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Abstract. We present a distributed index data structure and algorithms
devised to support parallel query processing of multimedia content in
search engines. We present a comparative study with a number of data
structures used as indexes for metric space databases. Our optimization
criteria are based on requirements for high-performance search engines.
The main advantages of our proposal are efficient performance with re-
spect to other approaches (sequentially and in parallel), suitable treat-
ment of secondary memory, and support for OpenMP multithreading. We
presents experiments for the asynchronous (MPI) and bulk-synchronous
(BSP) message passing models of parallel computing showing that in
both models our approach outperforms others consistently.

1 Introduction

Dealing efficiently with multiple user queries, each potentially at a different stage
of execution at any given instant of time, is a central issue in large-scale plain-
text based search engines. Here the use of suitable parallel computing techniques
devised to grant, among other optimizations, all queries an even share of the
computational resources is crucial to reduce response time and avoid unstable
behavior caused by dynamic variations of the query traffic. At the core of a
plain-text search engine is a data structure used as an index that allows fast
solution of queries.

New applications demand the use of data more complex than plain text. As
such, it is reasonable to expect that in the near future search engines will be
compelled to include facilities to handle metric space databases. Metric spaces
are useful to model complex data objects such as images or audio. In this case
queries are represented by an object of the same type to those in the database
wherein, for example, one is interested in retrieving the top-R objects which
are most similar to the query. The degree of similarity between two objects is
calculated by an application-dependent function called the distance function.

A number of data structures and algorithms for metric spaces have been
proposed so far [4] and papers on parallelization of some of these strategies have
been presented in [5, 8, 9]. In this paper we propose a new strategy which satisfies
demanding requirements from high-performance search engines. In the following
we describe the two main principles we have identified as the ones leading to
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efficient performance in plain-text based search engines which we apply in the
context of this paper.

Sync/Async search engines. This is about the specific way we organize the par-
allel processing of queries [7]. For plain text, we have observed that for low query
traffic it is efficient to use the standard asynchronous message passing approach
to parallel computing whereas for high traffic we can take advantage of bulk-
synchronous parallel processing of queries. In this paper we show that this also
holds for the metric-space context. Our proposal is openMP friendly in the sense
that it can allow in-core threads to efficiently cooperate in the solution of queries.
For the Sync and Async modes of operation the communication among nodes
is performed by using MPI and BSPonMPI respectively whereas within nodes
openMP is used to speed-up the processing of queries.

Round-Robin query processing. This assigns every query a similar share of key
resources such as processors time and disk and network bandwidth [6]. In plain-
text query processing we can decompose query solution in K-sized quanta of
CPU, disk and network traffic where R is a fraction of K such as 1/2. In this
paper we show how to apply this strategy in the metric-space context. This
requires careful consideration of the most costly parts of the solution to queries
in very large distributed metric-space databases which are secondary memory
management and load balance of distance calculations across processors.

The remainder of this paper is organized as follows. In section 2 we describe
two basic data structures for metric-space databases which we combine and
refine to propose our index data structure in section 3. Section 4 gives details on
the parallel realization of the proposed index. We made similar implementations
on top of other data structures for comparison purposes. Section 5 presents a
comparative evaluation of our proposal including results from sequential and
parallel executions. Section 6 presents concluding remarks.

2 Metric Spaces and Indexing Strategies

A metric space (X, d) is composed of an universe of valid objects X and a distance
function d : X×X → R

+ defined among them. The distance function determines
the similarity between two given objects. The goal is, given a set of objects
and a query, to retrieve all objects close enough to the query. This function
holds several properties: strict positiveness (d(x, y) > 0 and if d(x, y) = 0 then
x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, z) ≤
d(x, y) + d(y, z)). The finite subset U ⊂ X with size n = |U|, is called the
database and represents the collection of objects. There are three main queries,

– range search: that retrieves all the objects u ∈ U within a radius r of the
query q, that is: (q, r)d = {u ∈ U/d(q, u) ≤ r};

– nearest neighbor search: that retrieves the most similar object to the query
q, that is NN(q) = {u ∈ U/∀v ∈ U, d(q, u) ≤ d(q, v)};
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– k-nearest neighbors search: a generalization of the nearest neighbor search,
retrieving the set kNN(q) ⊆ U such that |kNN(q)| = k and ∀u ∈ kNN(q), v
∈ U − kNN(q), d(q, u) ≤ d(q, v).

In the following we describe two indexing strategies which we combine into a
single one to build up our search engine index.

2.1 List of Clusters (LC)

This strategy [3] builds the index by choosing a set of centers c ∈ U with radius
rc where each center maintains a bucket that keep all objects that are within
the extension of the ball (c, rc). Each bucket contains the k objects that are
the closet ones to the respective center c. Thus the radius rc is the maximum
distance between the center c and the k-nearest neighbor.

