
J. Ruiz-Shulcloper and W.G. Kropatsch (Eds.): CIARP 2008, LNCS 5197, pp. 364–371, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fast k Most Similar Neighbor Classifier for Mixed Data
Based on a Tree Structure and

Approximating-Eliminating

Selene Hernández-Rodríguez, J.A. Carrasco-Ochoa,
and J. Fco. Martínez-Trinidad

Computer Science Department
National Institute of Astrophysics, Optics and Electronics

Luis Enrique Erro No. 1, Sta. María Tonantzintla, Puebla, CP: 72840, México
{selehdez,ariel,fmartine}@ccc.inaoep.mx

Abstract. The k nearest neighbor (k-NN) classifier has been extensively used as
a nonparametric technique in Pattern Recognition. However, in some applica-
tions where the training set is large, the exhaustive k-NN classifier becomes im-
practical. Therefore, many fast k-NN classifiers have been developed to avoid
this problem. Most of these classifiers rely on metric properties, usually the tri-
angle inequality, to reduce the number of prototype comparisons. However, in
soft sciences, the prototypes are usually described by qualitative and quantita-
tive features (mixed data), and sometimes the comparison function does not sat-
isfy the triangle inequality. Therefore, in this work, a fast k most similar
neighbor (k-MSN) classifier, which uses a Tree structure and an Approximating
and Eliminating approach for Mixed Data, not based on metric properties (Tree
AEMD), is introduced. The proposed classifier is compared against other fast
k-NN classifiers.

Keywords: k-NN Classifier, Fast k-NN Classifiers, Mixed Data.

1 Introduction

The k-NN [1] classifier has been extensively used as a nonparametric technique in
Pattern Recognition. In order to decide the class of a new prototype, the k-NN classi-
fier performs an exhaustive comparison between the prototype to classify (query) and
the prototypes in the training set (T). However, when T is large, the exhaustive com-
parison is expensive. To avoid this problem, many fast k-NN classifiers have been
developed. Some of these classifiers are exact methods, because they find the same k-
NN that would be found using the exhaustive search. Some others are approximate
methods, because they do not guarantee to find the k-NN to a query prototype among
the training set, but they find an approximation faster than the exact methods.

To avoid prototype comparisons during the search of the k-NN, different ap-
proaches such as: approximating-eliminating [2-6] and tree-based [5-9] have been
developed.

 Fast k Most Similar Neighbor Classifier for Mixed Data 365

Tree-based classifiers consist of two phases: preprocessing and classification. In
the preprocessing phase, the prototypes in T are organized in a tree structure. In the
classification phase, the tree is traversed to find the k-NN. The speed up is obtained
while the exploration of some parts of the tree is avoided, applying pruning rules
derived from the triangle inequality property. One of the first fast k-NN classifiers,
that uses a tree structure, was proposed by Fukunaga and Narendra [7]. Some im-
provements, over the pruning rule used in the Fukunaga and Narendra’s (FN) classi-
fier, have been proposed by Moreno-Seco et al. (MS classifier) [8] and Oncina et al.
(ONC classifier) [9].

The first classifier based on the approximating-eliminating approach was AESA
(Approximating Eliminating Search Algorithm), proposed by Vidal [2]. Some im-
provements over AESA, have been developed; for example: LAESA [3], iAESA [4],
probabilistic iAESA [4], TLAESA [5] and ModTLAESA [6].

All these classifiers were designed to work with quantitative data when the proto-
type comparison function satisfies the triangle inequality. However, in soft sciences as
Medicine, Geology, Sociology, etc., the prototypes are commonly described by mixed
data. In these cases, sometimes the comparison function does not satisfy the triangle
inequality and therefore, we can not use most of the classifiers proposed for quantita-
tive prototype descriptions. Thus, if a metric is not available but a comparison func-
tion that evaluates the similarity between a pair of prototypes could be defined, the
objective would be to find the k most similar neighbors (k-MSN) and use them for
classifying. For this reason, in this paper we introduce a fast approximate k-MSN
classifier, based on a tree structure and a new approximating and eliminating ap-
proach for mixed data (Tree AEMD). The aim of our algorithm is not to find the exact
k-MSN but fast finding an approximation of them, which allows obtaining classifica-
tion accuracy close to that obtained by the exact ones.

