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Abstract. As a consequence of the growing number of older and vul-
nerable people, health and care providers are increasingly considering
new approaches to support people in their own homes. In this context,
lifestyle reassurance analyses data collected from a range of sensors to
determine a person’s ‘routine’ and highlights any important changes.
This paper proposes a new approach for detection of individual devia-
tion from normal behaviour focusing on building probabilistic models of
behaviour based on a set of activity attributes. Models are trained using
only normal behaviour. Variations from the models are considered as ab-
normal behaviours and these can be highlighted for subsequent review
or intervention. Case study experiments with real life data suggest that
some users’ activities follow regular patterns and that these patterns can
be learned with probabilistic models.
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1 Introduction

Faced throughout much of the world with aging populations, health and care
providers are considering new approaches to health and care provision, including
the use of telecare to support growing numbers of older or vulnerable people.
Telecare can be defined as the delivery of health and social care services to
people in their own home by means of telecommunications and computer-based
systems [2]. Lifestyle reassurance (sometimes called lifestyle monitoring) can then
be considered to be subset of telecare where deviations from ‘normal’ patterns
of behaviour are sought to determine that an intervention may be beneficial for
the user; for example, following a change in sleep pattern. When applied in a
home setting, activity is recorded by a range of sensors for motion detection,
space and storage utilisation, and appliance use, located throughout the home.
Data from these sources enables the establishment of what can be considered
a normal profile of behaviour. Deviations and variations from this established
norm can then be detected so that early signs of deteriorating health or quality
of life can be investigated and an appropriate intervention provided.
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One of the key issues in building such a system is to establish an accurate
representation of normal behaviour. This paper explores a way of building prob-
abilistic models of normal behaviour using historical lifestyle reassurance data.
It also shows how these models could be used to detect variations from the norm,
and the subsequent possibility that additional care and support may be required.

Various publications have addressed the problem of lifestyle activity or be-
haviour recognition [1,9,12], yet relatively little effort has focused on abnormal-
ity detection in the context of lifestyle reassurance, with some noticeable excep-
tions [8,10,11]. The methods presented in these three papers can fall into the
broad category of histogram based approaches. Virone et. al. [10,11] presented
an approach where, for each hour of the day, the average proportion of time
spent within a specific room is estimated. Large deviations from this proportion
are considered as abnormal. The system proposed by Ohta et. al. [8] is based on
a similar concept, except that the average time spent in each room is estimated
for each day (not each hour) and they also propose to monitor other variables
such as the daily distance moved by a person.

The approach suggested in this paper is based on, what we define as a Proba-
bilistic Model of Behaviour (PMB). A set of attributes or features is associated
with each occurrence of this type of activity and a probabilistic model of this
type activity is learned from historical data. Deviation from the model is then
considered as abnormal.

In the proposed approach, daily activities are detected using rule based al-
gorithms, each activity being associated with a set of attributes. Using auto-
matically detected activity occurrences in historical data (the training set), the
parameters of the Gaussian mixture model (GMM) are learned for each type of
activity. Using the test set, when an activity is detected, the activity likelihood
given the model of this type of activity can be estimated, providing an opinion on
whether this can be considered to be normal behaviour. Comparing likelihoods
to a pre-set threshold can then be used to generate alerts when interventions for
a specific user may be beneficial.

A previous 12 month evaluation of a commercial system conducted by the
authors provides a significant source of lifestyle reassurance data [3] on which to
test the suggested approach.

2 Proposed Approach

2.1 Abnormal Behaviour Detection

Automatic detection of abnormal behaviour is challenging due to the nature
of such abnormal behaviour, which is, by definition, rare and unexpected. It
has attracted attention in a variety of fields, such as computer vision [13], fault
detection in engine turbines [7] and telephone fraud detection [6]. A groundwork
on activity monitoring is presented in [6] where the authors differentiate two
main groups of methods:
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– Profiling methods that build a model of normality. It is then possible to de-
tect any deviation from this model. The approaches presented by Tarassenko
et. al. [7] and Virone et. al. [10,11] fall into this category.

