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Abstract. Cluster validation to determine the right number of clusters is an im-
portant issue in clustering processes. In this work, a strategy to address the 
problem of cluster validation based on cluster stability properties is introduced. 
The stability index proposed is based on information measures taking into ac-
count the variation on some of these measures due to the variability in cluster-
ing solutions produced by different sample sets of the same problem. The ex-
periments carried out on synthetic and real database show the effectiveness of 
the cluster stability index when the clustering algorithm is based on a data struc-
ture model adequate to the problem. 
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1   Introduction 

There exist in the literature different techniques aimed at discovering relationships 
among objects in a database. Clustering algorithms are one of these techniques used 
to infer properties of the data set, whose goal is to divide the data into groups so that 
objects of the same group are more similar than objects of different groups. One of 
the problems to be solved in a clustering process is the clustering model to be used, 
given the data set [2, 6]. Another important question is to assess the “natural” number 
of groups in a given data set, which is even more challenging when no clustering 
model is available. 

There exist several approaches to address the problem of determining the number 
of clusters, which uses different validity indices. Most of these approaches exploit the 
idea of within-cluster variability and the “elbow” phenomenon [1, 5, 7, 8]. Other 
methods focus on the “elbow” phenomenon, proposing statistical measures, like the 
gap statistic [9]. A comprehensive survey of methods for estimating the number of 
clusters is given in [4]. 

An alternative approach to asses the “natural” number of clusters is the so-called 
stability behaviour of the resulting clustering with respect to variations in the data 
sample used. The stability of the clustering solutions is then assessed by defining a 
variability measure of the clustering solutions. Most of the works based on cluster 
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stability try to assess this variability by measuring indices related to the ratios of  
objects or pair of objects that have not been included in the same partition by two 
different solutions of the clustering algorithm on two different samples [10], or using 
statistical tests on these variations [11], which usually need some parameter to be set 
to find the optimal solution for the number of clusters. 

Other approaches on cluster stability are based on a transfer by prediction strategy 
[3], using the prediction made by a given classifier trained on the resulting partitions 
of clustering solutions from different data samples. Apart from the need of choosing a 
certain type of classifier, this method involves a considerable computational burden, 
due to the assessment of all possible permutations label assignments of the clustering 
solutions. To avoid the dependency of the index proposed with respect to the number 
of clusters, this has to be normalised with respect to the cost of a random predictor. 

In the present work, we focus on the clustering stability approach to determining 
the “natural” number of clusters in a dataset, proposing a new strategy based on a 
cluster stability criterion based on information theory, modeling the partition of a data 
set as a noisy communication channel [12], exploiting the relationship of some infor-
mation measures with a pattern recognition problem. The proposed algorithm for 
cluster stability assessment tries to avoid the drawbacks of the transfer by prediction 
strategy and the need of setting-up parameters. The method presented is also aimed at 
assessing clustering solutions from any clustering model and algorithm. An open 
question would be the assessment of the clustering model that better fits a given data 
set, but this question will not be addressed in the present work. 

2   Measuring the Cluster Stability 

2.1   Channel Communication as a Pattern Recognition Problem 

Let X be the random variable distributed as p(x), representing the dataset in a  
d-dimensional space (x1,…,xd), and let Y be the random variable distributed as p(y) 
representing the k class labels, y∈{y1,…,yk}, of the objects in the database. 

A classification process can be modeled as a noisy communication channel [12], 
where the channel transition probability distribution can be represented by the class 
likelihoods p(x/y). The pattern recognition process is then represented by a set W of m 
possible messages w∈{w1,…,wm}, using a mn-code C(n)=(m,n) made by sequences of 
n label values yn, whose code values are distributed as the class labels p(y). When the 
sender sends a sequence yn, the receiver sees on the other side of the channel the cor-
responding sequence xn. The receiver then uses a decoding function g(xn):Xn→W, 
making a guess about the message sent g(xn)=w. 

In a pattern recognition problem, the decoding function can be represented by the 
decision rule. If we use the Bayes decision rule, then, the decoding function becomes 

{ } { }
1,..., 1,...,

( ) arg max ( / ) arg max ( / ) ( )j j j
j k j k

y g x p y x p x y p y
= =

= = =  (1) 

On the other hand, the channel capacity represented by p(x/y), is defined as the su-
preme of its possible achievable rates. According to the Channel Capacity Theorem 
[12] the channel capacity is provided by 
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( )
max ( ; )

p y
C I X Y=  (2) 

Li [13] showed that the mutual information I(X;Y) between the data distribution 
p(x) and the class distribution p(y) in a decision problem is related to the Bayes error 
R of the decision problem when using the decision rule (1) as 

( ) ( )21 1
( ) ( ; ) ( ) ( ; )

4( 1) 2
H Y I X Y R H Y I X Y

k
− ≤ ≤ −

−
 (3) 

where H(X) and H(Y) are the Shannon entropies of random variables X and Y, respec-
tively. Expression (3) provides a lower and an upper bound for the Bayes error. 
Therefore, if we can make an estimate of these information measures for a given pat-
tern recognition problem, we could have an estimate of these Bayes error bounds. 