This paper is organized as follows: in Section 2 the comparison function used in
this work is described. In Section 3 Tree AEMD is introduced. Finally, we report
experimental results in Section 4 and conclusions in Section 5.

2 Comparison Functions for Mixed Data

In this work, the function D [10], which does not fulfil the triangle inequality and
allow us to compare prototypes described by mixed data, was used. Let us consider a
set of prototypes {P1, P2, …, PN}, each of them described by d attributes {x1, x2, …,
xd}. Each feature could be quantitative or qualitative. The function D is defined as
follows:

{ }
d

PxPxCx
PPD iiii |1))(),((||

1),(21
21

=−= (1)

For qualitative data Ci(xi(P1), xi(P2)) is the following:

⎪
⎩

⎪
⎨

⎧ =
=

otherwise

PxPxPxPxIf

PxPxC
iiii

iii

0

valuemissingais

)(nor)(neitherand)()(1

))(),((
2121

21

(2)

366 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

For quantitative data Ci(xi(P1), xi(P2)) is the following:

⎪
⎩

⎪
⎨

⎧ <−
=

otherwise

PxPxPxPxIf

PxPxC
iiiii

iii

0

valuemissingais

)(nor)(neitherand|)()(|1

))(),((
2121

21

σ

(3)

Where, σi is the standard deviation of the attribute xi in T. In this work, the Similar-
ity S(P1,P2)=1-D(P1,P2) was used for our algorithm.

3 Proposed Classifier

The proposed classifier (Tree AEDM) consists of two phases: preprocessing and
classification, which are described in the next subsections.

3.1 Preprocessing Phase

In the preprocessing phase, a tree structure, a similarity matrix, a representative proto-
type per class and a similarity threshold are computed as follows:

1. Tree structure (TS): This is created using the prototypes in T. In this case, the train-
ing set is hierarchically decomposed to create the tree structure. For the decomposi-
tion, the C-Means with Similarity Functions algorithm (CMSF) [10], which is an
extension of the C-Means algorithm to work with mixed data and any prototype com-
parison function, is used. In the original C-Means the mean of the prototypes of a
cluster is considered as the centre of it, meanwhile in CMSF a representative proto-
type in the sample is used as the centre of the cluster. See [10] for details.

The node 0 (root of TS tree) contains the whole training set. In order to create the
following levels of the tree, each node p of the tree is divided in C clusters, in such a
way that each cluster represents a descendant node of p. Each node p of the tree con-
tains three features which are: Sp the set of prototypes that belong to p; Np the number
of prototypes in p and Repp a representative prototype of p, which is the most similar
in average to the prototypes contained in the node.

Each node is divided again and this process is repeated until a stop criterion is ful-
filled. In this work, we used a stop criterion proposed in [11]. This criterion takes into
account not only the number of prototypes in the node, but also the class distribution
of these prototypes. In this case, if certain percentage (PercThres) of the prototypes in
a cluster belongs to the same class, two nodes are created, for replacing the original
one. Using the prototypes that belong to the majority class, a leaf node is created and
marked with the majority class. The remaining prototypes are assigned to a second
node. In the second node, the size is considered to decide if the node is a leaf (if Np ≤
NoP) or if the node will be divided again. In the nodes where a majority class, can not
be recognized, only the size of the nodes is considered to create leaves (if Np ≤ NoP
then the node is a leaf).

2. Similarity matrix (SM). A matrix containing the similarities per attribute between
all the representative prototypes of the nodes in the tree is computed. In this
case, SM(Repa,Repb,xi)=1 if, according to certain criterion, we can conclude that the
representative prototypes Repa and Repb (a,b=1,…,NoNod; NoNod is the number of
nodes in the tree) are similar considering the attribute xi (i=1,…,d) and

 Fast k Most Similar Neighbor Classifier for Mixed Data 367

SM(Repa,Repb,xi)=0, otherwise. In this work, the similarity criteria described in Sec-
tion 2, were used.

