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Abstract. A new generative multispectral texture model based on discrete dis-
tribution mixtures is introduced. Statistical texture properties are represented by
a discrete distribution mixture of product components. A natural colour or multi-
spectral texture is spectrally factorized and discrete mixtures models are learned
and used to synthesize single orthogonal monospectral components. Texture syn-
thesis is based on easy computation of arbitrary conditional distributions from the
model. Finally single synthesized monospectral texture components are trans-
formed into the required synthetic colour texture. This model can easily serve
for texture segmentation, retrieval or to model single factors in complex Bidirec-
tional Texture Function (BTF) space models. The advantages and weak points of
the presented approach are demonstrated on several colour texture applications.
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1 Introduction

Realistic texture models are crucial for various image recognition or modeling applica-
tions such as image classification, segmentation, content based image retrieval (CBIR),
image enhancement or restoration. Virtual or augmented reality systems require object
surfaces covered with realistic nature-like colour textures to enhance realism in virtual
scenes. Such textures can be either digitized natural textures or textures synthesized
from an appropriate mathematical model. However digitized 3D textures are far less
convenient alternative, because of extremal system memory demands especially for the
most advanced Bidirectional texture function (BTF) representation [1] and several other
serious drawbacks.

Texture synthesis methods may be divided primarily into intelligent sampling and
model-based methods. Intelligent sampling approaches [2], [3], [4], [5],[6] rely on
sophisticated sampling from real texture measurements while the model-based tech-
niques [7],[8],[9], [10], [11],[12], [13], [14] describe texture data using multidimen-
sional mathematical models and their synthesis is based on the estimated model param-
eters only. There are several texture modeling approaches published [7], [11], [12] and
some survey articles are also available [10], [15].

In the present paper we propose texture modeling by multivariate discrete mixtures
(DM) with components defined as products of univariate discrete probability distribu-
tions. Each of the univariate component-specific distributions is defined simply by a
vector of probabilities without any constraint. The full generality of the univariate dis-
tributions in the components is one of the strong arguments for the proposed mixture
model. Another motivation is the computational simplicity of the product mixtures. In
particular, the texture synthesis is actually enabled by an easy evaluation of arbitrary
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marginals and simple computation of the conditional probability distributions. In the
application part we demonstrate advantages and weak points of the proposed method
on several colour textured images.

2 Distribution Mixture Model

Regular or near-regular textures are very difficult to synthesize using statistical models
such as Markov random field (MRF) model family, however they occur frequently in
images as visual representation of man-made structures. The presented model is well
suited for them and as such it can serve as appropriate submodel for more complex BTF
models among others. Modeling general static colour texture images requires three-
dimensional models or to accept some spectral information loss using a set of factorized
less-dimensional 2D probabilistic models. The factorization alternative accepted in this
paper is attractive because it allows using simpler 2D data models with less parameters
(one third in the three-spectral case of colour MRF textures).

A digitized texture image Y is assumed to be defined on a finite rectangular N ×
O × d lattice I , r = {r1, r2, r3} ∈ I denotes a pixel multiindex with the row, columns
and spectral indices, respectively. The notation • has the meaning of all possible values
of the corresponding index.

Supposing now uncorrelated monospectral textures after the PCA based decorrela-
tion step of our algorithm, we assume that each pixel of the image is described by a grey
level taking on K possible values, i.e., Yr ∈ K, ∀r ∈ I, K = {1, 2, . . . , K}, where
K is the set of distinguished grey levels (often |K| = 256). In this sense a monospectral
component of the original texture image can be viewed as a vector Y•,•,r3 ∈ KNO, in
some chosen pixel ordering. To simplify notation we will neglect further on the spectral
component in the multiindices r, s because single submodels describe only decorrelated
mono-spectral components of the original multi-spectral texture. Let us suppose that the
natural homogeneous texture image represents a realization of a random vector with a
probability distribution P (Y•,•,r3) and that the properties of the texture can be fully
characterized by statistical dependencies on a subfield, i.e., by a marginal probability
distribution of grey levels on pixels within the scope of a window centered around the
location r and specified by the index set Ir. Ir = {r+s : |r1 −s1| ≤ α ∧ |r2 −s2| ≤
β} ⊂ I where α, β are some chosen constants and |.| is the absolute value. If we de-
note Y{r} the corresponding subvector of Y•,•,r3 containing all Ys such that s ∈ Ir,
Y{r} = [Ys ∀s ∈ Ir] , η = card{Ir} and P (Y{r}) the corresponding marginal distri-
bution of P (Y ) then the marginal probability distribution on the “generating” window
Ir is assumed to be invariant with respect to arbitrary shifting within the original image,
i.e., P (Y{r}) = P (Y{s}) , ∀s, r ∈ I, s �= r .