– Discriminating methods that build a model which is trained to discriminate
an abnormal activity from a normal activity. It is assumed that abnormal
events have occurred before (in the training set). The approaches presented
by Zhang et. al. [13] and Chan et. al. [4] fall into this category.

While it might be possible to build discriminative models of abnormality for
some applications (eg. mobile phone fraud detection [6]), in a lifestyle reassur-
ance scenario, abnormal behaviour can occur in countless forms and it therefore
appears problematic to be able to build a good generic model of abnormality.

Consequently we have chosen to build statistical descriptions of normality by
including historical data which can be regarded as representing normal behaviour
and then detecting any deviation from these models (profiling approach). The
primary advantage of this approach lies in being able to detect abnormality, even
when this had not previously been seen or expected.

Fawcett et. al. [6] also differentiate uniform profiling that builds a general
profile of normal activity, assuming it is uniform across the users and individual
profiling that builds a profile of normal activity of each user. We show in Sec-
tion 4.1 that for our task, behaviours are not uniform across users and therefore
opt for an individual profiling strategy.

In the context of lifestyle reassurance, it can be expected that deviations from
normal behaviours is an indicator of the need for care or assistance, however we
acknowledge that it is not necessarily always the case that an abnormal behaviour
requires a health or care intervention.

2.2 Probabilistic Formulation

This section sets out a probabilistic formulation of abnormal behaviour detec-
tion. Where such abnormal behaviour is defined as a behaviour that deviates
from normality. Let us denote the parameter set λ describing a normal behaviour.
Given a new observed behaviour x defined by a set of I attributes ai, we find
the likelihood of this behaviour to be a normal behaviour P (x|λ). In practice,
likelihoods are usually compared in log domain in order to avoid computer un-
derflow problems. An opinion on the behaviour to be a normal behaviour is thus
estimated with the log-likelihood:

Λ(x) = log(P (x|λ)) (1)

A decision can then be taken whether to raise an alert which requires an
intervention based on the Λ(x) value. Given a pre-set threshold τ , the behaviour
is considered as a normal behaviour if Λ(x) > τ and as an abnormal behaviour
if Λ(x) ≤ τ . The thresholds can be set as a function of mean and standard
deviation of the log-likelihoods resulting from the training set such as:

τ = m(Λtrain) − α · std(Λtrain) (2)
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where m(Λtrain) and std(Λtrain) are respectively the mean and the standard
deviation of the log-likelihoods from the training set Λtrain and α is a value that
sets the sensitivity of the system.

Note that Virone et. al. [10,11] propose to set several thresholds values corre-
sponding to different levels - indicating different priorities and/or responses to
the end user. Another possibility would be to raise an alert only when several
behaviours have exceeded the threshold more than a pre-set number of times
during a specific period of time. Also the thresholds value can be re-set over
time using recently collected data. However, this paper focuses on the modelling
of behaviour and other aspects are outside the scope of this paper.

2.3 Gaussian Mixture Models

The main challenge of this approach is to find a good probabilistic model of be-
haviour to describe normality. In this paper it is proposed to model normal be-
haviour with Gaussian mixture model (GMM). Assuming that a set of behaviour
can be modelled as a mixture of Ng gaussian distributions, the likelihood of an
individual behaviour can be estimated as

P (x|λ) =
NG∑

k=1

wkN (x|μk, Σk) (3)

λ = {wk, μk, Σk}NG

k=1 (4)

Here, N (x|μk, Σk) is a D-dimensional Gaussian density function [5] with mean
μk and diagonal covariance matrix Σk. NG is the number of Gaussians and wk is
the weight for Gaussian k. The parameters for the generic model are estimated
using maximum likelihood criterion. In other words we find the model parameters
that fit the best normal behaviour data used to train the model. This is achieved
by Expectation Maximization algorithm [5].