The required space to store SM is NoNod x NoNod x d but each element is a bit,
therefore, NoNod x NoNod words of d bits are needed for storing SM.

3. A representative prototype per class (RPc). Taking advantage of the class informa-
tion, in order to obtain a first approximation during the classification phase, we
propose to use a representative prototype per class (RPc). Let Classc be the set of
prototypes in T, belonging to the class c. Then, for each prototype Pa∈Classc, the
average similarity between Pa and the remaining prototypes belonging to the same
class is computed as follows:

1||

),(

)(,

−
=

∑
≠∈

c

abClassP
ba

a Class

PPS

PAvgSim cb (4)

In this way, the representative prototype for the class c (RPc) will be the one most
similar on average:

caac ClassPPAvgSimArgMaxRP ∈∀=)),(((5)

This process is repeated for every c=1,…,NC, where NC is the number of classes in
the training set.

4. Similarity threshold between prototypes (SimThres). This value is used as a confi-
dence threshold to make decisions during the classification phase. In order to obtain
SimThres, for each class c, the average value of similarity among the prototypes be-
longing to the same class is computed as follows:

||

)(

)(
c

ClassP
a

Class

PAvgSim

cmClassAvgSi ca

∑
∈= (6)

Finally, the similarity threshold (SimThres) is computed as the average value of
ClassAvgSim (c), for all c=1,..,NC.

3.2 Classification Phase of Tree AEDM

Given a new prototype Q to classify, TS, SM, RPc and SimThres, computed during the
preprocessing phase, are used to avoid prototype comparison. In this phase, a classifi-
cation algorithm, using new approximating and eliminating steps (which are not based
on the triangle inequality), is proposed as follows:

1. Initial approximation step. At the beginning of the algorithm, the prototype Q is
compared against the representative prototypes (RPc, c=1,...,NC) to obtain a first
approximation to the MSN:

NCcRPQDArgMinMSN c ,...,1)),,((== (8)
2. Tree traversal algorithm. In order to update the k-MSN, the tree structure is trav-

ersed. Two algorithms to traverse the tree are proposed:
• Tree traversal algorithm, using Depth First Search (DFS).
• Tree traversal algorithm, using Best First Search (BFS).

368 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

3. Classification step. Finally, the majority class of the k-MSN is assigned to Q.
In the next subsections, the tree traversal algorithms are presented.

3.2.1 Tree Traversal Algorithm, Using DFS
1. CurrentNode=root
2. Approximating step: All the direct descendant nodes (n) of CurrentNode, neither
traversed nor eliminated by the Eliminating step, are compared to Q, in order to select
a new node (MSNod) to continue the tree traversal:

)),(ArgMin(nRepQDMSNod = (9)

The list of the k-MSN is updated during the tree traversal, MSNod is marked as al-
ready traversed and CurrentNode=MSNod.
3. If D(Q, RepMSNod) ≥ SimThres, go to step 4, in other case, go to step 5.
The elimination step will be applied only if the current RepMSNod

 is similar enough to
Q, which is determined using SimThres.
4. Eliminating step: Since RepMSNod is very similar to Q, if a prototype is not similar to
RepMSNod in at least the same attributes where RepMSNod is similar to Q, that prototype
will not be more similar to Q than RepMSNod. Therefore, the representative prototype of
MSNod (RepMSNod) is used to eliminate nodes of the tree. In this step, BR containing
the similarity per attribute, between Q and RepMSNod, is created as follows:

diRepxQxCRepQBR MSNodeiiiMSNodei ,..,1)),(),((),(== (10)

Thus, BRi(Q, RepMSNod)=1 if Q and RepMSNod are similar in the attribute xi and
BRi(Q, RepMSNod)=0, in other case. Using BR, and SM matrix, those nodes n in the tree
(not yet traversed or eliminated), having a representative prototype (Repn), which is
not similar to RepMSNod, at least in the same attributes where RepMSNod is similar to Q,
are eliminated.

