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Abstract. The aim of this paper is to present a strategy by which a new philoso-
phy for pattern classification pertaining to dissimilarity-based classifiers (DBCs)
can be efficiently implemented. Proposed by Duin and his co-authors, DBCs are
a way of defining classifiers among classes; they are not based on the feature
measurements of individual patterns, but rather on a suitable dissimilarity mea-
sure among the patterns. The problem with this strategy is that we need to select
a representative set of data that is both compact and capable of representing the
entire data set. However, it is difficult to find the optimal number of prototypes
and, furthermore, selecting prototype stage may potentially lose some useful in-
formation for discrimination. To avoid these problems, in this paper, we propose
an alternative approach where we use all available samples from the training set
as prototypes and subsequently apply dimensionality reduction schemes. That is,
we prefer not to directly select the representative prototypes from the training
samples; rather, we use a dimensionality reduction scheme after computing the
dissimilarity matrix with the entire training samples. Our experimental results
demonstrate that the proposed mechanism can improve the classification accu-
racy of conventional approaches for two real-life benchmark databases.

Keywords: Dissimilarity Representation, Dissimilarity-based Classification, Di-
mensionality Reduction Schemes, Appearance-based Face Recognition.

1 Introduction

One of the most recent and novel developments in the field of statistical pattern recogni-
tion (PR) [1] is the concept of dissimilarity-based classifiers (DBCs) proposed by Duin
and his co-authors [2]. DBCs are a way of defining classifiers among the classes; and
the process is not based on the feature measurements of individual patterns, but rather
on a suitable dissimilarity measure among the individual patterns. The major questions
we encountered when designing DBCs are summarized as follows: (1) how to select
prototypes; (2) how to measure dissimilarities between object samples; and (3) how to
design classifiers in the dissimilarity space. Several strategies have been used to explore
these questions [3], [4], [5]. The details of the strategies are omitted here, but we now
attempt to explain the first question in the present paper.

Various methods have been proposed in the literature as a means of selecting a rep-
resentative set of data that is both compact and capable of representing the entire data
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set. To select the representative set, Duin and his colleagues [3] discussed the follow-
ing methods : Random, RandomC, KCentres, ModeSeek, LinProg, FeatSeal, KCentres-
LP, and EdiCon. In these methods, a training set, T , is pruned to yield a set of rep-
resentative prototypes, Y , where, without loss of generality, |Y | ≤ |T |. On the other
hand, by invoking a prototype reduction scheme (PRS), Kim and Oommen [5] also ob-
tained a representative subset, Y , which is utilized by the DBC. Aside from using PRSs,
Kim and Oommen simultaneously proposed the use of the Mahalanobis distance as the
dissimilarity-measurement criterion. With that criterion, they were able to increase the
classification accuracy of DBCs by using the second-order properties of the data.

In DBCs, a good selection of prototypes seems to be crucial to succeed with the
classification algorithm in the dissimilarity space. The prototypes should avoid redun-
dancies in terms of selection of similar samples, and prototypes should include as much
information as possible. However, it is difficult for us to find the optimal number of
prototypes. Furthermore, there is a possibility that we lose some useful information for
discrimination when selecting the prototypes [6],[7]. To avoid these problems, we pro-
pose an alternative approach where we use all available samples from the training set
as prototypes (i.e., Y = T ) and subsequently apply dimensionality reduction schemes.
That is, we prefer not to directly select the representative prototypes from the training
samples; rather, we use dimensionality reduction schemes after computing the dissim-
ilarity matrix with the entire training samples This approach is more principled and
allows us to avoid the problem of finding the optimal prototype selection strategy [7].

The main contribution of this paper is to demonstrate that dissimilarity-based clas-
sification can be optimized by employing a dimensionality reduction scheme. This has
been done by performing the reduction technique after computing the dissimilarity ma-
trix with the entire training samples. Here, the dimensionality reduction scheme is used
to accommodate some useful information for discrimination and to avoid the problem
of finding the optimal prototype selection strategy. The remainder of the paper is orga-
nized as follows: In Section 2, we present a brief overview of dissimilarity representa-
tion and dimensionality reduction and a schema for the proposed solution. In Section 3,
we present the experimental results of two real-life benchmark databases. In Section 4,
we present our concluding remarks.

