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Abstract. Over the last decade, Message Passing Interface (MPI) has
become a very successful parallel programming environment for dis-
tributed memory architectures such as clusters. However, the architec-
ture of cluster node is currently evolving from small symmetric shared
memory multiprocessors towards massively multicore, Non-Uniform
Memory Access (NUMA) hardware. Although regular MPI implemen-
tations are using numerous optimizations to realize zero copy cache-
oblivious data transfers within shared-memory nodes, they might prevent
applications from achieving most of the hardware’s performance simply
because the scheduling of heavyweight processes is not flexible enough
to dynamically fit the underlying hardware topology. This explains why
several research efforts have investigated hybrid approaches mixing mes-
sage passing between nodes and memory sharing inside nodes, such as
MPI+OpenMP solutions [1,2]. However, these approaches require lots of
programming efforts in order to adapt/rewrite existing MPI applications.

In this paper, we present the MultiProcessor Communications envi-
ronnement (MPC), which aims at providing programmers with an effi-
cient runtime system for their existing MPI, POSIX Thread or hybrid
MPI+Thread applications. The key idea is to use user-level threads in-
stead of processes over multiprocessor cluster nodes to increase
scheduling flexibility, to better control memory allocations and optimize
scheduling of the communication flows with other nodes. Most existing
MPI applications can run over MPC with no modification. We obtained
substantial gains (up to 20%) by using MPC instead of a regular MPI
runtime on several scientific applications.

1 Introduction

Over the last decade, Message Passing Interface (MPI) has become a very suc-
cessful parallel programming environment for distributed memory architectures
such as clusters. This is mainly due to its efficiency and its portability. MPI is
organized around the concept of a set of communicating tasks (often processes)
using send and receive primitives. This feature allows programmers to split their
application into several parts in an intuitive way and execute them on different
processing nodes, processors or cores. On the top of the basic send/receive proce-
dures, MPI offers a rich set of primitives available from C and Fortran interfaces
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which makes it possible to build powerful parallel applications. These character-
istics led MPI to be adopted by a huge community of users and consequently,
there are a lot of MPI applications developed in many different scientific and
industrial fields.

Currently, the architecture of cluster nodes is evolving from small symmet-
ric shared memory multiprocessors towards massively multicore, Non-Uniform
Memory Access (NUMA) hardware [3]. The emergence of these deeply hierarchi-
cal architectures raises the need for a careful distribution of threads and data.
Indeed, cache misses and NUMA penalties become more and more important
with the complexity of the machine, making these constraints as important as
parallelization itself. Parallel programming methods thus have to perfectly match
the underling architecture to achieve high performance.

Distributed memory approaches such as MPI do not fully exploit the shared
memory underlying architecture and thus may loose some efficiency. Shared
memory approaches, based on explicit multithreading or language-generated
multithreading (e.g. OpenMP) are more accurate on shared memory architec-
tures. Thus, many hybrid approaches, typically mixing MPI and OpenMP, have
been proposed to better exploit cluster of multiprocessors. However, they suffer
from many drawbacks, including the fact that they require lots of programming
efforts in order to adapt/rewrite existing MPI applications.

In this paper, we propose another approach which consists in a powerful run-
time able to run MPI applications using user-level threads. This paper is orga-
nized as follows. Section 2 discusses the main parallel programming approaches
used over clusters of multiprocessors. We then present our MPC environment in
Section 3. Section 4 introduces our experiments and shows the efficiency of the
MPC library.

2 Common Approaches for Programming Clusters of
NUMA Nodes

To address the problem of programming efficiently clusters of multiprocessor
nodes, several programming approaches have been explored.

Advanced MPI Implementations. Many MPI implementations are highly
optimized for some specific architectures [4]. Such implementations typically
offer specific hardware support for modern network interface cards (Quadrics,
Myrinet, . . . ), zero copy data transfers, etc. They exhibit excellent performance
regarding latency and bandwidth of communications, but do not fully exploit
NUMA node capabilities.