For example, suppose that Rep1, Rep2, Q and RepMSNod, are such that BR(Q,
RepMSNod)=[1,1,0,1,1,1,0,0], SM(RepMSNod, Rep1)=[1,1,1,1,1,1,0,1] and SM(RepMSNod,
Rep2)=[1,0,0,0,0,1,0,1]. Then, according to this criterion, Rep1 is not eliminated be-
cause it is similar to RepMSNod in the same attributes, where RepMSNod is similar to Q
(attributes 1, 2, 4, 5 and 6). But Rep2 is eliminated, because Rep2 is not similar in the
same attributes, where RepMSNod is similar to Q (RepMSNod is similar to Q in attribute 2,
but Rep2 is not similar to RepMSNod in this attribute). The similarity per attribute be-
tween RepMSNod and Rep1 (SM(RepMSNod, Rep1)) and between RepMSNod and Rep2
(SM(RepMSNod, Rep2)) are known, since these similarities were computed in the pre-
processing phase. The similarity between RepMSNod and Q, has already been computed
and stored in BR.
5. If CurrentNode is a leaf, then go to step 6; in other case, go to step 2.
6. When a leaf node l is reached:

• If l has been marked with the majority class, given that, most of the times the
most similar prototype in the node will be in the majority class, and will be close
to the representative prototype, only the representative prototype Repl is consid-
ered to update the list of k-MSN.

• If l has not been marked with the majority class, then, as there are few prototypes
in the node (Np ≤ NoP), an exhaustive comparison between Q and the prototypes
contained in l is done, for updating the list of k-MSN.

 Fast k Most Similar Neighbor Classifier for Mixed Data 369

7. The tree traversal gets back one level of the tree to evaluate the remaining nodes.
8. If there are still neither traversed nor eliminated nodes in the tree, go to step 9. In
other case, go to step 10.
9. Assign to CurrentNode the most similar node to Q in the corresponding level and
go to step 5.
10. End of the algorithm.

3.2.2 Tree Traversal Algorithm, Using BFS
1. CurrentNode=root, L =Ø.
2. Approximating step: All the direct descendant nodes of CurrentNode, not yet trav-
ersed or eliminated by the Eliminating step, are compared to Q and added to the list L,
which is sorted in such a way that the most similar node to Q is in the first place
(L(1)=MSNod). This node (MSNod) is selected to continue the tree traversal. The
node L(1) is eliminated from the list (because, it is already traversed). The k-MSN is
updated. The node MSNod is marked as node already traversed and Current-
Node=MSNod.
3. If D(Q, RepMSNod) ≥ SimThres, go to step 4, in other case, go to step 5.
4. Eliminating step: this step is the same described for the tree traversal algorithm,
using DFS (step 4, section 3.2.1).
5. If CurrentNode is a leaf, then go to step 6; otherwise, go to step 2.
6. When a leaf node l is reached; this step is the same described for the tree traversal
algorithm, using DFS (step 6, section 3.2.1).
7. If the list L is not empty; then go to step 8. Otherwise, go to step 10.
8. If the first element in the list L has not been eliminated yet, then go to step 9. In
other case, eliminate this element from the list and go to step 7.
9. CurrentNode=L(1) and go to step 5.
10. End of the algorithm.

4 Experimental Results

In order to evaluate Tree AEMD classifier, it was compared against the exhaustive k-
NN [1], FN [7], MS [8], ONC [9], AESA [2], LAESA (|BP|=20% of the prototypes in
the dataset) [3], iAESA [4], Probabilistic iAESA (using 70% as percentage threshold
of the data set) [4], TLAESA [5] and ModTLAESA [6] classifiers. The comparison
function D, described in Section 2 was used.

For the experiments, 10 datasets from the UCI repository [12] were used (4 mixed
datasets: Hepatitis, Zoo, Flag and Echocardiogram. 3 qualitative datasets: Hayes,
Soybean-large and Bridges. 3 quantitative: Glass, Iris and Wine).