The buckets are filled up as the centers are created and thereby a given element
i located in the intersection of two or more center balls is assigned to the first
center. The first center is randomly chosen from the set of objects. The next
ones are selected so that they maximize the sum of the distances to all previous
centers.

A range query q with radius r is solved by scanning in order of creation the
centers. At each center we compute d(q, c) and in the case that d(q, c) ≤ r all
objects in the bucket associated with c are compared against the query. This can
end up at the first center found to hold d(q, c) + r < cr, mining that the query
ball (q, r) is totally contained in the center ball (c, rc), or when all centers have
been considered.

2.2 Sparse Spatial Selection (SSS)

During construction, this pivot-based strategy [2] selects some objects as pivots
from the collection and then computes the distance between the pivots and the
objects of the database. The result is a table of distances where columns are the
pivots and rows the objects. Each cell in the table contains the distance between
the object and the respective pivot. These distances are used to solve queries as
follows. For a range query (q, r) the distances between the query and all pivots
are computed. An object x from the collection can be discarded if there exists
a pivot pi for which the condition |d(pi, x) − d(pi, q)| > r does not hold. The
objects that pass this test are considered as potential members of the final set
of objects that form part of the solution for the query and therefore they are
directly compared against the query by applying the condition d(x, q) ≤ r. The
gain in performance comes from the fact that it is much cheaper to effect the
calculations for discarding objects using the table than computing the distance
between the candidate objects and the query.

A key issue for efficiency is the method employed to calculate the pivots,
which must be effective enough to drastically reduce total number of distance
computations between the objects and the query. To select the pivots set, let
(X, d) be a metric space, U ⊂ X an object collection, and M the maximum
distance between any pair of objects, M = max{d(x, y)/x, y ∈ X}. The set of
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pivots contains initially only the first object of the collection. Then, for each
element xi ∈ U, xi is chosen as a new pivot if its distance to every pivot in the
current set of pivots is equal or greater than α M , being α a constant parameter.
Therefore, an object in the collection becomes a new pivot if it is located at more
than a fraction of the maximum distance with respect to all the current pivots.

3 LC-SSS Combination and Refinements

We propose a combination between the List of Clusters (LC) and Sparse Spatial
Selection (SSS) indexing strategies. In this case we both compute the LC centers
and SSS pivots independently. We form the clusters of LC and within each cluster
we build a SSS table using the global pivots and organization of columns and
rows described above. We emphasize on global SSS pivots because intuition tells
that in each cluster of LC one should calculate pivots with the objects located
in the respective cluster. However, we have found that the quality of SSS pivots
degrades significantly when they are restricted to a subset of the database, and
also the total number of them tends to be unnecessarily large. We call this
strategy hybrid.

We increase the performance of the SSS index as follows. During construction
of the table of distances we compute the cumulative sum of the distances among
all objects and the respective pivots. We then sort the pivots by these values in
increasing order and define the final order of pivots as follows. Assume that the
sorted sequence of pivots is p1, p2, ...., pn. Our first pivot is p1, the second is
pn, the third p2, the fourth pn−1 and so on. We also keep the rows in the table
sorted by the values of the first pivot so that upon reception of a range query q
with radius r we can quickly (binary search) determine between what rows are
located the objects that can be selected as candidates to be part of the answer.
This because objects oi being part of the answer can only be located between
the rows that satisfies d(p1, oi) ≥ d(q, p1) − r and d(p1, oi) ≤ d(q, p1) + r.
We have observed that this re-organization of pivots produces a SSS which is
between 5 to 10 times faster than the original proposal in [2].

In practice, during query processing and after the two binary searches on
the first column of the table, we can take advantage of the column × rows or-
ganization of the table of distances by first performing a few, say v, vertical
wise applications of the triangular inequality on the objects located in the rows
delimited by the results of the binary searches, followed by horizontal wise ap-
plications of the triangular inequality to discard as soon as possible all objects
that are not potential candidates to be part of the query answer. See figure 1
which shows the case of two queries being processed concurrently.

For secondary memory the combination of these strategies have the advantage
of increasing the locality of accesses to disk and the processor can keep in main
memory the first v columns of the table. In the experiments performed in this
paper we observed that with v = n/4 we achieved competitive running times.

This scheme of a table of distances per cluster can have two possible organi-
zations based on a set of blocks stored in several contiguous disk pages. The first
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Fig. 1. Optimization to the SSS distance table

one is for the case in which we start with an existing collection of objects and
requires sorting of the first pivot (column) across several blocks. In the second
one we can insert new objects in an on-line manner. In this case blocks can con-
tain objects as they were inserted with first columns sorted locally. Here sorting
is spread across a few blocks, a number given by the amount of blocks that can
be hold in main memory. In section 5 we show that both strategies are efficient
in terms of total number accesses to disk.

