the bright pixels are
grouped into connected components. Here, we decided to extract 2D+T con-
nected components for each slice rather than the 3D+T connected components
proposed by Cocosco et al. [7] because the first slices of many of our datasets
contained the left atrium (LA). If we had built 3D+T connected components,
the bright pixels of the LV would have been connected above to the bright pixels
of the LA which would have been connected below to the bright pixels of the
RV, and the left and right ventricles would have been connected. With 2D+T
connected components, the LV and RV are connected only in the mitral valve
slice. This first steps highlights bright objects in the regions of interest, usually
the LV blood pool, the RV blood pool, the aorta and other noisy regions.

In the second step, we want to group connected components between slices and
identify the group that corresponds to the LV blood pool. For the grouping, we
use the isoperimetric clustering algorithm proposed by Grady and Schwarz [10].
The goal of the algorithm is to partition a weighted graph by minimizing the
perimeter to area ratio (i.e.: the isoperimetric ratio h(S) = |∂S|

|S| ). A graph is
a pair G = (V, E) with vertices v ∈ V and edges e ∈ E ⊆ V × V . An edge
between two vertices vi and vj is denoted eij . In our case, the 4 largest connected
components in each slice are each associated with a vertex in the graph and edges
are defined between vertices in neighboring slices.

Let Ap(vi) be the area in phase p of the connected component associated with
vertex vi. Let Am(vi) and AM (vi) be the minimum and maximum areas over
time, respectively. For each connected component, the following measures are
computed:

1) Shrinking: S(vi) = Am(vi)
AM (vi)

, the amount that the object contracts over time.
2) Roundness: R(vi), the ratio of the smallest eigenvalue to the largest eigen-

value in 2D principal components analysis in each phase, averaged over time.
3) Connectedness: C(vi), connected components when observed in each phase

can be composed of multiple pieces. The relative size of each of these pieces
is denoted rj

p(vi), j = 1, ..., ni. Then, C(vi) = 1
P

∑P
p=1

∑ni

j=1 rj
p(vi).

4) Concavity: D(vi), the maximum distance (normalized between 0 and 1) be-
tween the object and its convex hull, averaged over time.

Finally, the overall confidence of a connected component is defined as L(vi) =
1
50S(vi)(1 − R(vi))C(vi)10(1 − D(vi))10.

Edge weights, denoted w(eij), should indicate the similarity between vertices.
The normalized area of a connected component in phase p is defined as ap(vi) =
Ap(vi)−Am(vi)
AM (vi)−Am(vi)

. For each pair of connected components in neighboring slices, the
following measures are computed:

1) Overlap: O(vi, vj), the intersection of the two 2D+T CCs divided by their
union (if O(vi, vj) < 0.001, the edge eij is discarded).
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Fig. 2. Results of the LV blood pool recovery: first row: 2D+T connected components
in the first phase of each slice, second row: contours for the LV blood pool cluster

Fig. 3. Graph and isoperimetric clustering for LV blood pool recovery. The edge weights
are multiplied by 10000 and the connected component confidences are multiplied by
100. Each column of vertices corresponds to a slice. The vertices and corresponding
connected components in Fig. 2 have the same gray color.

2) Distance: D(vi, vj), the distance between the centers of the CCs averaged
over time.

3) Resemblance of their area-time curves: T (vi, vj) = 1
P

∑
p ‖ap(vi) − ap(vj)‖.

4) Difference in size: S(vi, vj) = 1
P

∑
p max(1,

Ap(vi)
Ap(vj) ) where vi is on the slice

below vj , it is expected that the components get smaller as they go down
the slices closer to the apex, so S(vi, vj) should stay close to 1 for CCs in
the LV blood pool.

The edge cost is then defined as c(vi, vj) = D(vi,vj)T (vi,vj)S(vi,vj)
O(vi,vj)

L(vi)L(vj) and
the edge weight is w(eij) = 1

c(vi,vj)
.

The isoperimetric clustering algorithm is as follows. Let x be an indicator
vector which takes a binary value at each vertex and encodes the partition S:

xi =
{

0 if vi ∈ S,
1 if vi ∈ S.

Then, the perimeter and area of the partition are defined as

|∂S| = xT Lx and |S| = xT 1,

where 1 is the unit vector and L is the Laplacian matrix defined as
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Lij =

⎧
⎨

⎩

di if i = j,
−w(eij) if eij ∈ E,
0 otherwise.

and di =
∑

eij

w(eij).