In order to compare the different classifiers, the accuracy (Acc) and the percentage
of comparisons between prototypes (Comp), were considered. The accuracy was com-
puted as follows:

NoTestObj

bjNoCorrectO
Acc =

(11)

Where, NoCorrectObj is the number of correctly classified prototypes in the test
set and NoTestObj is the size of the test set. The percentage of comparisons between
prototypes was computed as follows:

370 S. Hernández-Rodríguez, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

ObjNoTraining

ClassNoCompFast
Comp

100*
= (12)

Where, NoCompFastClass is the number of comparisons done by the fast classi-
fier, and NoTrainingObj is the size of the training set. According to (12), for the ex-
haustive classifier, the 100% of the comparisons is done.

In all the experiments, k=1 (for k-MSN) was used. In [11] different experiments for
choosing a value of the parameter C and PercThres were done. In our experiments,
C=3, NoP=20, and PercThres=100% were used, since in [11], the fast classifiers
reached their best results with these values.

In tables 1 and 2, the corresponding results (Acc and Comp) obtained with the dif-
ferent classifiers, are shown. From these tables, we can observe that when the com-
parison function does not satisfy the triangle inequality, FN, ONC, AESA, LAESA,
iAESA, TLAESA and ModTLAESA classifiers become approximate methods. How-
ever, the percentage of comparisons is, on average, reduced from 100%, done by the
exhaustive search, to 58.17% (FN), 33.79% (ONC), 53.47 % (TLAESA), 30.10%
(ModTLAESA), 28.79 % (LAESA), 25.82 % (AESA) and 23.88% (iAESA). The
classifier proposed in this work (Tree AEMD), did the smallest number of prototype
comparisons, using DFS (9.39%) and BFS (8.81%).

The experiments were repeated, using k=3 and k=5 and the performance of the
classifiers was similar.

Table 1. Obtained results using different classifiers

Exhaustive k-
NN classifier FN MS ONC AESA LAESA Datasets

Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp
Hep. 81,66 100 82,00 132,9 81,36 75,98 80,71 68,59 80,57 52,96 80,54 61,86
Zoo 96,00 100 95,41 47,53 94,35 35,44 94,18 23,90 96,00 23,50 96,00 15,26
Flag 54,67 100 52,26 48,26 50,21 45,93 50,39 32,98 51,45 28,02 51,45 25,73
Echo. 82,44 100 81,60 103,8 80,15 85,41 80,10 73,40 81,77 62,04 81,77 68,23
Hayes 81,24 100 81,24 42,65 81,27 27,54 81,81 20,29 81,24 24,82 81,24 23,32
Soyb. L 85,40 100 84,26 35,65 84,65 42,98 84,95 23,25 85,40 2,51 85,40 4,49
Bridges 57,85 100 57,84 62,57 55,84 31,58 54,00 31,55 57,85 25,62 57,85 36,10
Glass 68,26 100 68,02 40,26 68,25 23,85 67,29 21,80 66,45 14,02 67,92 20,83
Iris 93,30 100 93,30 25,98 92,54 21,32 92,67 21,37 93,30 9,22 93,30 6,86
Wine 90,90 100 90,10 42,05 90,10 20,45 90,49 20,73 89,01 15,46 90,90 25,26
Avg. 79,17 100 78,60 58,17 77,87 41,05 77,66 33,79 78,30 25,82 78,64 28,79

Table 2. Obtained results using different classifiers

PROPOSED CLASSIFIER
i AESA Probabilistic i

AESA TLAESA ModTLAESA Tree AEMD
(using DFS)

Tree AEMD
(using BFS)

Datasets

Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp
Hep. 81,03 52,8 80,64 32,44 81,33 87,54 81,66 72,65 80,51 14,6 80,01 13,9
Zoo 96,0 19,4 94,00 17,51 96,00 42,74 96,00 23,95 95,65 9,26 94,22 8,35
Flag 51,36 27,7 49,62 26,41 52,84 48,41 52,09 32,95 52,64 10,2 52,35 9,46
Echo. 81,05 63,6 80,06 63,08 81,77 71,58 82,44 44,62 81,77 13,1 81,40 14,9
Hayes 80,77 17,6 80,07 16,74 80,54 46,42 81,06 24,05 80,95 11,3 80,34 12,4
Soyb. L 85,4 1,96 82,15 2,04 85,40 47,51 85,40 16,85 84,57 2,40 81,51 2,94
Bridges 57,85 25,1 56,95 25,06 56,74 46,75 57,23 38,74 54,00 6,88 54,00 7,93
Glass 66,34 12,6 66,21 12,06 67,92 62,47 67,72 22,85 67,37 8,33 65,54 7,53
Iris 93,3 7,54 93,30 8,01 93,30 41,51 93,30 11,65 93,30 8,62 93,30 6,55
Wine 90,01 10,6 90,90 10,54 90,90 39,75 90,90 12,64 90,90 9,26 90,10 4,09
Avg. 78,31 23,9 77,39 21,39 78,67 53,47 78,78 30,10 78,17 9,39 77,28 8,81