2 Optimizing DBCs with DRS

Foundations of DBCs: A dissimilarity representation of a set of samples, T = {xi}n
i=1

∈ �d, is based on pairwise comparisons and is expressed, for example, as an n × m
dissimilarity matrix DT,Y [·, ·], where Y = {y1, · · · , ym}, a prototype set, is extracted
from T and the subscripts of D represent the set of elements on which the dissimilarities
are evaluated. Thus each entry DT,Y [i, j] corresponds to the dissimilarity between the
pairs of objects 〈xi, yj〉, where xi ∈ T and yj ∈ Y . Consequently, an object xi is
represented as a column vector as follows:

[d(xi, y1), d(xi, y2), · · · , d(xi, ym)]T , 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix DT,Y [·, ·] is defined as a dissimilarity space on which the
d-dimensional object, x, given in the feature space, is represented as an m-dimensional



On Using Dimensionality Reduction Schemes to Optimize DBCs 311

vector δ(x, Y ), where if x = xi, δ(xi, Y ) is the i-th row of DT,Y [·, ·]. In this paper,
the column vector δ(x, Y ) is simply denoted by δY (x).

A conventional algorithm for DBCs is summarized in the following:

1. Select the representative set, Y , from the training set, T , by resorting to one of the
prototype selection methods as described in [3], [5].

2. Using Eq. (1), compute the dissimilarity matrix, DT,Y [·, ·], in which each individ-
ual dissimilarity is computed on the basis of the measures described in [3], [5].

3. For a testing sample, z, compute a dissimilarity column vector, δY (z), by using
the same measure used in Step 2.

4. Achieve the classification by invoking a classifier built in the dissimilarity space
and by operating the classifier on the dissimilarity vector, δY (z).

From these four steps, we can see that the performance of the DBCs relies heavily
on how well the dissimilarity space, which is determined by the dissimilarity matrix,
DT,Y [·, ·], is constructed. To improve the performance, we need to ensure that the dis-
similarity matrix is well designed.

Dimensionality Reduction Schemes: Various strategies have been used to tackle the
“dimensionality reduction” problem (some of them are [8], [10], [11], [12], [13], [14],
[15], [16], [17], and [18]). To optimize DBCs, in this paper, we use a strategy of re-
ducing the dimensionality after computing the dissimilarity matrix. With regard to re-
ducing the dimensionality of the dissimilarity matrix, we make use of the well-known
dimensionality reduction schemes (DRSs) proposed in the literature. In the interest of
completeness, we now offer a brief introduction of DRSs1. The most well-known one of
these is the Principal Component Analysis (PCA) to compute the basis (eigen) vectors
by which the class subspaces are spanned, thus retaining the most significant aspects of
the structure in the data [1]. While PCA finds components that are efficient for repre-
sentation, the class of Linear Discriminant Analysis (LDA) strategies seek features that
are efficient for discrimination [1]. Being essentially linear algorithms, neither PCA nor
LDA can effectively classify data which is inherently nonlinear. Consequently, numer-
ous LDA-extensions including two-stage LDA [8], direct LDA [10], kernel-based LDA
[11], discriminative common vectors (DCV) [12], and other new approaches [13], [14],
[15] have been proposed in the literature. Beside these, to discover the nonlinear man-
ifold structure, various techniques including LLE (Locally Linear Embedding) [16],
LLDA (Locally Linear Discriminant Analysis) [17], and MDA (Mixture Discriminant
Analysis) and its variants [18], [19] have been proposed. The details of these methods
are omitted here in the interest of compactness, but can be found in the literature.

Schema for the Proposed Solution: As mentioned earlier, there are several ways by
which the classification efficiency of DBCs can be optimized. In our method of opti-
mizing DBCs, we use a strategy of reducing the dimensionality after computing the
dissimilarity matrix with the entire training samples. The basic strategy is to solve the
classification problem by first computing the dissimilarity matrix with the entire train-
ing samples and then reducing its dimensionality with the DRS; finally, DBCs are de-
signed on the dissimilarity space to reduce the classification error rates.

1 Our overview is necessarily brief, but additional details can be found in [1], [8], [10], and [15].
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An optimized algorithm for DBCs is summarized in the following:

1. Select the entire training samples T as the representative set Y .
2. Using Eq. (1), compute the dissimilarity matrix, DT,T [·, ·], in which each individ-

ual dissimilarity is computed on the basis of the measures described in [2], [5]. After
computing the DT,T [·, ·], reduce its dimensionality by invoking a DRS.