4 Parallelism

In this section we describe the parallel algorithms we have devised to build
the different index data structures and to process queries considering the two
efficiency principles we enumerated in the introduction section of this paper,
namely Sync/Async and Round-Robin parallel query processing.

For the Sync mode of operation we use the bulk-synchronous model of parallel
computing (BSP) [11]. In BSP the parallel computer is seen as composed of a set
of P processor local-memory components which communicate with each other
through messages. The computation is organized as a sequence of supersteps.
During a superstep, the processors may perform sequential computations on
local data and/or send message to others processors. The messages are available
for processing at their destination by the next superstep, and each superstep is
ended with the barrier synchronization of processors. In our experiments we use
a realization of BSP built on top of the MPI communication library. For the
Async mode of operation we use the standard asynchronous message passing
model of parallel computing implemented using the same MPI communication
library.

The switching between the two modes of operation is effected in accordance
with the observed query traffic. Our results show that in situations of low traffic
it is more efficient to operate in the Async mode because the barrier synchro-
nization of processors performed by the Sync mode under the same low traffic
becomes too detrimental to performance as load balance degrades significantly.
On the other hand, when query traffic is high we have a situation in which the
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Sync mode can profit from economy of scale by performing optimizations such
as bulk sending of messages among processors and proper load balancing of bulk
query processing.

Queries are assumed to be received by a broker machine which in turn routes
queries to processors. In our case, as we explain below, all queries are sent to all
processors (broadcast). The broker can measure traffic to decide in which mode
of operation the current queries can be processed. The arrival time of queries
is unpredictable and the departure time of queries is also unpredictable along
time. Thus the broker needs to estimate the average number of queries being
processed during a fixed period of time and use this information to decide the
mode of operation for the next period of time. The average number of queries
can be determined as we propose in [7] which basically models the system as
a G/G/∞ queuing model where service time is given by the response time to
queries.

The Round-Robin principle is achieved by assigning to each query being pro-
cessed a similar amount of the resources. We explain it in the context of BSP. In
each superstep, each query is granted a fixed number of distance calculations and
in the case of SSS a fixed number of computations on the distance table. This
also fixes the amount of communication effected at the end of the superstep and
the number of disk accesses. Thus a given query can require several supersteps
to be completed.

The database objects are uniformly distributed at random on the set of P
processors. This marks the starting point to the design of our index construction
and query processing algorithms. Query processing is effected by broadcasting
each query to all processors and then each processor works on the partial solution
of the query. Then a selected processor is in charge of collecting the partial
solutions to integrate them and return the top-R results to the broker. In this
case each processor sends its best R results. As we can have several queries
being processed and the integrator processor for each query is chosen circularly
among all processors, we can achieve a high degree of parallelism during query
processing. Notice that both centers/pivots are the same at each processor so
we can avoid distance recalculations among the queries and centers/pivots.

Constructing the LC-SSS index is effected as follows. For the List of Clusters
(LC) strategy each processor selects its candidate centers using its local objects.
Then, these lists of candidates are broadcast to all processors. After receiving
the candidate list each processor computes the distance among the local centers
and selects the ones maximizing the sum of distance. From this point no com-
munication is required, and each processor can build its local index using the
same global centers to organize into buckets its local objects.

In the Sparse Spatial Selection (SSS) strategy we do the same. Namely each
processor selects the pivots candidates from the local object collection and broad-
cast them to all processors. Each processor receives the local pivots computed
previously and then they refine these set of pivots selecting only the ones that
satisfy the condition d(pi, pj) ≥ α M, ∀i 
= j. After that, each processor has the
same set of pivots and can build the local distance table for each bucket.
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5 Experimental Results

We performed experiments using a 32-processors cluster and different data sets
and queries. We use two multimedia data sets. The first one is a collection of
47,000 images extracted from the NASA photo and video archives, each of them
transformed into a 20-dimensional vector. The Euclidean distance is the distance
function used in this data set. The second one is a large set of 900,000 words
taken from documents crawled from the Chilean Web. In this case the number of
characters required to make identical two words is the distance function. Using
these collections of data we can study the behavior of the algorithm in spaces of
different intrinsic dimensionality.

Figures 2 below have been drawn with the following convention. The Y -axis
shows the total running time. The X-axis shows different cases for the query
traffic, ranging from A (low traffic) to D (high traffic). The curves are divided
into two areas, results for the Sync (BSP) and Async (MPI) modes of parallel
computation. In each area we show results for the different strategies. For each
strategy we show results for P= 4, 8, 16, and 32 processors. Notice that running
time increases as we increase the number of processors. This is because we keep
constant the total number of queries processed by each processor. That is, every
time we double the number of processors we also double the overall number of
queries that are processed. The total running time cannot be constant under
this scenario since the communication hardware has at least log P latency.

