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Abstract. This study investigates overlap priors for tracking the Left
Ventricle (LV) endo- and epicardium boundaries in cardiac Magnetic
Resonance (MR) sequences. It consists of evolving two curves follow-
ing the Euler-Lagrange minimization of two functionals each containing
an original overlap prior constraint. The latter measures the conformity
of the overlap between the nonparametric (kernel-based) intensity dis-
tributions within the three target regions–LV cavity, myocardium and
background–to a prior learned from a given segmentation of the first
frame. The Bhattacharyya coefficient is used as an overlap measure. Dif-
ferent from existing intensity-driven constraints, the overlap priors do
not assume implicitly that the overlap between the distributions within
different regions has to be minimal. Although neither shape priors nor
curve coupling were used, quantitative evaluation showed that the results
correlate well with independent manual segmentations and the method
compares favorably with other recent methods. The overlap priors lead
to a LV tracking which is more versatile than existing methods because
the solution is not bounded to the shape/intensity characteristics of a
training set. We also demonstrate experimentally that the used overlap
measures are approximately constant over a cardiac sequence.

1 Introduction

Tracking the Left Ventricle (LV) endo- and epicardium boundaries in cardiac
Magnetic Resonance (MR) sequences plays an essential role in diagnosing car-
diovascular diseases. It consists of segmenting each frame into three regions: LV
cavity, myocardium and background. Manual tracing is time-consuming. There-
fore, an automatic tracking is desired. Although several techniques have ad-
dressed this task [2]–[7], [9]–[11], accurate LV tracking is still acknowledged as
a difficult problem because of the overlap between the intensity distributions
within the cardiac regions (cf. the typical example in Fig. 1), the lack of edge
information and the intensity/shape variability from one patient to another [10].

As discussed by Freedman et al. in [15], most of existing methods in medical
image segmentation compute a pixelwise correspondence between the current
image (or frame) and model distributions of shape and appearance (or intensity).
Model distributions are generally learned from a training set and embedded in
the segmentation via two standard frameworks: variational level-sets [1] (such
as [2]–[7]) and active appearance/shape models [8] (such as [9]–[11]).
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In the level-set framework [2]–[7], the problem is commonly stated as the min-
imization of a functional containing two constraints: a shape prior constraint and
an intensity-driven constraint based on the Maximum Likelihood (ML) princi-
ple. The latter maximizes the conditional probability of pixel intensity given the
assumed model distribution within each region. Unfortunately, a ML intensity-
driven constraint is sensitive to inaccuracies in estimating model distributions
[12]. More importantly, it can not incorporate information about the overlap
between the intensity distributions within different regions. Based on the eval-
uation of a pixelwise correspondence between the image and the models, ML
intensity-driven constraints assume implicitly that the overlap between the dis-
tributions within different regions has to be minimal. The pixelwise information
is misleading in the case of the LV due to the “significant” (cf. the typical ex-
ample in Fig. 1) overlap between the distributions within the cardiac regions.
Consequently, the use of geometric priors (such as shape) in conjunction with
ML intensity-driven constraints was inevitable to obtain satisfying results [5],
[6]. Similar to variational level-set approaches, active appearance/shape models
compute a pixelwise correspondence between the image and the models [15]. As
we will show in the experiments (section 3), embedding global information about
the overlap between the intensity distributions within the segmentation regions
is important. In the current study, we devise overlap priors for LV tracking.

The current study is most related to recent variational segmentation/tracking
methods [12]–[14] using similarity/dissimilarity measures between intensity dis-
tributions. Using the Bhattacharyya coefficient as an overlap measure, we pro-
pose to track the endo- and epicardium boundaries in a cardiac MR sequence
by evolving two active curves following the Euler-Lagrange minimization of
two functionals each containing an original overlap prior. The latter measures
the conformity of the overlap between the nonparametric (kernel-based) inten-
sity distributions within the three target regions–LV cavity, myocardium and
background–to a prior learned from a given segmentation of the first frame.

The overlap priors lead to a method which has several advantages over existing
ones: (1) shape priors are not needed to obtain satisfying LV tracking because
the overlap priors prevent the endo- and epicardium boundaries from spilling,
respectively, into the cavity and the background; (2) no assumption is made
as to the parametric distributions of intensity/shape data; (3) explicit curve
coupling [7], [3] is not required because the proposed functionals and two-step
minimization yield an implicit coupling. Those advantages lead to a LV tracking
which is more versatile than existing ones because the solution is not bounded
to the shape/intensity properties learned from a finite training set.

