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UCL Crypto Group, Université Catholique de Louvain, Belgium
Place du Levant, 3, Louvain-la-Neuve, 1348, Belgium

{chong-hee.kim,Jean-Jacques.Quisquater}@uclouvain.be

Abstract. In this paper we show a new differential fault analysis (DFA)
on the AES-128 key scheduling process. We can obtain 96 bits of the key
with 2 pairs of correct and faulty ciphertexts enabling an easy exhaustive
key search of 232 keys. Furthermore we can retrieve the entire 128 bits
with 4 pairs. To the authors’ best knowledge, it is the smallest number
of pairs to find the entire AES-128 key with a fault attack on the key
scheduling process. Up to now 7 pairs by Takahashi et al. were the best.
By corrupting state, not the key schedule, Piret and Quisquater showed
2 pairs are enough to break AES-128 in 2003. The advantage of DFA on
the key schedule is that it can defeat some fault-protected AES imple-
mentations where the round keys are not rescheduled prior to the check.
We implemented our algorithm on a 3.2 GHz Pentium 4 PC. With 4
pairs of correct and faulty ciphertexts, we could find 128 bits less than
2.3 seconds.

Index terms: Fault attack, Differential Fault Analysis, AES, DFA,
AES key schedule.

1 Introduction

Boneh et al. introduced the fault attack on the implementation of RSA-CRT
(Chinese Remainder Theorem) with the errors induced by the fault injection
in September 1996 [5]. After that, many papers have been published on this
subject. In October 1996, Biham and Shamir published a fault attack on secret
key cryptosystems entitled Differential Fault Analysis (DFA) [2]. On the 2nd

October 2000, the AES became the successor of the DES and since then, it has
been used more and more in many applications. Several authors mounted DFA
on AES [3,7,9,11]. They assumed that the intermediate states were corrupted
by the fault injection and tried to find out the key. Among them, the attack by
Piret and Quisquater is the most efficient [11]. Their attack only needs two pairs
of correct and faulty ciphertexts to retrieve 128 bits of AES-128.

A different form of DFA, targeting the AES key schedule, was introduced by
Giraud in [8] and improved by Chen and Yen [6]. However, Giraud’s attack does
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not target only the AES key schedule. He used the faults in the intermediate state
as well. Recently Peacham and Thomas improved DFA on AES key scheduling
[10]. They assumed that random faults are injected during the execution of the
AES key scheduling process and that the resulting faults propagate to all keys
after the injection. They reduced the number of correct and faulty ciphertexts
to 12 pairs to recover 128-bit key. Takahashi et al. generalized Peacham and
Thomas’s attack and reduced the required number of pairs more [13]. They
succeeded in recovering 128-bit key with 7 pairs.

In this paper, we propose a new DFA on AES key scheduling process. Our
attack takes advantage of faults occurring in the 9th round of the AES key
scheduling process. Thus the fault model and the hypothesis on the fault location
are exactly the same as in Peacham and Thomas’ and Takahashi et al.’s. However
the way we exploit faults is different from theirs. We retrieved the entire 128-bit
key of AES-128 with 4 pairs of correct and faulty ciphertexts. Two pairs are
enough to recover 96 bits of the key enabling an easy exhaustive key search of
the remaining 232 keys. We implemented our algorithm on a 3.2 GHz Pentium
4 PC. With 4 pairs of correct and faulty ciphertexts we found 128 bits in less
than 2.3 seconds.

The rest of this paper is organized as follows. In Section 2, we briefly describe
AES. The review on the previous DFA on AES Key schedule is presented in
Section 3. Our analysis methodology is presented in Section 4. Section 5 compares
our attack with previous attacks, with the conclusion given in Section 6.

2 AES

AES [1] can encrypt and decrypt 128 bits of block with 128, 192, or 256 bits
of key. In this paper we will only deal with the 128-bit key variant, AES-128,
as it is the most widely used. Our attack can be extended trivially to other
variants. The intermediate computation result of AES-128, called State is
usually represented by a 4 × 4 matrix, each cell of which is a byte as shown in
Fig. 1. Where, Si

j,k denotes (j +1)th row and (k +1)th column byte of ith State,
j, k ∈ {0, . . . 3}.