The indicator vector is recovered by solving the linear system Lx = 1 which
results in a real-valued solution for x. This can be converted to a binary partition
by ranking the xi’s and choosing the threshold which yields the minimum value
for the isoperimetric ratio h(S). We choose the ground node as the center of
the graph, i.e.: the vertex for which the shortest path to the farthest vertex is
the smallest, which can easily be recovered using Floyd-Warshall’s algorithm.
This performs better to recover elongated clusters rather than the node with the
largest degree as suggested in [10]. The graph is recursively partitioned until the
isoperimetric ratio of the subpartitions is larger than a stopping criterion.

Once the clustering is determined, the blood pool cluster should be large
and its connected components should shrink nicely over time, should be round,
and should contain one main piece in each phase. The clusters are ranked in
decreasing order of size, and we examine at least the first two clusters, as well as
any cluster as large as the first two and any cluster of size larger than 3. We then
choose the cluster K̂ for which the function 1

N2
K

∑
vi∈K L′(vi) is minimum, where

NK is the number of vertices in cluster K and L′(vi) = S(vi)(1−R(vi))C(vi)10 is
the confidence of a connected component. The 2D convex hulls of the connected
components in K̂ define the left ventricle blood pool.

Fig. 2 shows an example of the blood pool recovery. The first row shows the
connected components and the second row shows the segmented LV blood pool.
The graph that was constructed along with edge weights w(eij) and confidences
L′(vi) is shown in Fig. 3. The partitions are shown in dashed lines and the LV
blood pool partition in a dotted line.

4 Experiments

We collected 253 datasets from 20 different clinical sites around the world. These
datasets include both patients and volunteers and were all acquired on Siemens
MR scanners. They contained between 2 and 16 slices, with an average of 10
slices and between 7 and 75 phases, with an average of 20 phases. 125 (49%)
datasets started above the mitral valve plane, 7 (3%) of which were well inside
the atrium and 72 (28%) datasets ended below the apex.

We ran the algorithm on all the datasets. For an average dataset of 200 images,
the whole process (implemented in non-optimized C++) takes 8 seconds on a
dual core laptop. By visual inspection, we consider that the algorithm succeeds
if the resulting contours are around the blood pool in some slices in the dataset.
We observed only 2 failures out of the 253 datasets. Both cases are shown in
Fig. 4. In the first case, the strongest cluster corresponded to the aorta. In the
second case, the system picked a totally wrong structure which was included in
the region of interest due to some motion artifacts.

In most cases, no LV was segmented in the first and last slices. This was
expected since the first slice was often above the mitral valve and the last slice
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Fig. 4. The 2 failures out of 253 datasets for the blood pool segmentation algorithm

Fig. 5. Normalized number of segmented slices

(a) (b) (c) (d) (e)

Fig. 6. Good results despite: (a) Large motion artifacts; (b) Not perfectly round LV
blood pool; (c) Non contracting blood pool; (d) Heart not in the center of the image;
(e) Very thin septum

was often below the apex. Fig. 5 shows the distribution of the normalized number
of slices in which the LV was roughly segmented. On the average, the LV was
localized in 63% of the slices. This is more than adequate to initialize a refined
segmentation algorithm.

Some of the datasets were provided to us as failure cases from Argus, the
commercial package from Siemens Medical Solutions (described in [3]). For 16
datasets, Argus was not able to locate the LV, and for 25 others, it identified
another structure as the LV, thus causing 41 (16%) failures in total. When
the system performs a fully automatic segmentation and identifies the wrong
structure, the user has to redo the segmentation for the entire dataset, which
can be very time consuming. This happened for 10% of the cases with Argus
and for only 0.8% of the cases with our solution.

To illustrate the robustness of our method, Fig. 6 shows some examples of
good results when some of the traditional assumptions are violated. In Fig. 6(a),
there is a large motion artifact (streak at the bottom of the image). Fig. 6(b)
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shows that the LV blood pool is not always round. In Fig. 6(c) the blood pool
does not contract much at ES (right) compared to ED (left). Fig. 6(d) shows that
the heart is not always in the center of the image. In Fig. 6(e), the myocardium
is very thin in the septum.

5 Conclusions

We have proposed a system to localize and roughly segment the left ventricular
blood pool in cardiac cine MR images. In the first phase, the algorithm uses a
time-based Fourier analysis to identify the moving heart. In the second phase,
isoperimetric clustering is used to group 2D+T connected components and form
the left ventricle blood pool. Even though the system uses simple image segmen-
tation techniques, we have demonstrated on many different datasets that it is
very robust.

At this time, we are focusing on segmenting both the endocardium (more
accurately and in all slices) and the epicardium so that clinically meaningful
measurements can be computed. In the near future, we will see if the same tech-
nique can be used to localize the right ventricle. Indeed, it can be seen in Figs. 2
and 3 that the other large cluster containing 6 vertices actually corresponds to
the right ventricle.
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