OpenMP Implementations for Clusters. OpenMP is a very convenient
way to parallelize existing codes, but it was initially limited to shared memory
computing nodes. Nowadays, implementations such as Intel Cluster OpenMP [5]
or OpenMPD [6] allow OpenMP applications to run over distributed memory
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architectures, thanks to the use of software DSM runtime1. Obviously, any mem-
ory access that triggers the consistency mechanism is much more expensive than
an ordinary access to a processor’s memory. In fact, a memory access requiring
the consistency mechanism can be hundreds to thousands of times slower than
an access to any level of cache or hardware memory. That is why this approach
is usually not as efficient as expected.

Hybrid MPI + OpenMP Approaches. Mixing MPI and OpenMP looks at-
tractive to benefit from both data sharing on large shared memory nodes (thanks
to OpenMP) and multiple processing node usage (thanks to MPI). Nevertheless,
MPI and OpenMP implementations aren’t very comprehensive to each other [7].
For instance, most MPI implementations use busy waiting techniques to increase
the performance of communication event detection. Such a policy usually leads
to disastrous performance in a multithreaded context. Moreover, MPI imple-
mentations are generally not fully thread-safe. Thus, the integration of MPI and
OpenMP seems to be a promising approach, but is currently quite difficult to
realize in practice.

Process Virtualization. Process virtualization [8] is an efficient way to ben-
efit from shared memory computing nodes. It dissociates tasks and processes.
In standard MPI approaches, a task is a process. With this approach, tasks
are mapped to threads. Thus, load balancing, zero copy method, overloading2,
. . . are easier to implement. AMPI [9] and TOMPI [10] are two MPI implemen-
tations that use process virtualization. MPC also uses process virtualization to
implement its distributed memory API. As emphasized in the remainder of this
paper, collective operations and scheduling have been strongly optimized in this
context.

3 MPC: MultiProcessor Communications

The purpose of MPC is to provide a single API for programming distributed and
shared memory architectures [11]. The MPC library implementation solves the
issues of mixing distributed and shared memory approaches thanks to its unified
runtime. The design of MPC follows four objectives. The first one is portability,
which is required for most scientific computer codes. The second goal is dynamic
workload balancing, which is crucial for example with adaptive mesh refinement.
Another important goal is to reach a high level of performance. Last but not least,
the fourth goal is to provide an API that allows easy migration from an MPI
application, or a multithreaded one, to the MPC unified framework. This section
is organized as follows. First of all the MPC execution model is described. Then,
we present the specialized MxN thread library. Follows the optimized scheduler
that integrates collective communications. The MPC allocator is introduced in
the last part.

1 Distributed Shared Memory.
2 Using more tasks than cores.
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Fig. 1. Execution model of MPC, with an example involving both MPC-tasks and
MPC-threads (hybrid distributed/shared memory approach)

3.1 Execution Model

MPC supports mixed shared- and distributed-memory approaches via task virtu-
alization. Most MPI implementations map the P MPI tasks on P cores. In con-
trast, the T MPC-tasks are mapped on T internal threads. These threads are then
mapped on P cores (P ≤ T ) thanks to the MPC MxN scheduler. Communica-
tions between MPC-tasks use shared memory for intra node communications, and
MPI (or sockets) for inter nodes communications. MPC also provides a thread
API. MPC-threads are directly mapped onto internal threads. Whichever the pro-
gramming model, tasks are mapped onto these internal threads which in turn are
mapped onto cores. Figure 1 summarizes the general execution model of MPC.

This execution model relies on the design of an optimized thread scheduler.
This scheduler deals with inter-task message passing through the MPC message
passing API and task synchronizations though the MPC thread API. This op-
timized scheduler is the key factor of MPC’s performances. It allows to hide
the hybrid approach difficulties by providing efficient overloading mechanism,
by overlapping communications with computing work, . . . This model also al-
lows an optimized implementation of communications between MPC-tasks using
user-level zero copy allowed by the shared address space among tasks.

When using overloading, there are more tasks than cores for efficient load
balancing, thanks to the large number of tasks that increases scheduling pos-
sibilities. Overloading is also an optimization method for some well-balanced
codes that may become cache-oblivious. An SPMD3 parallel code may typically
be subdivided into more subdomains than processors. Thus, each subdomain will
be smaller and core cache memory usage will be increased. Nevertheless, over-
loading requires an highly-optimized communication library to increase code
performances.