2 Formulation

Let I be a MR cardiac sequence containing N frames1, In : Ω ⊂ �
2 → �

+,
n ∈ [1..N ]. The purpose of this study is to automatically detect the endocardium
(yellow contour in Fig. 1.a) and the epicardium (green contour in Fig. 1.a) of the
1 The number of frames N is typically equal to 20 or 25.
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heart for each n ∈ [2..N ]. We formulate the problem as the evolution of two closed
planar parametric curves, Γ n

in(s), Γ n
out(s) : [0, 1] → Ω, toward, respectively, the

endo- and epicardium. The curve evolution equations are sought following the
minimization of two original functionals based on the notion of overlap between
the intensity distributions within three target regions: (1) the heart cavity Cn

corresponding to the interior of curve Γ n
in: Cn = RΓ n

in
, (2) the myocardium Mn

corresponding to the region between Γ n
in and Γ n

out: Mn = Rc
Γ n

in
∩ RΓ n

out
and

(3) the background Bn corresponding to the region outside Γ n
out: Bn = Rc

Γ n
out

.

The proposed functionals: For each R ∈ {Cn, Mn, Bn, n = 1..N}, de-
fine PR,I as the nonparametric (kernel-based) estimate of intensity distribution
within region R in frame I ∈ {In, n = 1..N}

∀z ∈ �
+, PR,I(z) =

∫
R K(z − I(x))dx

aR
(1)

where aR is the area of region R: aR =
∫
R dx. Typical choices of K are the

Dirac function and the Gaussian kernel [12]. Let B(f/g) be the Bhattacharyya
coefficient2 measuring the amount of overlap between two statistical samples f
and g [12]

B(f/g) =
∑

z∈�+

√
f(z)g(z) (2)

We assume that a segmentation of the first frame I1, i.e., a partition {C1, M1, B1},
is given. Consider

Bn
in = B(PCn,In/PM1,I1);Bn

out = B(PMn,In/PB1,I1) ∀n ∈ [1..N ] (3)

Bn
in measures the overlap between the intensity distributions within the LV

cavity and the myocardium in In. Bn
out measures the overlap between the in-

tensity distributions within the myocardium and the background in In. As we
will demonstrate experimentally in section 3, Bn

in and Bn
out are approximately

constant over a cardiac sequence. Consequently, measures B1
in and B1

out esti-
mated from a given segmentation of the first frame in sequence I can be used as
overlap priors to constrain the tracking in frames I2..IN . We adopt a two-step
curve evolution for each n ∈ [2..N ]. First, we evolve the endocardium boundary,
Γ n

in, following the minimization of

Fn
in = α(Bn

in − B1
in)2

︸ ︷︷ ︸
Overlap cavity/myocardium

+ β(μn
in − μ1

in)2
︸ ︷︷ ︸

Cavity mean

+ λ

∮

Γ n
in

(gn + c)ds

︸ ︷︷ ︸
Endocardium boundary

(4)

where μn
in is the estimate of intensity mean within Cn

in for n ∈ [1..N ]: μn
in =∫

Cn Indx
aCn

, gn = 1
1+‖∇In‖2 is an edge indicator function which biases the curve to-

ward high gradient of intensity and c is a constant to enforce curve smoothness.

2 Note that the values of B are always in [0, 1], where 0 indicates that there is no
overlap, and 1 indicates a perfect match.
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α, β and λ are positive real constants to balance the contribution of each term.
Second, we fix the obtained Γ n

in and minimize the following functional with
respect to the epicardium boundary, i.e., Γ out

Fn
out = α(Bn

out − B1
out)

2

︸ ︷︷ ︸
Overlap myocardium/background

+ β(μn
out − μ1

out)
2

︸ ︷︷ ︸
Myocardium mean

+ λ

∮

Γ n
out

(gn + c)ds

︸ ︷︷ ︸
Epicardium boundary

(5)
where μn

out is the estimate of intensity mean within Mn
in for n ∈ [1..N ]: μn

out =∫
Mn Indx

aMn
. In section 3, we will validate experimentally the usefulness of the

proposed overlap terms: for ten different datasets, we will confirm with manual
segmentations that (Bn

in −B1
in)2 and (Bn

out −B1
out)

2 are approximately equal to
zero (refer to table 2).