 Fast k Most Similar Neighbor Classifier for Mixed Data 371

5 Conclusions

In this work, a fast approximate k-MSN classifier for mixed data, based on a tree
structure and an approximating-eliminating approach, not based on metric properties,
was proposed. In order to compare our classifier, FN, MS, ONC, AESA, LAESA,
iAESA, probabilistic iAESA, TLAESA, and ModTLAESA classifiers were imple-
mented using the same prototype comparison function for mixed data. Based on our
experimental results, it is possible to conclude that, the proposed classifier obtained a
similar accuracy, but it needed the smallest number of prototype comparisons.

As future work, we are going to look for other elimination criteria, which could
improve the performance of the proposed classifier.

References

1. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. Trans. Information The-
ory 13, 21–27 (1967)

2. Vidal, P.E.: An algorithm for finding nearest neighbours in (approximately) constant aver-
age time complexity. Pattern Recognition Letters 4, 145–157 (1986)

3. Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and
eliminating search algorithm (AESA) with linear preprocessing-time and memory re-
quirements. Pattern Recognition Letters 15, 9–17 (1994)

4. Figueroa, K., Chávez, E., Navarro, G., Paredes, R.: On the least cost for proximity search-
ing in metric spaces. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp.
279–290. Springer, Heidelberg (2006)

5. Mico, L., Oncina, J., Carrasco, R.: A fast Branch and Bound nearest neighbor classifier in
metric spaces. Pattern Recognition Letters 17, 731–739 (1996)

6. Tokoro, K., Yamaguchi, K., Masuda, S.: Improvements of TLAESA nearest neighbor
search and extension to approximation search. In: ACSC 2006: Proceedings of the 29th
Australian Computer Science Conference, pp. 77–83 (2006)

7. Fukunaga, K., Narendra, P.: A branch and bound algorithm for computing k-nearest
neighbors. IEEE Trans. Comput. 24, 743–750 (1975)

8. Moreno-Seco, F., Mico, L., Oncina, J.: Approximate Nearest Neighbor Search with the
Fukunaga and Narendra Algorithm and its Application to Chromosome Classification. In:
Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 322–328.
Springer, Heidelberg (2003)

9. Oncina, J., Thollard, F., Gómez-Ballester, E., Micó, L., Moreno-Seco, F.: A Tabular Prun-
ing Rule in Tree-Based Fast Nearest Neighbor Search Algorithms. In: Martí, J., Benedí,
J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 306–313.
Springer, Heidelberg (2007)

10. García-Serrano, J.R., Martínez-Trinidad, J.F.: Extension to C-Means Algorithm for the use
of Similarity Functions. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI),
vol. 1704, pp. 354–359. Springer, Heidelberg (1999)

11. Hernández-Rodríguez, S., Martínez-Trinidad, J., Carrasco-Ochoa, A.: Fast k Most Similar
Neighbor Classifier for Mixed Data Based on a Tree Structure. In: Rueda, L., Mery, D.,
Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 407–416. Springer, Heidelberg (2007)

12. Blake, C., Merz, C.U.: Repository of machine learning databases. Department of Informa-
tion and Computer Science, University of California, Irvine, CA (1998),
http://www.uci.edu/mlearn/databases/

	Fast k Most Similar Neighbor Classifier for Mixed Data Based on a Tree Structure and Approximating-Eliminating
	Introduction
	Comparison Functions for Mixed Data
	Proposed Classifier
	Preprocessing Phase
	Classification Phase of Tree AEDM

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