Figures 2.a and 2.b show results for two MPI realizations of the parallel strate-
gies explained in this paper. The first one is based on the asynchronous message
passing (Async) approach and the second one is a bulk-synchronous MPI (Sync)
realization. Figure 2.a shows results for the NASA collection whereas figure 2.b
shows results for words space data set. In both cases, the results shows that
the Hybrid algorithm (combining the LC and the improved SSS strategies) out-
performs the others parallel strategies. The curves for SSS and LC alone were
obtained with our modified SSS and LC running as a single strategy respectively.
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Fig. 2. Running time obtained using two data collections
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These results also show that for high query traffic it is more efficient to process
queries in bulk and for low traffic it is more efficient to process them individually
in an asynchronous manner.

Computing the distance between two complex objects is known to be very
expensive in terms of running time in metric-space databases. This produces
an implementation independent base upon which comparing different strategies.
The load balance achieved during parallel processing is a clear indication of good
use of resources. We measure load balance by using the efficiency metric which
for the BSP model and for a given measure X we define as the average taken
over all supersteps of the ratios avg(X)/max(X) observed in each superstep and
considering all processors. In figure 3.a we show results for this metric obtained
by counting the number of distance evaluations effected in each superstep and
processor. The optimum indicating perfect load balance is shown by efficiency
equal to 1. The results show that all strategies achieve good load balance, which
is evidence that the better performance of our Hybrid index comes from fac-
tors such as reduction in the total number of distance computations and small
overheads.
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Fig. 3. Running time obtained using two data collections

In figure 3.b we show the effect of the α parameter in the total running time
of the SSS strategy and thereby also in our Hybrid index. The results are for the
words data set. The figure shows three curves, the one labeled total is the sum of
the running time of the other two curves. The curve labeled distance evaluation
is the total time spent computing distance evaluations between two objects and
the third curve is the time spent computing on the distances table to reduce the
number of candidate objects to be compared against the query object. Clearly
for large data sets like the words one there is a value of α ≈ 0.7 that can reduce
total running time significantly.

In the following we review previous studies in sequential computing on com-
parison of a number of metric-space index data structures and then we compare
the best performers against our proposal. Figure 4.a shows results for the dis-
tance evaluation metric for different data structures proposed so far. Namely
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Fig. 4. Sequential computing: results for a 80,000 words Spanish dictionary data set

the M-Tree [4], GNAT [1], EGNAT [9] and SAT [10]. We also included in the
comparison the SSS [2] and LC [3] strategies. To make this figure we took results
reported by the authors on the same data set. The Hybrid strategy proposed
in this paper achieves the best performance in terms of this metric though very
similar to the LC strategy. Figure 4.b shows running time results for the best
performers (using our own implementation of those strategies). The results are
consistent with those of figure 4.a.

Finally we show results for an openMP optimization of the Hybrid index. As
suggested in figure 1 we can take advantage of the contiguous memory realization
of the index data structure which makes it suitable to run on it a team of openMP
threads for vertical and horizontal traversals in each superstep. The openMP
threads can also be used in the sequential implementation of the Hybrid index.
We made experiments using openMP as implemented in g++ version 4.1.2 and
BSPonMPI (http://bsponmpi.sourceforge.net/). In table 1 we show the gain in
performance by using T openMP threads on a Intel’s Quad-Xeon machine (2
nodes, 16 CPUs in total). The second row in the table show results for the ratio
sequential running time (T = 1) in one CPU to running time with T ≥ 1 threads
and query traffic 64. We process batches of 64 queries using T threads, and once
all threads finish we process the next batch.

Table 1. Decreasing running times per node with openMP threads

T 1 2 4 6 8 10 12 14 16
(T = 1)/(T ≥ 1) 1.00 1.76 2.12 2.81 4.07 3.52 2.01 0.88 0.93

6 Conclusions

We have proposed a distributed index data structure devised to support the
efficient processing of queries in metric-space databases. Our index is suitable for
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search engines dealing with multi-media data. We have implemented it by using
parallel computing techniques devised to achieve high-performance in multiple-
queries processing. We performed experiments on actual data sets upon a cluster
of computers.

Our results show that our Hybrid index which is a combination of the List of
Clusters (LC) and Sparse Spatial Selection (SSS) indexing methods, which we
have optimized and tailored to our setting, is the strategy which achieves the
best performance. We have verified that this efficient performance also holds for
sequential computing. An important advantage of our proposal over all other
alternative indexing methods is that our particular realization of the SSS index
is friendly to secondary memory and multithreading (e.g., openMP) because it
contains high locality in terms of data accesses.
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