2.2   Cluster Stability Assessment 

The approach here proposed is based on measure the transfer by prediction variability 
by means of information measures, as a way of assessing cluster stability. Variability 
on prediction will convey a variability of the decision error, the proposed method will 
estimate this variability by means of assessing the variation of some of the informa-
tion measures involving expression (3) and the decision rule (1). 

Let two different data samples be extracted by a statistically independent process, 
L1 and L2, drawn from the unknown true distribution p(x) representing the data. Let a 
clustering algorithm representing an optimization rule of a clustering model. For a 
given number of clusters k, the clustering algorithm will provide a partition solution 
of data sets L1 and L2, represented by distributions p1(y) and p2(y), respectively. 

Let us assume that, for a given number of clusters k, the data partition provided by 
the clustering algorithm over the true data distribution is represented by pk(y). There-
fore, if we fix Hk(Y) in expression (3), the variation due to two different clustering 
solutions in the estimation of the Bayes error bounds in expression (3) could be as-
sessed by estimating the variation in the mutual information due to the use of two 
different samples in the transfer by prediction between the corresponding two differ-
ent clustering solutions p1(y) and p2(y). 

In order to estimate the transfer by prediction variability, let us have a look to the 
mutual information measure Ik(X;Y) between the true data distribution X and the data 
partition of k clusters provided by the given clustering algorithm Y 

{ }( )

( / )
( ; ) ( ) ( / ) log ( ( / ) || ( ))

( )k p x
yx

p y x
I X Y p x p y x dx KL p y x p y

p y
= = Ε∑∫  (4) 

Previous expression can be interpreted as the expected value according to p(x), of 
the Kullback-Leibler divergence between the data partition distribution p(y) generated 
by the clustering algorithm in k different classes, and the posterior probabilities p(y/x) 
used in the decision rule (1). In order to make an estimation of Ik given the sample 
data sets L1 and L2 , let us assume data set L1 is used as an empirical estimate for the 
true data distribution p(x)≈p1(x), and the data partition of the clustering algorithm on 
L1 as an estimate for the data partition p(y)≈p1(y). Therefore, the empirical data distri-
bution of data set L1 containing N1 samples, can be expressed as 
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Then, expression (3) becomes 

1
1

1
11

( / )1
( ; ) ( / ) log

( )

N
i

k i
i y

p y x
I X Y p y x

N p y=

≈ ∑∑  (6) 

On the other hand, in order to make an estimate of the posteriors p(y/x), if we have 
used data sample L1 to estimate the true probability distribution and the data partition 
distribution, let us use data sample L1 and the labeling made by the partition solution 
provided by the clustering algorithm, as the test set, and data sample L2 , as a training 
set. Thus, the posteriors p(y/x) can be estimated using training set L2 and test set L1 as 

( )2 1 1 1 2 2 1( / ) ( ), ( ( ))i i ip y x y x y NN xδ=    (7) 

Where y1(x1i) is the class label assigned to sample x1i of data set L1 by the cluster-
ing algorithm, and NN2(x1i) is the nearest neighbor of x1i in the sample set L2. Eventu-
ally, the estimate of Ik(X;Y) using two independent data samples L1 and L2 , is  
expressed as 

1
2 1

2 1
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Since the estimate kI$  varies for different sample sets, it is a random variable. 
Thus, according to the law of large numbers, when the number of measurements tends 
to infinity, the expected value of this variable tends to the true value. For a finite 
number of measurements N, the true value of this variable concentrates around its 
mean with variance 2

kσ ,  

2 2( ( ))k kk I Iσ = Ε − Ε$ $  (9) 

The standard deviation σk will represent the cluster stability index of the algorithm 
for k clusters. This cluster stability index is an estimate of the variation of the transfer 
by prediction between N couples of clustering solutions, when partitioning every pair 
of independent sample sets into k clusters using a certain clustering algorithm. There-
fore, for a given clustering algorithm the correct number of clusters k* will be chosen 
as the number of clusters that minimize the stability index (9), that is, 

k
k

*k minσσ =  (10) 

3   Experimental Results 

In order to show the performance of the cluster validity index proposed, three types of 
databases were used. Two types of synthetic databases, one of them consists of Gaus-
sian clusters, and the other one consists of clusters of arbitrary shapes and sizes. A  
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third group of data consists of real databases. On the other hand, three different algo-
rithms of clustering are used in the experiments, the well known K-Means, the Gaus-
sian mixture model using EM (Expectation Maximization) and H-Density [6]. These 
algorithms correspond to three different models, where K-means looks for compact 
clusters around a mean, the Gaussian mixture model looks for Gaussian-shape clus-
ters and the H-Density is an agglomerative hierarchical algorithm based on data den-
sity estimates and a single link strategy for clusters of any shape. 