3 SPMD: Single Program Multiple Data.
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The choice of a multithreaded approach as the execution model of MPC allows
to address three of our initials goals: portability, performances and load balanc-
ing. The last goal – “easy migration from existing codes to MPC” – is achieved
thanks to the unified distributed/shared memory API. MPC provides a large
subset of both the message passing interface (MPI) and the POSIX thread API.
MPC uses process virtualization like AMPI or TOMPI but it features a more
sophisticated implementation of scheduling and memory allocation. MPC also
extends process virtualization to hybrid MPI+thread approaches.

3.2 Specialized MxN Thread Scheduling

The MPC execution model maps tasks on lightweight user-level threads inte-
grated in a MxN thread library such as PM2 [12] or NGPT [13]. MxN libraries
allow to create and schedule threads by user-level code. This brings fast context
switching and total control over scheduling. Thus, it is feasible to strongly opti-
mize scheduling and to provide load balancing according to task communications
and synchronizations.

The MPC scheduler is optimized to deal with tasks communications and syn-
chronizations. It provides an integrated polling method, used for task waiting
for operation completion. This method avoids busy waiting and thus allows task
overloading. A second optimization deals with collective communications. The
MPC scheduler embeds mechanisms to perform collective communications inside
the scheduler. Our MxN thread library also provides user-defined load balancing
methods on the top of MPC scheduler, via the MPC API. It allows to move
tasks between cores and determine workload.

MPC is also optimized for NUMA architectures where data locality is cru-
cial. MPC provides a NUMA-aware memory allocator to insure data locality.
Whereas load balancing may generate task migrations that break data locality,
our scheduler provides primitives capable of migrate thread’s data according to
the core used by this thread and the memory hierarchy.

3.3 Scheduler-Integrated Collective Communications

The MPC scheduler is optimized for centralized collective communications such
as broadcast, reduce and barrier. These communications share a unique resource
(counter for barrier, buffer for reduce and broadcast). These communications also
have a similar logical execution path. The similarity between these collective
communications allows us to optimize them together.

Overloading execution requires optimisations to reach high performances.
First of all, the collectiver communications have to avoid busy waiting. The
overloading approach allows many tasks on different communicators on the same
core. Thus, a collective communication call have to provide efficient execution
of non participating tasks. That’s why busy waiting methods must be avoided
to reach a good efficiency. Overloading implies smart methods to “freeze” and
“wakeup” tasks efficiently, without disturbing the execution of the other ready
threads running on the same core.
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The second issue comes with the large number of tasks that may be involved
on a single collective communication (see Section 4.1). So, O(n) wakeup methods
are prohibited. We need an efficient wakeup method associated with our freeze
method, that ideally perform O(1) wakeup and freeze.

The following section is organized as follows: first the collective communication
algorithm is described. Then freeze/wakeup methods are introduced. Thread
migration is taken into account in the last part.

Collective Communication Algorithm. The algorithm used to perform col-
lective communications is generic4 and divided into two parts. The first one is
the per-core part. At a given time, there is only one executed thread on each
core. That is why the first part of this algorithm corresponds to a centralized
lock free approach. Its pseudo-code is described in function contribute local core
in Figure 2(a).

The second part of this algorithm performs inter-core collective communica-
tions. This part uses a tree based algorithm in order to maximize data locality
and scalability. This part of the algorithm allows to synchronize cores where all
participating tasks in the collective communication have done their contribution
to the collective communication call. The pseudo-code of inter-core collective
communications is described in function contribute local group in Figure 2(b).

contribute local core (core rank, data in,
data out,function)

if (virtual core[core rank].nb tasks == 0)
copy data in to vir-

tual core[core rank].data in
else

function (data in, vir-
tual core[core rank].data in)

endif
virtual core[core rank].nb tasks++
if (virtual core[core rank].nb tasks ==

virtual core[core rank].nb tasks total)
contribute local group(top level, func-

tion)
for i in virtual core[core rank].task list

do
copy i.data out

done
wakeup current task to

virtual core[core rank].task list
else

freeze (current task,data out) in
virtual core[core rank].task list

endif

(a) Per-core contribution.

contribute local group (level, function)
if (root == level)

copy level.data in to level.data out
else

lock father
if (level.father.nb tasks == 0)

copy level.data in to
level.father.data in

else
function (level.data in,

level.father.data in)
endif
level.father.nb tasks++
if (level.father.nb tasks ==

level.father.nb tasks total)
contribute local group (level.father,

function)
for i in level.task list do

copy i.data out
done
wakeup level.task list
unlock father

else
unlock father
freeze (current task,level.data out)

in
level.task list

endif
(b)(b) Per-group (i.e. between cores) contribu-

tion.