GMMs have been previously used in the context of lifestyle reassurance by
Barger et. al. [1], however, while their approach presents some similarity with
that being proposed, the objectives are different. Indeed, while our main objec-
tive is to find deviation from normal behaviour, in [1], the authors use a GMM
as an unsupervised clustering technique in order to recognise activities.

3 Lifestyle Reassurance Data

3.1 Setup

After the appropriate ethical approval and consents, a lifestyle reassurance sys-
tem was installed in a UK sheltered housing scheme with 24 users. The system
consisted of bed and chair occupancy sensors, passive infra-red movement detec-
tors, door contact monitors, and electrical usage sensors. The sensor activations
were sent via a telephone line to a central server [3]. The resulting data were split
into two sets, namely a training set and a test set. The training set is composed
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of 26 weeks of data and is used for preliminary data analysis and models train-
ing. The test set comprises 8 weeks of data and is used to observe abnormalities
by detecting variations from the trained model.

3.2 Observations

An observation represents a lifestyle activity occurrence that can be identified
with series of sensor activations. Activities can be, for example, movement in
the kitchen, TV usage, usage of another electrical appliance, and so on. Conse-
quently, an observation is a first level of interpretation of the raw data (sensor
activations). A set of attributes can be associated with each observation. Among
the possible attributes are:

– Start time: Time of day the observation took place.
– Duration: Amount of time the behaviour was observed for.
– Weekend or Weekday: Which day type it occurred on.
– Activity Level: Number of sensors triggered during the observation.

The determination of the list of behaviours to monitor, as well as their associated
attributes, in order to maximise the quality of life and health of the user is the
subject of ongoing studies by the authors.

Another parameter often regarded as a good indicator for lifestyle reassurance
is the frequency of observation. The frequency of an activity is defined by the
number of times the behaviour was observed during a specific time period.

While this paper intends to present a general approach for lifestyle reassurance
data modelling, the results presented in Section 4 focus on the modelling of sleep
pattern and television usage. These activities are defined by their start time and
duration.

Rule-based algorithms are used to detect these activities. For example, a sleep-
ing period is detected when a bed sensor “in” event is observed followed by a
sensor “out” event and the duration (ie. time lapse between these two events)
is longer than 30 minutes. The start time is then defined as the “in” event and
is stored as a real value representing the number of hours since midnight. The
duration is stored as a real value representing the number of minutes between
“in” and “out” events. It is assumed that the user is sleeping when the bed is
occupied for more than 30 minutes. As a result of this algorithm, we can build
a dataset X composed of a list of activities xn:

X = {xn}N
1 (5)

where N is the number of detected activities and xn are the activity vectors
defined by a set of attribute ai.

xn = [a1, a2, . . . , aI ] (6)

Figure 1 shows a graphical representation of an example of detected activities
for one user over a single week. As an example, the first detected sleeping period
on the graph starts at 01:55 (a1 = 1.91) and last for 3.5 hours (a2 = 210.7).
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Fig. 1. Detected TV Usage and Sleeping activities for one user over a single
week. Each horizontal stripe represents a single activity occurrence. Several sleeping
periods can be detected in a single night if the user gets out of bed during night.

4 Results

The case studies present results for Sleeping and TV Usage activities. Each
Feature vector xn (see equation 6) representing a detected activity is defined
with start time and duration attributes. The case study is presented for two
users randomly chosen among those where a TV electrical appliance sensor and
a bed sensor were installed.