For each database used in the experiments, the experimental set-up consists  
of splitting randomly the database into two equal size sample sets L1 and L2 . For  
k=2, …,10 number of clusters, each of the clustering algorithm is run on data samples 
L1 and L2 , and the cluster stability index (10) is assessed on 10 different realisations 
of L1 and L2 . Inverting the role of L1 and L2 in the estimate of mutual information (8) 
provides an estimate of the stability index over N=20 realisations. 

3.1   Gaussian Databases 

The first database consists of “Four Gaussians” in two dimensions, with little over-
lapping among them. The second one is formed by “Six Gaussians” with different 
degree of overlapping, and the third database has also six clusters, “Six Gaussians-II”, 
but two of them are completely overlapped, with the same mean and different covari-
ance. Table 1 shows the result of the cluster stability index proposed for the second 
and third database, for the three clustering algorithms. Notice how the index shows a 
minimum value for the right number of clusters (see Fig. 1) when using the right 
clustering model, in this case, the Gaussian mixture or the H-density algorithms. In 
the case of the “Six Gaussians-II” database, because the completely overlapped cou-
ple of Gaussians, the algorithms cannot distinguish them, although for the Gaussian 
mixture model, the 6 correct clusters are the second lowest stability index. k-Means is 
able to detect the four Gaussians (Fig. 1a), but fails on the other examples, due to the 
overlapping and the fact that clusters are not modelled as spherical Gaussian distribu-
tions, which would be more adequate for a K-Means model. 

3.2   Arbitrary Shape Databases 

This section presents the results obtained over three synthetic databases, which have 
clusters with different shapes, sizes and densities, and they are separated by zones of  

 

 
Fig. 1. Partitions selected by the best stability index using the EM-Gaussian Mixture algorithm: 
a) Four Gaussians b) Six Gaussians and c) Six Gaussians-II (two concentric) 
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Table 1. Stability indices for the “Six Gaussians” and “Six Gaussians-II” databases 

 Six Gaussians Six Gaussians-II (two concentric) 
Num. 

clusters 
H-Density K-Means Gaussian 

Mixture 
H-Density K-Means Gaussian 

Mixture 
2 0,027 0,00003 0,000002 0,024 0,017 0,0043 
3 0,00008 0,056 0,0000084 0,01 0,0044 0,0037 
4 0,002 0,0041 0,00002 0,00006 0,0042 0,0078 
5 0,003 0,0023 0,002 0,00003 0,0001 0,00003 
6 0,0000084 0,0021 0,000009  0,0066 0,00029 
7  0,0025 0,005  0,016 0,0065 
8  0,015 0,026  0,0045 0,017 
9  0,017 0,034  0,012 0,04 

10  0,009 0,01    

low density (Fig. 2). The first database consists of three concentric rings, the second 
one is a pair of half-rings and the third one is the DS1 database used in other works 
(see [6]). Table 2 shows the stability indices in the case of the concentric rings and 
DS1 database. In this case; the H-Density algorithm is able to provide the correct 
clusters if the right number of clusters is selected. The stability index proposed shows 
a minimum value in the right number of clusters for this clustering algorithm, because 
the clustering model is more adequate in the databases used (see Fig. 2). 

Table 2. Stability indices for the “Three Concentric Rings” and DS1 databases 

 Three Concentric Rings DS1 database 
Num. 

clusters 
H-Density K-Means Gaussian 

Mixture 
H-Density K-Means Gaussian 

Mixture 
2 0,0014 0,00009 0,026 0,217 0,0000005 0,03 
3 0,0011 0,00017 0,017 0,013 0,0001 0,008 
4 0,0547 0,00006 0,0029 0,023 0,0015 0,0014 
5 0,0356 0,0002 0,0045 0,023 0,000004 0,000015 
6 0,021 0,0009 0,0048 0,0025 0,001 0,0018 
7 0,0332 0,002 0,0035 0,013 0,001 0,000036 
8 0,0249 0,001 0,006 0,042 0,001 0,000041 
9  0,004 0,007 0,015 0,0005 0,0011 

10  0,001 0,004 0,015 0,0006 0,0041 

 

 
Fig. 2. Partitions selected by the best stability index using the H-Density algorithm for the a) 
Three concentric rings b) Two half rings and c) DS1 database [6] 
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3.3   Real Databases 

The “House” database [6] represents the chromatic ab pixel values of the House col-
our image in the Lab space (Fig. 3b). Fig. 3 shows the result of the clustering selected 
by the best stability index (see Table 3) when using the H-Density algorithm. Notice 
the quality of the clustering selected by looking at the pixel labelling that provides the 
selected solution by the stability index (Fig. 3c). 