In the rest of the paper, we will use the following additional notations:

– Ki
j,k denotes (j + 1)th row and (k + 1)th column byte of ith AES round key,

i ∈ {0, . . . , 10} and j, k ∈ {0, . . .3},
– S0 denotes the State after 9th AddRoundKey,
– S1 denotes the State after 10th SubBytes,
– S2 denotes the State after 10th ShiftRows,
– S3 denotes the State after 10th AddRoundKey,
– Si

j denotes 32-bit (j + 1)th row of Si, j ∈ {0, . . . 3},
– (C, C∗), (D, D∗) denote the correct and faulty ciphertext pairs.

AES-128 has 10 rounds. Each round function is composed of 4 transformations
except the last round: SubBytes, ShiftRows, MixColumns, and AddRoundKey.
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Fig. 1. The State during AES encryption

Fig. 2. Last two rounds of AES encryption

The last round is lacking MixColumns. Our attack focuses on the last two rounds.
They are depicted in Fig. 2.

SubBytes. It is made up of the application of 16 identical 8 × 8 S-boxes. This
is a non-linear byte substitution. We denote the function of SubBytes SB. That
is, SB(Si) = SubBytes(Si). For the simplicity, we define that SB also can take
a byte and two bytes as an input as follows:

SB(Si
j,k) = Sbox(Si

j,k),
SB(Si

j,k, Si
j,l) = Sbox(Si

j,k), Sbox(Si
j,l).

We denote Inverse SubBytes SB−1. We define that SB−1 also can take bytes
as an input.
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ShiftRows. Each row of the State is cyclically shifted over different offsets.
Row 0 is not shifted, row 1 is shifted by 1 byte, row 2 is shifted by 2 bytes, and
row 3 by 3 bytes. We denote ShiftRows and its inverse, InverseShiftRows, SR
and SR−1 respectively. We also define that they can take bytes as an input.

MixColumns. This is a linear transformation to each column of the State.
Each column is considered as polynomial over F28 and multiplied modulo x4 +1
with a fixed polynomial a(x) = 03 ∗ x3 + 01 ∗ x2 + 01 ∗ x + 02.

AddRoundKey. It is a bitwise XOR with a round key.

We briefly describe the last two rounds, 9th and 10th rounds, of the key
scheduling process as shown in Fig. 3. The input 128-bit key is divided into four
32-bit columns. The first 32-bit column propagates to the next column in the
same round, which generates the second column. The second and third columns
do the same. The fourth column propagates to the next round through the func-
tion RotWord, which performs a cyclic permutation and SubWord, which applies
S-box. Each column generated in the key process is grouped to yield the 128-bit
round key.
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Fig. 3. 9th and 10th AES Key scheduling process

3 Previous Works about DFA on AES Key Schedule

The first DFA on AES key schedule was done by Giraud, but still needs to attack
the intermediate state [8]. He presented two fault attacks on the AES. Both
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require the ability to obtain several faulty ciphertexts originating from the same
plaintext (contrary to our attack). The first one assumes it is possible to induce
a fault on only one bit of an intermediate state. Under this condition, 50 faulty
ciphertexts are necessary to retrieve the full key. The second attack exploits
faults on bytes. It requires the ability of inducing faults at several chosen places
both on key scheduling process and intermediate state. Therefore, the second
is the first attempt of attack on key scheduling process, but it is not complete.
Because it still needs to attack on the intermediate state. It could retrieve the
key with 250 faulty ciphertexts. If he extends his hypothesis by supposing that
the attacker can choose the byte affected by the fault, the first attack requires
35 faulty ciphertexts and the second requires 31 faulty ciphertexts.

In 2003, Chen and Yen improved Giraud’s attack [6]. They could retrieve
the key with fewer faulty ciphertexts and with less computational complexity.
Giraud’s second attack is composed of three steps, an attack on 9th round key,
an attack on 8th round key, and an attack on 8th round intermediate state. The
first two steps of Chen and Yen’s method are similar to Giraud’s. But the third
step focuses on the Inverse SubBytes and requires less samples.