Thus, e.g., for a rectangular window of the size η = 20 × 20 pixels we have to es-
timate a 400-dimensional probability distribution P (Y{r}). The marginal distribution
P (Y{r}) is assumed to contain sufficient information to synthesize the modeled tex-
ture. The distribution P (Y{r}) is assumed to be discrete with factorizing components
P (Y{r} | m) in the form:

P (Y{r}) =
∑

m∈M
p(m)P (Y{r} | m) =

∑

m∈M
p(m)

∏

s∈Ir

ps(Ys | m) . (1)
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Y{r} ∈ Kη M = {1, 2, . . . , M} where p(m) are probability weights. ps(Ys | m) are
univariate discrete (component-specific) probability distributions. It can be seen that, by
Eq. (1) the variables {Ys : ∀s ∈ Ir} are conditionally independent with respect to the
index variable m. From the theoretical point of view, this assumption is not restrictive.
It can be easily verified that, in discrete case Y{r} ∈ Kη , the class of finite mixtures
(1) is complete in the sense that any discrete probability distribution on Kη can be
expressed in the form (1) for M sufficiently large. The parameters of the mixture model
(1) are probabilistic component weights p(m) and the univariate discrete distributions
of grey levels simply defined by a vector of probabilities:

pn(· | m) = (pn(1 | m), pn(2 | m), . . . , pn(K | m)) . (2)

The total number of mixture (1) parameters is thus card{M}(1 + ηK) - confined to
the appropriate norming conditions. Note that the form of the univariate discrete dis-
tributions (2) is fully general without any constraint. In contrast to different parametric
models (e.g., normal) the K-dimensional vector pn(· | m) can describe arbitrary dis-
crete distribution. This fact is one of the main arguments for the choice of the discrete
mixture model (1). Another strong motivation for the conditional independence model
(1) is a simple switch-over to any marginal distribution by deleting superfluous terms
in the products P (Y{r} | m).

Fig. 1. Natural and synthetic (right) textile textures
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3 EM Algorithm

The underlying structural model of conditional independence is identified from a data
set S obtained by step-wise shifting the contextual window Ir within the original
texture image, i.e., for each location r one realization of Y{r}.

S = {Y{r} ∀r ∈ I, Ir ⊂ I} Y{r} ∈ Kη . (3)

The unknown parameters of the approximating mixture can be estimated by means of
the iterative EM (Expectation Maximization) algorithm [16], [17]. In order to estimate
the unknown distributions pn(· | m) and the component weights p(m) we maximize
the likelihood function corresponding to (3)

L =
1

|S|
∑

Y{r}∈S
log [

∑

m∈M
P (Y{r} | m) p(m)] (4)

by means of the EM algorithm. The related iteration equations can be expressed as
follows:

q(t)(m| Y{r}) =
P (t)(Y{r} | m) p(t)(m)∑
j∈M P (t)(Y{r} | j) p(t)(j)

, (5)

p(t+1)(m) =
1

|S|
∑

Y{r}∈S
q(t)(m | Y{r}), (6)

p(t+1)
n (ξ | m) =

1
|S|p(t+1)(m)

∑

Y{r}∈S
δ(ξ, Yn) q(t)(m | Y{r}), ξ ∈ K. (7)

The mixture parameters are initialized by random numbers. The iteration process is
stopped when the criterion increments are sufficiently small. Note that a larger number
of grey levels increases the memory requirements but not necessarily the computing
time (see (7)). It is well known (cf. [17]) that the iteration scheme (5) – (7) has the
following monotonic property: L(t+1) ≥ L(t), t = 0, 1, 2, . . . which implies the
convergence of the sequence {L(t)}∞0 to a stationary point of EM algorithm (local
extremum or a saddle point of L). It should be noted that the properties of the ML
estimates obtained by means of the data set S may be negatively influenced by the fact
that the observations in S are not independent.