Fig. 2. Scheduler-integrated collective communications algorithm (data in and
data out values are input and output arrays used during reduction and broadcast)

4 The same code is used for barrier, reduction and broadcast.
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Freeze/wakeup Methods. All the complexity of efficient collective commu-
nications lies in the task freeze and wakeup methods. These methods have been
inserted into the thread scheduler in order to provide O(1) complexity. The
freeze function allows to insert the calling task into a list that matches the in-
ternal scheduler ready thread list structure. This function does not require lock
because at a time, there is only one executed thread per core.

Regarding the wakeup function, this function only takes the freezed thread list
created within the freeze function. Then, it inserts it directly into the scheduler
ready list using a O(1) technique.

Thread Migration. The algorithm presented above assumes that the distribu-
tion of tasks among cores is known thanks to the nb tasks total variable, whereas
MPC allows task migration for load balancing. Thus, we have extended the pre-
vious algorithm using a lazy update method to deal with task migration. The
aim of the lazy update method is to perform the lowest number of updates.
Thus, it does not perform collective communication structure update for each
migration. It only requires a check at each collective communication call to de-
termine if the current core used by the calling task is the same than the one
used for the previous collective communication call. In migration case, first of
all, the calling task is temporary moved to its previous core. Then, it performs
the collective communication call. Finally, it schedules a collective communica-
tion initialization. This initialization will be performed by all tasks at the next
collective communication call. Such a method allows to aggregate all migrations
between two collective communication calls.

3.4 Optimized NUMA-Aware and Thread-Aware Allocator

The memory allocator if often a bottleneck for parallel multithreaded programs
[14]. It may severely limits program performance and scalability on multiproces-
sor systems. Allocators suffer from problems that include poor scalability and
heap organization leading to false sharing [15]. That is why programmers hoping
to achieve performance improvements often use custom memory allocators [16].

The MPC NUMA-aware thread-aware allocator combines a global heap and
per-thread heaps. Thus, it avoids false sharing and provides very low synchro-
nization cost in the most common cases. The allocator is linked to the MPC
topology module and thread scheduler to maximize data locality on NUMA ar-
chitectures. The specificity of our allocator mainly resides in the NUMA-aware
aspect. The well-known use of multiple local heaps allows to avoid false-sharing,
allows scalability, but does not insure data locality. That’s why our allocator is
linked with the topology module of MPC. This module determines the memory
hierarchy and drives the system physical page allocation. This allocation insures
that a new allocated page will be local to a thread but does not insure long time
data locality. That’s why the MPC allocator communicates with the user-level
thread scheduler of MPC, in order to move tasks’ pages according to thread
migration among cores.
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Combination of multiple heaps and data locality techniques provides to MPC
an efficient and scalable allocator, suited to large multiprocessor NUMA nodes.

4 Experimental Results

Two machines have been used, with very different architectures. The first one
is a node of the Bull TERA-10 cluster of CEA/DAM Île-de-France. This node
consists of 8 Dual core Itanium2 Montecito processors (16 cores) distributed
over four Quad Brick Blocks (QBB). Each QBB has two processors and must be
viewed as a NUMA node inside a global shared-memory machine of four QBB
and 48 GB of memory. The second machine consists of 2 Quad-core Xeon (8
cores). This machine is a UMA SMP machine.

Experiments reported here are based on two basic numerical kernels. The first
one is an advection benchmark, corresponding to a 2D upwind explicit scheme
on a regular Cartesian grid. In SPMD parallel mode, the scheme just requires
one point-to-point communication per direction (update of ghost cells), and one
reduction for the prediction of the next time step (CFL condition). The second
numerical kernel is a conduction benchmark, corresponding to a 2D Cartesian
grid implicit heat conduction solver, based on a a five-point stencil and a Con-
jugate Gradient method with diagonal preconditionning. In SPMD mode, this
kernel can be distinguished from the precedent one due to the conjugate gradient
method that involves many reductions at each time step (scalar product).