3. This step is the same as Step 3 in DBC (see the previous section).
4. This step is the same as Step 4 in DBC.
The rationale of this strategy is presented in a later section together with the experi-

mental results.

3 Experimental Results

Experimental Data: The proposed strategy was tested and compared with conven-
tional methods by conducting experiments on the two well-known benchmark databases
“AT&T” and2, “Yale”3. The face database of AT&T, formerly known as the ORL
database of faces, consists of ten different images of 40 distinct subjects for a total
of 400 images. The size of each image is 112 × 92 pixels for a total dimensionality of
10304. The face database termed as Yale contains 165 gray scale images of 15 individ-
uals. The size of each image is 243 × 320 pixels for a total dimensionality of 77760. In
this experiment, to reduce the computational complexity, facial images of AT&T and
Yale databases were down-sampled into 56 × 46 and 61 × 80, respectively, and then
represented by a centered vector of normalized intensity values.

Experimental Method: All our experiments were performed with a “leave-one-out”
strategy. To classify an image, we removed the image from the training set and com-
puted the dissimilarity matrix with the n−1 images. This process was repeated n times
for every image, and a final result was obtained by averaging the results of each image.

To construct the dissimilarity matrix, we first selected all training samples as the
representative set. We then measured the dissimilarities between each sample and the
prototypes. For this measurement, we used a conventional measurement system, such
as Euclidean distance (ED), Hamming distance (HD), regional distance (RD) [9], or
spatially weighted gray-level Hausdorff distance (WGHD) [4]. After computing the
dissimilarity matrix, we reduced the dimensionality of the matrix with a DRS, such as
PCA [8], direct LDA [10], PCA-plus- LDA [8], LDA-plus-KFT [15], or DCV [12]. In
a subsequent section these systems are named as PCA, LDA, PCALDA, LDAKFT, and
DCV, respectively. In the PCA, LDA, LDAKFT, and DCV approaches, we reduced the
dimension n − 1 to c − 1, where n is the total number of training samples and c is
the number of classes. In the PCALDA method, we reduced the dimensionality in two
steps: first we reduced the dimension n − 1 into an intermediate dimension n − c using
PCA; we then reduced the n − c to c − 1 using LDA4. In the conventional methods
of Random, RandomC, KCentres, and ModeSeek, on the other hand, we selected c − 1
samples from the training data set as the prototypes of DBCs.

2 http://www.uk.research.att.com/facedatabase.html
3 http://www1.cs.columbia.edu/ belhumeur/pub/images/yalefaces
4 Similar to the approaches with prototype selection methods, the number of dimensions is not

given beforehand. Thus, the problem of selecting the optimal dimension remains unresolved.
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To maintain the diversity between the dissimilarity-based classifications, we de-
signed different classifiers, such as the k-nearest neighbor classifiers (k = 1, 3, 5, 7),
the nearest mean classifiers, the support vector classifier, and the regularized normal
density-based linear/quadratic classifiers. These classifiers, which were implemented
with PRTools5, are denoted in the next section as 1-NN, 3-NN, 5-NN, 7-NN, NMC,
SVC, RLDC, and RQDC, respectively. Here, SVC is a support vector classifier that
employs the most widely used RBF kernel function.

Experimental Results: The run-time characteristics of the proposed strategy for AT&T
and Yale are reported below. The classification accuracy rates (%) of the DBCs are first
illustrated in graphs. A numerical comparison of the processing CPU-times (seconds)
is then made in relation to the conventional methods and the proposed strategy.

Figure 1 shows a comparison of the classification accuracy rates (%) for the AT&T
and Yale databases. These pictures confirm the possibility of improving the perfor-
mance of DBCs by effectively reducing the dimensionality. The improvement can be
seen by observing how the classification accuracy rates (%) change. For example, in
Figure 1 (a), (b), (c), and (d), for almost all the nonparametric classifiers, namely 1-NN,
3-NN, 5-NN, 7-NN, NMC, and SVC, the classification results of the proposed reducing
methods of PCA, LDA, PCALDA, LDAFKT, and DCV (which are marked as ◦, ×, +,
∗, and 	, respectively) are significantly more accurate than those of the conventional re-
ducing methods of Random, RandomC, KCentres, and ModeSeek (which are indicated
as 
, �, �, and �, respectively)6. For the parametric classifiers RLDC and RQDC, the
classification results of the proposed strategy are also marginally accurate than those of
the conventional methods. The same trend is evident in Figure 1 (e), (f), (g), and (h),
which were obtained with the Yale database. The description of the results is omitted
here to avoid repetition. However, with the proposed strategy, some classifiers failed
to improve their classification accuracies. The problem of theoretically analyzing this
observation remains unresolved.