Unlike the previous two attacks, Peacham and Thomas assumes that random
faults are injected during the execution of the AES key scheduling process and
the resulting faults propagate to all keys after the injection [10]. They showed
that 12 pairs of correct and faulty ciphertexts are enough to retrieve the whole
key without brute-force search. They assumed that all bytes of a 32-bit column of
the 9th round key are corrupted during the execution of the key scheduling pro-
cess. Their attack consists of four steps. They use the fact that the intermediate
state calculated by the correct ciphertext just before the AddRoundKey of the
9th round is equal to the intermediate state calculated by the faulty ciphertext
just before the AddRoundKey of the 9th round.

In 2007, Takahashi et al. generalized Peacham and Thomas’s attack and re-
duced the required number of pairs [13]. They could retrieve the whole key with
7 pairs and 80 bits of the key with 2 pairs. Recently they improved their attack
a little bit by assuming that faults are injected into 32 bits of one column [12].
They found 88 bits with 2 pairs but still they need 7 pairs to find 128 bits.

4 Our DFA on AES Key Schedule

In this section we describe our attack. After presenting our fault model, we de-
scribe our basic attack that retrieves 32 bits of the key with 2 pairs of correct and
faulty ciphertexts giving a one byte random error on 9th round key scheduling
process. Then we improve our attack by giving a random fault on three bytes of
a 32-bit column of the 9th round key scheduling process. We can retrieve 96 bits
of the key with 2 pairs, and all 128 bits with 4 pairs.

4.1 Fault Model

We assume that a random fault is induced in the 9th round of the AES key
scheduling process and some bytes of the first column of the 9th round key are
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corrupted. In addition, we assume that the attacker can obtain pairs of correct
and faulty outputs from the same input. However we do not need the several
faulty outputs with the same plaintext.

The fault model and hypothesis on the fault location are exactly the same
as in Peacham and Thomas’ and Takahashi et al.’s. However the way we ex-
ploit faults is different from them. We exploit the intermediate state after the
AddRoundKey of the 9th round contrary to previous attacks. They exploit the
intermediate state before the AddRoundKey of the 9th round. Secondly they try
to find the 9th round key but we find the 10th round key. Finally we try to
remove impossible candidates for 10th round key, but they try to find directly
the correct 9th round key.

It is quite interesting to refer DFA on AES state. Piret and Quisquater’s
DFA on AES state [11] requires the minimum number of the ciphertexts even
though they use the same fault model and the hypothesis on the fault location
of Dusart et al.’s attack [7]. The way Dusart et al. exploit faults is quite similar
to Peacham and Thomas’ and Takahashi et al.’s. Dusart et al. write and solve
a system of equations of which the unknown value is the one of the fault. Our
way of exploiting faults follows the way of Piret and Quisquater’s.

4.2 Basic Attack

We assume that one byte of the first column of the 9th round key is corrupted.
For simplicity, we assume K9

0,0 is corrupted into ˜K9
0,0. The attack can be applied

when another byte is corrupted. We denote the difference between them as a,
i.e., a = K9

0,0

⊕

˜K9
0,0. This error propagates to some bytes of the round keys as

shown in Fig. 4. The four bytes of 9th round key, (K9
0,0, K

9
0,1, K

9
0,2, K

9
0,3), and six

bytes of 10th round key, (K10
0,0, K

10
0,2, K

10
3,0, K

10
3,1, K

10
3,2, K

10
3,3), are corrupted. This

also results in the corruption on the intermediate states as shown in Fig. 2.
We exploit the intermediate state after the AddRoundKey of the 9th round,

i.e., S0. We denote the ith faulty state ˜Si. Only the first row of S0 receives the
effect of the faults. By doing XOR between S0

0 and ˜S0
0 , we have (we remind that

Si
j is denoted as a 32-bit (j + 1)th row of Si):

S0
0 ⊕ ˜S0

0 = SB−1[SR−1(C0 ⊕ K10
0 )] ⊕ SB−1[SR−1(C∗

0 ⊕ ˜K10
0 )]

= (a, a, a, a), (1)

where, C0 is the 32-bit first row of the correct ciphertext, C∗
0 is the 32-bit first

row of the faulty ciphertext, K10
0 is the 32-bit first row of 10th correct round

key, and ˜K10
0 is the 32-bit first row of 10th faulty round key.