Curve evolution minimization equations: Curve evolutions are obtained by
the Euler-Lagrange descent equations. We embed each curve Γ ∈ {Γ n

in, Γ n
out}

in a one-parameter family of curves: Γ (s, t) : [0, 1] × R+ → Ω, and solve the
partial differential equations: ∂Γ n

in(s,t)
∂t = − ∂Fin

∂Γ n
in

, ∂Γ n
out(s,t)
∂t = − ∂Fout

∂Γ n
out

. After
some algebraic manipulations, we obtain the final curve evolution equations

∂Γ n
in

∂t
= {α(Bn

in − B1
in)

aCn

(Bn
in −

√
PM1,I1

PCn,In

) +
2β(μn

in − μ1
in)

aCn

(μn
in − In)

+ λ[∇gn.nn
in − (gn + c)κn

in]}nn
in

∂Γ n
out

∂t
= { (Bn

out − B1
out)

aMn

(Bn
out −

√
PB1,I1

PMn,In

) +
2β(μn

out − μ1
out)

aMn

(μn
out − In)

+ λ[∇gn.nn
out − (gn + c)κn

out]}nn
out (6)

where nn
in and nn

out are the outward unit normals to, respectively, Γ n
in and Γ n

out.
κn

in and κn
out are the mean curvature functions of, respectively, Γ n

in and Γ n
out.

Partition (Cn, Mn, Bn) of frame In is obtained from Γ n
in and Γ n

out at conver-
gence i.e., when t → ∞. The level-set framework [1] is used to implement the
evolution equations in (6). The level-set implementation has well-known advan-
tages over explicit curve discretization and can be effected by stable numerical
schemes.

3 Experiments

In the following, we first give a typical example which demonstrates clearly
the advantage of using overlap constraints over the commonly used ML con-
straints. Then, we describe a statistical performance evaluation of the method
by comparisons with manual segmentations and other variational methods [2],
[3]. We also evaluate the statistics of the proposed overlap priors/measures over



Left Ventricle Tracking Using Overlap Priors 1029

0 20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Bins

D
en

si
ty

Overlap LV/Background

Background

Left Ventricle

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

Bins

D
en

si
ty

Overlap Cavity/Myocardium

Myocardium

Heart Cavity

Overlap: Papillary Muscles

B
in

=0.55

(a) (b) (c)

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Image number (190 frames from 10 datasets)

O
ve

rl
ap

 t
er

m
/m

ea
su

re
s

(d) (e) (f)

Fig. 1. Advantage of overlap constraints: (a) manual segmentation by a radiologist–
yellow curve: endocardium, green curve: epicardium; (b) overlap between the dis-
tributions within the LV and the nearby background (region inside the blue curve
in a); overlap between the distributions within the cavity and the myocardium; (d)
segmentations obtained with and overlap constraint, i.e., with our method; (e) seg-
mentations obtained with a ML constraint. Both constraints were used without
shape priors. (f) The proposed overlap priors/measures versus the frame number (190
frames) in 10 manually segmented datasets: Bn

out (blue points); Bn
in (green markers);

(Bn
out − B1

out)2 + (Bn
in − B1

in)2 (continuous red line).
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Fig. 2. Comparisons of manual and automatic segmentations in 190 images from 10
datasets. Aam versus Aa+Am

2 : (a) cavity area (DM= 0.92 ± 0.03); (b) epicardial area
(DM= 0.94 ± 0.01). (c) Automatic versus manual LV cavity areas.

several datasets. Finally, we give a representative sample of the results for visual
inspection.

(1) Overlap constraint vs. ML intensity-driven constraint: Figure 1 (a)
shows a typical example of a MR mid-cavity frame. It depicts the expected seg-
mentations of the LV cavity (region inside the yellow curve) and the epicardial
region (region inside the green curve). Figs. 1 b and c illustrate the significant
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overlap between the distributions within the three target regions: cavity, my-
ocardium and background. No shape priors were added for a fair comparison be-
tween overlap and ML constraints. For both constraints, model distributions of
regions were estimated from the same pesegmented frame. With a ML intensity-
driven constraint, parts of the background, which have intensity profiles similar
to the cavity and the myocardium, are included inside the final curves (refer to
Fig. 1.e). The use of geometric constraints, such as shape priors, in conjunction
with ML constraints is inevitable to obtain satisfying results [5], [6]. By contrast,
using an overlap constraint delineates accurately the cavity and the LV (refer to
Fig. 1 d), thereby removing the need of shape priors.