In general, increasing the cardinality of the representative subset improves the aver-
age classification accuracy of the resultant DBCs. To further investigate the advantage
of using the proposed strategy, we repeated the above experiment again for the bench-
mark databases. However, the DBCs were designed in the dissimilarity matrices con-
structed with the cardinality of 2c, not c − 1. The details of the experimental results are
omitted here in the interest of compactness, but we observed the same characteristics
as in Figure 1. Although the dimensionality of the dissimilarity matrix increase by two
times, for all the nonparametric classifiers, namely 1-NN, 3-NN, 5-NN, 7-NN, NMC,
and SVC, the classification results of the proposed strategy are more accurate than (or,
for some classifiers, almost the same as) those of the conventional methods.

Using the whole training set as prototypes leads to higher computational complex-
ity as more distances have to be calculated. In comparing the conventional and new
schemes, rather than embark on yet another analysis of the computational complexity
of the latter, we simply measured the processing CPU-times (seconds) of the DBCs for
the real benchmark databases. Table 1 shows a comparison of the averaged processing

5 PRTools is a MATLAB toolbox for pattern recognition (refer to http://www.prtools.org/).
6 In Wholeset method, the entire training data set T is selected as a representative subset Y . The

result of the method (which is identified as a hexagonal symbol) is included as a reference.
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Fig. 1. A comparison of the classification accuracies for the AT&T and Yale databases: (a) top
left, (b) top right, · · ·, (g) bottom left, and (h) bottom right; (a) - (d) are for AT&T and (e) - (h)
are for Yale. The measuring methods of ED, HD, RD, and WGHD have been used to construct,
respectively, the dissimilarity matrices of (a) and (e), (b) and (f), (c) and (g), and (d) and (h).
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Table 1. A comparison of the averaged processing CPU-times (seconds) of DBCs for the AT&T
and Yale databases. Each number of the table is obtained by averaging the results of five iterations
on a Windows platform (CPU: 2.40 GHz, RAM: 2GB).

Experimental AT&T Yale
Methods ED HD RD WGHD ED HD RD WGHD

PCA 1893.62 1899.91 1635.32 1589.48 37.17 38.19 36.16 43.10
LDA 195.50 239.88 334.60 360.62 3.68 3.73 3.65 3.67

PCALDA 3020.88 2957.91 2872.92 2965.47 28.80 28.42 28.11 42.76
LDAFKT 1373.62 1407.51 1406.44 1387.25 15.41 15.36 15.82 32.30

DCV 743.25 769.88 726.86 746.91 14.49 14.55 13.69 15.10
Random 3.83 3.92 3.96 3.96 0.16 0.16 0.19 0.16

RandomC 4.79 4.80 5.02 5.01 0.35 0.36 0.34 0.36
KCentres 344.70 336.32 377.30 377.05 27.52 30.36 29.62 39.83
ModeSeek 49.66 53.90 53.54 53.54 6.92 6.92 6.87 6.30

CPU-times (for the process of dimensionality reduction or prototype selection) of DBCs
for the AT&T and Yale databases. Table 1 shows that the processing CPU-times (sec-
onds) increased when the proposed technique was applied. An example of this change
is the processing times of ED measuring method for AT&T. The processing times of
the PCA, LDA, PCALDA, LDAFKT, and DCV methods are, respectively, 1893.62,
195.50, 3020.88, 1373.62, and 743.25, while those of Random, RandomC, KCentres,
and ModeSeek are, respectively, 3.83, 4.79, 344.70, and 49.66. The same characteristic
could also be observed in the HD, RD, WGHD measuring methods. The results of Yale
are omitted here again to avoid repetition.

In review, the experimental results show that when the proposed strategy was applied
to the dissimilarity representation, the classification accuracies of DBCs increased, but
the processing CPU-times also increased. In addition, in terms of classification accura-
cies, the proposed strategy is clearly more useful for the nonparametric classifiers, such
as k-NN and SVC, but not for the parametric classifiers, such as RLDC and RQDC.