4.1 Data Analysis

Figure 2 shows plots of sleeping and TV Usage activities represented by start
time and duration for two users. It can be seen that for both of these activities
and for both users some regular behaviour patterns are evident as well as a
dependency between start time and duration. For example, the user A appears
to have two main sleeping periods: the first tends to start between 10pm-11pm

Fig. 2. Activity Patterns. Plots of sleeping (top) and TV usage (bottom) activities
represented by start time and duration for two users. Each point represents a detected
activity occurrence.
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Fig. 3. Gaussian mixtures along with train and testing data plots of sleeping
(top) and TV usage (bottom). Activities from the training set are represented with a
cross symbol while activities from the test set are represented with triangles. Gaussians
are represented by ellipses. The ellipse is centred at the mean μ of the Gaussian, the
size of the ellipse in each dimension represents the variances Σ and the width of the
line represents the weight w of the Gaussian k.

and last for about 7.5 hours (450 minutes) and the second starts at around
6am and last for about 50 minutes. This suggests the user gets up for a short
while and then goes back to bed.

The observed dependency between attributes advocates that multidimensional
probability density functions to model the behaviour is more adapted than mod-
elling independently the different attributes with one-dimensional models. We
also notice that different users have different behaviour patterns which suggests
training user-specific model as opposed to user independent models.

4.2 Modelling Experiments

Following the approach presented in Section 2.3, GMM parameters (means, vari-
ances and weights) are learned using the 26 weeks of training data. We heuristi-
cally choose to train models with three Gaussians. Figure 3 shows the data plots
where Gaussians are represented by ellipses.

Table 1 reports the alert detection results on the test set where thresholds are
set with α = 3 (see equation 2). Only four alerts have been detected using the
chosen thresholds. By looking closely at these alerts we notice that the two alerts
on sleeping activity for user A and user E are both long sleeping periods starting
later than usual. The TV usage alert for user E is generated by a usage of the TV
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Table 1. Detected alerts on the test set

Λtrain Alerts
Number Time DurationActivity User mean std τ
of Alerts Start (min) Λ(x)

0 : 12 402 −17.85A −10.32 ±2.13 -16.7 2
23 : 43 357 −16.75Sleep

E −12.93 ±1.52 -17.4 1 0 : 09 381 −18.00
A −12.90 ±2.29 -19.8 1 8 : 21 302 −19.97TV
E −13.24 ±1.62 -18.1 0 - - -

occurring earlier than usual and that lasts for approximately five hours which is
not usual at that time of the day for this user.

This work is part of an ongoing project which is intended to form the basis
of a new approach to lifestyle reassurance. While experiments show examples of
generated alerts in real life situations, we were not able to assess the pertinence of
these alerts. Ongoing data collection with the real-time running of the algorithms
as well as feedback from the users will allow us to perform further evaluation of
the approach.

5 Conclusions

This paper proposed a novel framework for abnormality detection in the con-
text of lifestyle reassurance. The focus was in building probabilistic models of
behaviours (PMB) based on a set of activity attributes. The PMB are trained
using only normal behavioural data and variations from the models can be de-
tected to generate alerts.

Experiments based on real life case studies show that user activities follow
regular patterns that can be learned by the PMB and that individual deviation
from normality can be detected.

Compared with previously published works [10,11,8], where histogram based
approaches are used, the proposed approach has potential advantages as it
builds a model for each type of activity to monitor. Moreover, the use of multi-
dimensional GMMs assures that dependency between different attributes can be
taken into consideration (time and duration as presented in the case studies). As
an example, for a user, watching the TV for five hours and starting to watch TV
at 8am can each be normal if we consider these two attributes independently,
however it might be unusual to watch TV for five hours starting at 8am.

A limitation of the proposed method, where alerts are generated for a specific
activity occurrence, is that no alert is generated in case of absence of activity
occurrence. This problem can be tackled by generating alerts on activity fre-
quency which would lead to a combination between PMB and histogram based
approaches.

In future work, we will investigate the addition of more activity attributes
such as the activity level (ie. number of sensor activations during activity) and
activity frequency (which is the number of occurrences of an activity within
a given period of time). We will also explore the inclusion of a categorical or
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binary variable in an activity’s set of attributes such as week/week-end. Further
evaluation of the generated alerts and relationship to subsequent health or care
interventions, and how such information can be fed back into the system, is also
under consideration.
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