An error on a byte makes 255 possible differences. That is, a ∈ {1, 2, . . . , 255}.
Therefore the number of the possible differences of S0

0 and ˜S0
0 is 255. In equation

(1), we know C0 and C∗
0 . Therefore we can eliminate the wrong candidates for

K10
0 that do not meet the condition of equation (1).
We compute how many wrong candidates for the round key K10

0 can be re-
moved by a single pair (C, C∗) with the equation (1). We define the difference
of the first 32-bit row of C and C∗ as Δ, i.e., Δ = C0 ⊕ C∗

0 . The number of
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Fig. 4. 9th and 10th AES Key scheduling process with faults

possible value for Δ is 2554. Among them 255 differences satisfy the equation
(1). Thus the fraction of the candidates for the round key K10

0 surviving the
test with equation (1) is 255/2554. Therefore we conclude that the number of
remaining wrong candidates for K10

0 after N pairs have been treated is about
2564(255−3)N . With one pair, about 259 candidates remain. If two pairs are
exploited, we are in principle left with the right candidate only.

In the above paragraph we assumed that we needed to guess K10
0 only and we

knew other parameters. However, to solve the equation (1) we need to guess both
K10

0 and ˜K10
0 . Since we have 264 candidates for (K10

0 , ˜K10
0 ), it is not practical

to guess K10
0 and ˜K10

0 together. However, K10
0 and ˜K10

0 satisfy the following
condition:

K10
0 ⊕ ˜K10

0 = (a, 0, a, 0).

That is, K10
0,1 = ˜K10

0,1 and K10
0,3 = ˜K10

0,3. Therefore we can start the attack with
these two bytes that results in 216 candidates instead of 264. The number of
remaining candidates for (K10

0,1, K
10
0,3) after N pairs of the correct and wrong

ciphertexts is now 2562(255−1)N . With two pairs, we are left with almost one
candidate for (K10

0,1, K
10
0,3)

1.
This consideration leads to the following sketch of our basic attack. We need

two pairs of the correct and faulty ciphertexts (C, C∗) and (D, D∗). We do not
need to have the same faulty value in K9

0,0 for these two pairs. We define the

1 Because 2562(255−1)2 = 1.0079, we have more than one candidate left for
(K10

0,1, K
10
0,3) sometimes. However, after Step 2 we have only one candidate left since

2563(255−2)2 = 0.004 for (K10
0,1, K

10
0,2, K

10
0,3).
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error during the computation of C∗ as a1, i.e., a1 = K9
0,0 ⊕ ˜K9

0,0 and the error
during the computation of D∗ as a2, i.e., a2 = K9

0,0 ⊕ ˜K9
0,0 for (D, D∗).

We first find the candidates for (K10
0,1, K

10
0,3) with two pairs of the correct and

faulty ciphertexts. Normally after this step, we have 1 or 2 candidates. Then
we find the candidates for (K10

0,1, K
10
0,2, K

10
0,3). Finally we find the candidates for

(K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3).

Step 1. We compute the candidate for (K10
0,1, K

10
0,3, a1, a2). The inputs for this

step are two pairs of the correct and faulty ciphertexts (C, C∗) and (D, D∗).

Algorithm 1

1. Set up a list L containing all 216 candidates for (K10
0,1, K

10
0,3).

2. Choose a candidate from L and compute (α1, α2) and (β1, β2) as follows:
(α1, α2) = SB−1[SR−1(C0,1 ⊕ K10

0,1, C0,3 ⊕ K10
0,3)]⊕ SB−1[SR−1(C∗

0,1 ⊕
K10

0,1, C
∗
0,3 ⊕ K10

0,3)] and (β1, β2) = SB−1[SR−1(D0,1 ⊕ K10
0,1, D0,3 ⊕ K10

0,3)]⊕
SB−1[SR−1(D∗

0,1 ⊕ K10
0,1, D

∗
0,3 ⊕ K10

0,3)].
3. Add the candidate and (α1, β1) to a new list M if α1 = α2 and β1 = β2.
4. Repeat Step 2 and Step 3 for all candidates from L.