4 Conclusions

In our efforts to optimize DBCs, we used dimensionality reduction schemes instead of
selecting a representative set of data. Rather than deciding to discard or retain the train-
ing points with the prototype selection method, we reduced the dimensionality after
computing the dissimilarity matrix with the entire training samples. This approach over-
comes the problems caused by finding the optimal number of prototypes. The proposed
strategy was tested on two well-known benchmark databases, and the results were com-
pared with the results of conventional methods. The experimental results demonstrate
that the proposed strategy is better than conventional methods in terms of classifica-
tion accuracy. Although we have shown that DBCs can be optimized with our proposed
strategy, many tasks remain unchallenged. One of them is to reduce the processing
CPU-time by developing a new dimensionality reduction scheme in the dissimilarity
space. Our aim is to conduct further research on this subject in the future.



316 S.-W. Kim and J. Gao

References

1. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans.
Pattern Anal. and Machine Intell. PAMI 22(1), 4–37 (2000)

2. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foun-
dations and Applications. World Scientific Publishing, Singapore (2005)

3. Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based classifiers.
Pattern Recognition 39, 189–208 (2006)

4. Kim, S.-W.: Optimizing dissimilarity-based classifiers using a newly modified Hausdorff dis-
tance. In: Hoffmann, A., Kang, B.-h., Richards, D., Tsumoto, S. (eds.) PKAW 2006. LNCS
(LNAI), vol. 4303, pp. 177–186. Springer, Heidelberg (2006)

5. Kim, S.-W., Oommen, B.J.: On using prototype reduction schemes to optimize dissimilarity-
based classification. Pattern Recognition 40, 2946–2957 (2007)

6. Riesen, K., Kilchherr, V., Bunke, H.: Reducing the dimensionality of vector space embed-
dings of graphs. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 563–573.
Springer, Heidelberg (2007)

7. Bunke, H., Riesen, K.: A family of novel graph kernels for structural pattern recognition. In:
Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 20–31. Springer,
Heidelberg (2007)

8. Belhumeour, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recogni-
tion using class specific linear projection. IEEE Trans. Pattern Anal. and Machine Intell.
PAMI 19(7), 711–720 (1997)

9. Adini, Y., Moses, Y., Ullman, S.: Face Recognition: The problem of compensating for
changes in illumination direction. IEEE Trans. Pattern Anal. and Machine Intell. PAMI 19(7),
721–732 (1997)

10. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data - with application to face
recognition. Pattern Recognition 34, 2067–2070 (2001)

11. Yang, M.-H.: Kernel eigenfaces vs. kernel Fisherfaces: Face recognition using kernel meth-
ods. In: Proceedings of 5th IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp.
215–220 (2002)

12. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face
recognition. IEEE Trans. Pattern Anal. and Machine Intell. PAMI 27(1), 4–13 (2005)

13. Loog, M., Duin, R.P.W.: Linear dimensionality reduction via a heteroscedastic extension of
LDA: The Cherno criterion. IEEE Trans. Pattern Anal. and Machine Intell. PAMI 26(6),
732–739 (2004)

14. Rueda, L., Herrera, M.: A new approach to multi-class linear dimensionality reduction.
In: Martı́nez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS,
vol. 4225, pp. 634–643. Springer, Heidelberg (2006)

15. Zhang, S., Sim, T.: Discriminant subspace analysis: A Fukunaga-Koontz approach. IEEE
Trans. Pattern Anal. and Machine Intell. PAMI 29(10), 1732–1745 (2007)

16. Roweis, S., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000)

17. Kim, T.-K., Kittler, J.: Locally linear discriminant analysis for multimodally distributed
classes for face recognition with a single model image. IEEE Trans. Pattern Anal. and Ma-
chine Intell. PAMI 27(3), 318–327 (2005)

18. Frley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-
based cluster analysis. The Computer Journal 41(8), 578–588 (1998)

19. Halbe, Z., Aladjem, M.: Model-based mixture discriminant analysis - An experimental study.
Pattern Recognition 38, 437–440 (2005)


	On Using Dimensionality Reduction Schemes to Optimize Dissimilarity-Based Classifiers
	Introduction
	Optimizing DBCs with DRS
	Experimental Results
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