4 Texture Synthesis

Let Ir be a fixed position of the generating window. If Y{ρ} ⊂ Y{r} is a subvector
of all pixels previously specified within this window and ρ ⊂ Ir the corresponding
index subset, then the statistical properties of the remaining unspecified variables are
fully described by the corresponding conditional distribution. In view of the advanta-
geous properties of our mixture model we can easily compute any univariate conditional
distribution pn | ρ:

pn | ρ(Yn | Y{ρ}) =
M∑

m=1

Wm(Y{ρ}) pn(Yn | m) , (8)
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where Wm(Y{{ρ}) are the a posteriori component weights corresponding to the given
subvector Y{ρ}:

Wm(Y{ρ}) =
p(m)Pρ(Y{ρ} | m)

∑M
j=1 p(j)Pρ(Y{ρ} | j)

, (9)

Pρ(Y{ρ} | m) =
∏

n∈ρ

pn(Yn | m) .

The grey level yn can be randomly generated by means of the conditional distribution
pn|C(yn|Y{ρ}) whereby Eqs. (8) can be applied to all the unspecified variables n =
η − card{ρ} given a fixed position of the generating field. Simultaneously, each newly
generated grey level yn can be used to upgrade the conditional weights Wm(Y{ρ}).
In the next step, the generating field is shifted to a new position and the conditional
distribution (8) has to be computed for a new subset of the specified pixels in ρ. In
our experiments we have used a regular left-to-right and top-to-down shifting of the
generating window.

Single mixture models (1) synthesize single decorrelated monospectral components
and the resulting synthesized colour texture is obtained from the set of synthesized
monospectral images inverting the decorrelation process.

5 Experimental Results

The implementation of EM algorithm is simple but there are some well known compu-
tational problems, e.g., the proper choice of the number of components, the existence
of local maxima of the likelihood function an the related problem of a proper choice
of the initial parameter values. The above difficulties are less relevant if the sample
size is sufficiently large. In our case the dimension of the estimated distribution is not
too high (N ≈ 101 − 102) and the number of the training data vectors relatively large
(|S| ≈ 104 − 105). The number of grey levels to be distinguished is very high (usually
|K| = 256) and therefore the estimated distribution becomes considerably complex.
Moreover, the shifting window seems to produce rather “flat” probability distributions,

Fig. 2. Natural (left) and synthetic (DM middle) carpet (upper row) and jute (bottom row) textures
compared with their synthetic (right column) alternatives generated using the Gaussian Markov
random field model
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Fig. 3. Natural and synthetic (DM middle, GMRF synthesis right) rattan textures

especially in case of homogeneous structures. For these reasons the generating window
should always be kept reasonably small and the sample size as large as possible. The
application of the model on deterministic periodic textures (e.g., chessboard, stripes) is
capable to reproduce original textures exactly and the EM algorithm converges quickly
from arbitrary starting conditions.