Finally M has the candidates for (K10
0,1, K

10
0,3, a1, a2).

Step 2. We compute the candidate for (K10
0,1, K

10
0,2, K

10
0,3, a1, a2). The inputs for

this step are (C, C∗), (D, D∗), and the list M from Step 1. We note that ˜K10
0,2

can be computed as ˜K10
0,2 = K10

0,2 ⊕ a.

Algorithm 2

1. Set up a list L containing all 28 candidates for K10
0,2.

2. Choose a candidate from L.
3. Choose a candidate from M and compute (α1, α2) and (β1, β2) as follows:

(α1, α2) = SB−1[SR−1(C0,2⊕K10
0,2, C0,3⊕K10

0,3)]⊕ SB−1[SR−1(C∗
0,2⊕K10

0,2⊕
a1, C

∗
0,3 ⊕ K10

0,3)] and (β1, β2) = SB−1[SR−1(D0,2 ⊕ K10
0,2, D0,3 ⊕ K10

0,3)]⊕
SB−1[SR−1(D∗

0,2 ⊕ K10
0,2 ⊕ a2, D

∗
0,3 ⊕ K10

0,3)].
4. Add (K10

0,1, K
10
0,2, K

10
0,3, a1, a2) to a new list N if α1 =α2 =a1 and β1 = β2 = a2.

5. Repeat Step 3 and Step 4 for all candidates from M.
6. Repeat from Step 2 to Step 5 for all candidates from L.

Finally N has the candidates for (K10
0,1, K

10
0,2, K

10
0,3, a1, a2).

Step 3. We compute the candidate for (K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3, a1, a2). The

inputs for this step are (C, C∗), (D, D∗), and the list N from Step 2. We note
that ˜K10

0,0 can be computed as ˜K10
0,0 = K10

0,0 ⊕ a.

Algorithm 3

1. Set up a list L containing all 28 candidates for K10
0,0.

2. Choose a candidate from L.
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3. Choose a candidate from N and compute (α1, α2) and (β1, β2) as follows:
(α1, α2) = SB−1[SR−1(C0,0⊕K10

0,0, C0,3⊕K10
0,3)]⊕ SB−1[SR−1(C∗

0,0⊕K10
0,0⊕

a1, C
∗
0,3 ⊕ K10

0,3)] and (β1, β2) = SB−1[SR−1(D0,0 ⊕ K10
0,0, D0,3 ⊕ K10

0,3)]⊕
SB−1[SR−1(D∗

0,0 ⊕ K10
0,0 ⊕ a2, D

∗
0,3 ⊕ K10

0,3)].
4. Output (K10

0,0, K
10
0,1, K

10
0,2, K

10
0,3, a1, a2) and stop the algorithm if α1 = α2 = a1

and β1 = β2 = a2.
5. Repeat Step 3 and Step 4 for all candidates from N .
6. Repeat from Step 2 to Step 5 for all candidates from L.

Finally we have the one correct key for (K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3) and faulty values

(a1, a2).
We implemented our attack on a 3.2 GHz Pentium 4 PC and found K10

0 with
about 0.5 second. If we give faults in K9

1,0 instead of K9
0,0, then similarly we can

find K10
1 . Therefore with 8 pairs, we can find the entire 128 bits of 10th round

key. We can easily compute the initial key with 10th round key, see [7].

4.3 Improved Attack

Now let us consider the errors on more than one byte on the first column of 9th

round key. We suppose that the first two bytes, K9
0,0 and K9

1,0, are corrupted by
fault injection. Let us denote that a = K9

0,0⊕ ˜K9
0,0 and b = K9

1,0⊕ ˜K9
1,0. According

to AES key scheduling process, these differences a and b make another difference
c and d in 10th round key respectively as shown in Fig. 5.