Table 1. Comparisons of manual and automatic segmentations: Dice metrics and
correlation coefficients. The higher the Dice metric, the better the segmentation.

Dice metrics Mean Std Correlation LV cavity areas Epicardial areas
This method 0.93 0.02 This method 0.94 0.96
Method in [2] 0.81 0.16 Method in [3] 0.89 0.87

Table 2. Statistics of the overlap priors/measures (expressed as mean ± std) over ten
datasets. The overlap priors are approximately equal to zero.

Bn
out Bn

in (Bn
out − B1

out)2, (n > 1) (Bn
in − B1

in)2, (n > 1)
0.69 ± 0.05 0.42 ± 0.17 1.9(10−3) ± 2.4(10−3) 6.5(10−3) ± 8.5(10−3)

(2) Statistical performance evaluation: The performance of the proposed
variational technique was evaluated by comparisons with independent manual
segmentations approved by an experienced cardiologist. We applied the method
to 2D mid-cavity MR sequences obtained from 10 patients, i.e., 10 different
datasets: 190 frames were automatically segmented. The free parameters were
unchanged for all the datasets: α = 1000, β = 10, λ = 0.1, c = 10. Curve initial-
izations and estimation of B1

in, B1
out, μ1

in, and μ1
out were obtained from a user-

provided segmentation of the first frame in each sequence. Two clinically im-
portant measures were evaluated for performance appraisal: LV cavity area and
LV epicardial area. Area measurements are expressed as the number of pixels
within the region. We first used the Dice Metric (DM) to measure the simi-
larity between manual and automatic segmentations. Let Aa, Am and Aam be
the areas of, respectively, the automatically detected region, the corresponding
hand-labeled region and the intersection between them. DM is given by 2Aam

Aa+Am

[2]3. Our algorithm yielded a DM equal to 0.93 ± 0.02 for all the data (DM is
expressed as mean ± standard deviation). We obtained DM equal to 0.92±0.03
for the LV cavity areas and DM equal to 0.94±0.01 for the epicardial areas. Lin-
ear regression was also used to assess the differences between Aam and Aa+Am

2

3 DM is always in [0, 1]. DM equal to 1 indicates a perfect match between manual and
automatic segmentation.
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Fig. 3. Results for five MR sequences. Each row depicts the results for one sequence.
α = 1000, β = 10, λ = 0.1, c = 10. Γ n

in: red curve, Γ n
out: green curve.

(refer to Figs. 2 a and b). The smaller these differences, the higher the similari-
ties between manual and automatic segmentations. The LV cavity and epicardial
regression lines did not differ significantly from the identity line. We also report
good correlation coefficients between manual and automatic endo- and epicardial
areas (refer to table 1). To assess the differences between manual and automatic
LV cavity areas, we give the linear regression plot in Fig. 2 c, displayed with the
identity line.

To bear comparisons with other recent variational approaches to LV track-
ing, we give in table 1 the Dice metrics and correlation coefficients reported,
respectively, in [2] and [3]. Our method leads to a significant improvement in



1032 I. Ben Ayed et al.

accuracy over the variational level set methods in [2], [3]. Although the pro-
posed functional does not embed shape knowledge, it compares very well with
existing methods [2]-[7] which, in most cases, use shape priors. Different from ML
intensity-driven constraints, the proposed overlap constraints measure the sim-
ilarities between the intensity distributions within the cardiac regions, thereby
removing the need of shape constraints.

In Fig. 1.f, we plotted the proposed overlap priors/measures versus the frame
number (190 frames) using manual segmentations from 10 datasets. As reported
in table 2, the overlap priors in Eqs. (4) and (5) are approximately equal to zero
(refer to the continuous line in Fig. 1.f). This validates the usefulness of such
priors for the LV tracking. It is also interesting to notice that overlap measures
Bn

in and Bn
out do not vary much over different patients (refer to Fig. 1.f).

In Fig. 3, we give a representative sample of the results with five sequences
(s1–s5). sxfy depicts the tracking obtained for frame y in sequence x. The red
and green curves represent, respectively, Γ n

in and Γ n
out at convergence.

4 Conclusion

We investigated overlap priors for variational LV tracking in MR sequences.
Quantitative evaluation showed the advantages of overlap priors over existing
intensity-driven constraints. Although neither shape priors nor curve coupling
were used, the results correlated well with manual segmentations and the method
compared favorably with other methods.
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