The examples Figs. 1 - 3 exemplify properties of the DM model on natural colour
textures. The carpet texture on Fig. 2 represents relatively regular texture which is noto-
riously difficult for some alternative texture models like for example Gaussian Markov
random field (GMRF) models (Fig. 2 - top right) but the presented model produced very
good synthesis result (Fig. 2 - top middle). Similarly the jute example (Fig. 2 - bottom)
or the textile textures (Fig. 1) demonstrate its good performance. The DM model for
the rattan Fig. 3 - left expressed major periodic features and although it failed to spec-
ify rattan details, it is still much superior to its GMRF alternative (Fig. 3 - top right).
Finally the last example on Fig. 3-bottom demonstrates clear failure of our model (the
most informative monospectral component presented only), there is a strong tendency
to cover a large portion of the synthesized field by a texture resembling “white noise”.
It appears that, because of a high dimensionality of the underlying space, the estimated
mixture distribution has properties resembling widely separated components. This ob-
servation relates to the well known experience that high dimensional spaces can be
viewed as “sparse”. The isolated peaks of the estimated mixture seem to be able to re-
flect only the basic rattan structure. Consequently, in most cases the neighborhood of
the synthesized pixel is untypical from the point of view of the estimated mixture and
therefore the corresponding conditional distribution (8) is very flat or nearly uniform.
In such a case the synthesis produces a texture resembling white noise. Theoretically
this modeling result could be improved if we would have larger trainee image to train
a DM model parameters but on the other hand, the sufficient size of the trainee image
could already be prohibitive from the computational point of view. All DM models used
the contextual window size 21 × 21 pixels, the training set of |S| = 262144 vectors.
The chosen distribution mixture model included M = 40 components and about 10
iterations of EM algorithm were needed to achieve a reasonable convergence. The com-
putation was rather time-consuming it took several hours in total on HP workstations.
The time needed for texture synthesis is comparable with one iteration step of the EM
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algorithm. Resulting textures can be further slightly improved by iterating the synthe-
sis procedure or by our probabilistic synthesis strategy described elsewhere. Similarly
as all other known texture models also our DM model has its strong as well as weak
sides. While the presented model can realistically synthesize natural or man-made tex-
tures with strong periodicities, which are notoriously difficult for most alternative ap-
proaches, its major weakness is lesser robustness than the Markovian models family.
A DM model has strong tendency either to produce high quality synthetic texture or
to completely fail with resulting noise field. Markovian models in these cases demon-
strate clear effort to grasp at lest some of the difficult texture features (Fig. 3 - bottom
right). The computationally most efficient Markovian models are much faster than the
presented model, but general Markovian models which require Markov chain Monte
Carlo methods for their analysis as well as synthesis are comparable.

6 Conclusion

The proposed DM model is the only statistical model capable to synthesize regular
or near-regular colour textures. DM representation can be simultaneously used also
in any texture based recognition task such as classification, segmentation, image re-
trieval, etc. Moreover, the DM model can serve as the underlying factor model for more
complex BTF space models. The application of EM algorithm to texture modeling has
some specific features. Generally the dimension of the sample space is relatively high
(N = 200 − 400) and the corresponding sample size appears to be insufficient. More-
over, the data vectors obtained by shifting the window are not independent as it is as-
sumed in the likelihood criterion. For these and other reasons the estimation of the
texture model in the form of discrete product mixture is a difficult task. Our extensive
DM models simulations suggest that very often the model requires a large training data
set and powerful computing resources to successfully reproduce any given natural tex-
ture. While the computational complexity is going to be less important in near future,
the requirement for large learning data set can be restrictive in some texture modeling
applications.
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P., Ferri, F.J., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 114–122.
Springer, Heidelberg (2000)

13. Paget, R., Longstaff, I.D.: Texture synthesis via a noncausal nonparametric multiscale
markov random field. IEEE Trans. on Image Processing 7(8), 925–932 (1998)

14. Zhu, S., Liu, X., Wu, Y.: Exploring texture ensembles by efficient markov chain monte carlo
- toward a “trichromacy” theory of texture. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 22(6), 554–569 (2000)

15. Haindl, M.: Texture modelling. In: Sanchez, B., Pineda, J.M., Wolfmann, J., Bellahse, Z.,
Ferri, F. (eds.) Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics, Orlando, USA, vol. VII, pp. 634–639. International Institute of Informatics and
Systemics (2000)

16. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society, B B 39, 1–38 (1977)

17. Schlesinger, M.: Relation between learning and self-learning in pattern recognition (in Rus-
sian). Kibernetika (2), 81–88 (1968)

18. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based
sampling. ACM Transactions on Graphics (TOG) 20(3), 127–150 (1968)

19. Liu, F., Picard, R.: Periodicity, directionality, and randomness: Wold features for image mod-
eling and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7),
722–733 (1996)

20. Portilla, J., Simoncelli, E.: A parametric texture model based on joint statistics of complex
wavelet coefficients. International Journal of Computer Vision 40(1), 49–71 (2000)

21. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.Y.: Synthesis of bidirectional
texture functions on arbitrary surfaces. ACM Transactions on Graphics (TOG) 21(3), 665–
672 (2002)


	Probabilistic Discrete Mixtures Colour Texture Models
	Introduction
	Distribution Mixture Model
	EM Algorithm
	Texture Synthesis
	Experimental Results 
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