4.1 Scalability Results with Domain Overloading

Results are given Figure 3. The first part of each curves illustrates the scalability
of MPC versus MPI. The MPI Bull implementation is the manufacturer imple-
mentation available on TERA-10. This implementation is optimized according
to the underlying architecture and thus, it reaches very good performances. The
MPI implementation available on Xeon machine is a standard MPICH2 imple-
mentation.

Comparison of MPI Bull and MPC shows the rather good performances
achieved by MPC. More generally, in scalability terms, MPI and MPC imple-
mentations reach similar performances on both architectures.

To cover the whole spectrum, we have performed multi-node execution. The
following table presents relative execution time to MPI for the advection and
conduction benchmarks on 32 core Itanium2 Montecito architecture (2 nodes)
with 4, 000 × 1, 000 cells.

Benchmark Number of tasks
32 64 128 192 256 320 384 448 512

Advection (50 cycles) 0.99 0.90 0.84 0.80 0.81 0.84 0.86 0.85 0.87
Conduction (25 cycles) 1.02 0.96 0.92 0.89 0.92 0.91 0.93 0.91 0.91

These results illustrate the low overhead of MPC in multi-node context,
demonstrating also the benefits of overloading as in single-node context. Let
us mention that a large scale run over 4, 096 processors of TERA-10 has been
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Fig. 3. Evaluation of scalability and overloading method on representative scientific
computing 2D code. Parallelization is done via 1D domain decomposition.

performed [17] to check scalability of robustness of the MPC library, along with
numerous computations with the HERA AMR platform [18], up to several thou-
sands processors.

These codes have been tested with domain overloading. In this context, MPC
allows better execution times thanks to cache effects. This also illustrates the
good performances of our scheduler-integrated collective communications, espe-
cially with the conduction benchmark, that performs a high number of reduc-
tions per cycle. Overloading allows to gain more than 10% and up to 20% on
the execution time, without any modification to the original code.

4.2 Memory Allocation and Data Placement Results

In order to evaluate the MPC NUMA-aware and thread-aware allocator, the
advection benchmark on TERA-10 has been used. Results are summarized in
the following table.

Allocator Number of tasks
1 2 4 6 8 10 12 14 16

Standard 23.47s 12.79s 8.27s 5.44s 4.21s 3.25s 2.66s 2.22s 2.02s
MPC 23.47s 12.64s 7.86s 5.20s 3.95s 3.05s 2.51s 2.08s 1.76s
Gain 0.00% 1.19% 5.22% 4.62% 6.58% 6.57% 5.98% 6.73% 14.77%
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A reduction of 14% of the overall execution time is observed in multithread
mode, when compared to the standard C library memory allocator. Results
with the conduction benchmark are similar. Results are similar on the Xeon
machine. The MPC allocator strongly contributes to the performances of MPC,
performances that would not be achieved without an optimized NUMA-aware
and thread-aware allocator.

5 Conclusion and Future Works

In this paper, we have introduced the MPC library. MPC offers a unified run-
time for both distributed-memory and shared-memory parallel codes. The MPC
internal execution model also insures a good integration of hybrid shared- and
distributed-memory approaches via appropriate thread scheduling. To reach a
high level of performance from SMP machines to large NUMA nodes, MPC pro-
vides a NUMA-aware and thread-aware allocator that contributes to the over-
all scalability and efficiency. The MPC scheduler is optimized to deal with a
very large number of threads, providing pooling and highly efficient scheduler-
integrated collective communications. The scheduler and allocator modules co-
operate to preserve data locality, with or without thread migration, a crucial
issue when dealing with NUMA nodes. Our experiments have shown that the
MPC approach leads to a high level of performance on several HPC parallel
codes.

Today, MPC allows an easy migration path for existing MPI parallel codes
and multithread codes based on the POSIX thread API. As far as MPI codes
are concerned, the main issue is thread safety. Such codes have to be thread safe
to be converted to MPC. This limitation will soon disappear using precompi-
lation or embedded virtual machines. Another evolution of MPC will concern
a full implementation of the OpenMP standard, with an extension of MPC’s
scheduling policy to OpenMP-related tasks. With the support of the three most
widely used parallel APIs5, MPC will then be able to address most parallel com-
puter codes, offering efficient scheduling, memory allocation, NUMA locality and
loadbalancing on today and tomorrow architectures.
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