 

Fig. 3. (a) Clusters selected by the stability index when using H-Density algorithm in ab space. 
b) “House” image. c) Pixels labeled by H-Density algorithm result from (a). 

The method was also tested in the IRIS database, which has 150 samples of three 
types of plants. Two of these classes are highly overlapped, and present a high diffi-
culty for most of clustering algorithms. The other class is clearly separated from the 
other two ones. The H-Density algorithm is able to detect, among the levels of the 
hierarchy, the level of three classes with a high percent of correct classification (see 
[6] for details). In this case, the stability index introduced here has been able to detect 
the right number of classes, even in presence of high degree of overlapping of two of 
them. The other clustering algorithms do not provide the right clustering solution, 
because of the inadequate clustering model. 

4   Conclusions 

The problem of determining the optimal or “natural” number of groups in a database 
is an important issue for clustering processes, together with the selection of the ade-
quate clustering model for each particular dataset. In this work, a method to select the 
“natural” number of clusters have been presented, based on cluster stability criterion 
inspired in an information theoretic approach to assess the variability of clustering 
solutions due to the different clustering partitions obtained from different data sam-
ples of the same problem. 

The experiments carried out on several synthetic and real databases, using three 
different clustering models; show that, when the clustering algorithm is adequate to 
model the data structure, the stability index proposed can select the right solutions in a 
wide variety of synthetic and real examples with cluster structures of different shapes, 
sizes and overlapping degree. 
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As it has also been outlined, another issue beyond the scope of this work is the 
problem of selecting the adequate clustering model for a given problem, which can 
affect significantly the stability performance of the clustering algorithm used. 
 
Acknowledgments. This work has been partially supported by Spanish Ministry of 
Science and Education under projects ESP2005-00724-C05-05, CSD2007-00018 and 
PET2005-0643 and project P1 1B2007-48 by Fundació Caixa-Castelló. 

References 

1. Bouguessa, M., Wang, S., Sun, H.: An Objective approach to cluster validation. Pattern 
Recognition Letters 27, 1419–1430 (2006) 

2. Ertoz, L., Steinbach, M., Kumar, V.: Finding Clusters of Different Sizes, Shapes, and Den-
sities in Noisy, High Dimensional Data. In: Third SIAM International Conference on data 
Mining (2003) 

3. Lange, T., Braun, M.L., Buhmann, J.M.: Stability-Based Validation of Clustering Solu-
tions. Neural Computation 16, 1299–1323 (2004) 

4. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number 
of clusters in a data set. Psychometrika 50, 159–179 (1985) 

5. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. 
Fuzzy Syst. 3(3), 370–379 (1995) 

6. Pascual, D., Pla, F., Sánchez, J.S.: Non Parametric Local Density-based Clustering for 
Multimodal Overlapping Distributions. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) 
IDEAL 2006. LNCS, vol. 4224, pp. 671–678. Springer, Heidelberg (2006) 

7. Sugar, C.: Techniques for clustering and classification with applications to medical prob-
lems. PhD Dissertation Stanford University, Stanford (1998) 

8. Sugar, C., Lenert, L., Olshen, R.: An application of cluster analysis to health services re-
search: empirically defined health states for depression from the sf-12. Technical Report 
Stanford University, Stanford (1999) 

9. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via 
the gap statistic. J. R. Statist Soc. B 63, Part 2, 411–423 (2001) 

10. Ben-Hur, A., Guyon, I.: Detecting stable clusters using principal component analysis. In: 
Brownstein, M., Khodursky, A. (eds.) Methods in Molecular Biology, pp. 159–182. Hu-
mana press (2003) 

11. Mufti, G.B., Bertrand, P., Moubarki, L.E.: Determining the number of groups from meas-
ures of cluster validity. In: ASMDA 2005, pp. 404–414 (2005) 

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991) 
13. Li, J.: Divergence measures based on Shannon entropy. IEEE Trans. on Information The-

ory 37(1), 145–151 (1991) 


	Cluster Stability Assessment Based on Theoretic Information Measures
	Introduction
	Measuring the Cluster Stability
	Channel Communication as a Pattern Recognition Problem
	Cluster Stability Assessment

	Experimental Results
	Gaussian Databases
	Arbitrary Shape Databases
	Real Databases

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