Two-byte error makes two rows of S0 to be corrupted. We define the difference
in the second row, S0

1 , as (b, b, b, b). The corresponding difference in the second
row of the 10th round key, K10

1 , is (b, 0, b, 0). Therefore we can find K10
1 and b

with the basic attack in Sec. 4.2 with the following condition:

SB−1[SR−1(C1 ⊕ K10
1 )] ⊕ SB−1[SR−1(C∗

1 ⊕ ˜K10
1 )] = (b, b, b, b). (2)

Then we can compute d from the value of b and K10
1 (this comes from the

structure of the AES keys scheduling process) as follows:

K9
1,3 = K10

1,2 ⊕ K10
1,3,

d = SBox(K9
1,3)⊕ SBox(K9

1,3 ⊕ b).

Because we know the value of d, we only do not know the value of a in the
first row of difference of K10 as shown in (c) of Fig. 5. Therefore we can apply
the basic attack to the first row and find K10

0 .
We summarize how to find 64 bits of K10 as follows:

Algorithm 4

1. Compute K10
1 and (b1, b2) using basic attack.

2. Compute d1, d2 with (K10
1,2, K

10
1,3) and b1, b2.

3. Compute K10
0 and (a1, a2) using basic attack.
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Fig. 5. Differences between correct and wrong round keys according to fault injection
on the 9th round key

We can further improve the attack in case three bytes of the first column of
9th round key are corrupted. As shown in Fig. 6, let us denote e = K9

2,0 ⊕ ˜K9
2,0.

We first start with the third row. With the basic attack, we compute K10
2 and e.

Then we compute f with the property of AES key scheduling process. We can
compute K10

1 and K10
0 with Algorithm 4. Therefore we can compute 96 bits of

AES-128 key with two pairs of correct and faulty ciphertexts. We can compute

9th round key 10th round key 

a a a a

b b b b

e e e e

d d

f f

e e

c c c c

(c) Fault injection on K9
0,0, K9

1,0, and K9
2,0 

a  d a  d

b  f b  f

Fig. 6. Differences between correct and wrong round keys in case of the fault injection
on the three bytes of the 9th round key
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the last 32 bits with an exhaustive search or with the basic attack of one byte
fault on K9

3,0 and another two pairs of correct and faulty ciphertexts.
We again implemented our improved attack on the same PC. To find 96 bits

of the key with 2 pairs, average 1.8 seconds are required. To compute 128 bits
with 4 pairs, it requires 2.3 seconds in average.

5 Comparison with Previous Attacks

We compared our attack with previous attacks in terms of the relation between
the retrieved bits of key and the required number of pairs as shown in Fig. 7.
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Fig. 7. Comparison in terms of required number of pairs
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We also compared in terms of the number of fault injection points in Fig. 8. In
both cases, we can see our proposed method is the best.

If we have only two pairs of the correct and wrong ciphertexts, we can compute
96 bits with our attack and need to do an exhaustive search for the other 32 bits.
We estimated the time for the exhaustive search based on the simulation result
of [13]. On a normal PC, the estimated calculation time of the 32-bit exhaustive
search is about 8 minutes. If we use Takahashi et al.’s attack, we need to do an
40-bit exhaustive search, which requires about 3 days.

6 Conclusions

We proposed a new differential fault analysis on AES key schedule. Only two
pairs of correct and faulty ciphertexts are enough to find the whole key of AES-
128 with DFA on AES state by Piret and Quisquater. In the area of DFA on
AES key schedule, still we needed many pairs. However our proposed method
reduced the gap between DFA on state and DFA on key schedule. Ours requires
two pairs for retrieving 96 bits of the key enabling an easy exhaustive key search
of 232 keys and four pairs for 128 bits without an exhaustive key search. Our
result shows the minimum number of pairs and that of fault injection points
than the previous attacks. It takes about 2 seconds to retrieve 128 bits with
four pairs on the normal PC. With two faults it takes about 8 minutes to find
128 bits.

The general countermeasure against DPA on AES state is to recompute the
last three rounds of AES and compare it with the original output. However, if
the key schedule is not re-done for the re-computation of the last three rounds
it cannot prevent DPA on AES key schedule. Therefore we can conclude that
key scheduling process as well as encryption process should be protected against
fault attacks.
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