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Abstract. The Cell Broadband Engine (CBE) is a new heterogeneous
multi-core processor from IBM, Sony and Toshiba, and provides the po-
tential to achieve an impressive level of performance for data mining
algorithms. In this paper, we describe our implementation of three im-
portant classes of data mining algorithms: clustering (k-Means), classifi-
cation (RBF network), and association rule mining (Apriori) on the CBE.
We explain our parallelization methodology and describe the exploita-
tion of thread- and data-level parallelism in each of the three algorithms.
Finally we present experimental results on the Cell hardware, where we
could achieve a high performance of up to 10 GFLOP/s and a speedup
of up to 40.
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1 Introduction

The rapid evolution in sub-micron process technologies enables the manufac-
turing of multi-processor system with a large number of processing cores per
chip. Such multi-core architectures are mostly built by replicating a standard
processor design with its local caches several times and adding an on-chip inter-
connection network for coupling the cores and the external bus interface. The
management of several threads on the available cores is done by the operating
system. An alternative solution represents the Cell Processor developed by IBM,
Sony and Toshiba [1,2]. Here a simplified PowerPC core (PPU) controls 8 Syn-
ergistic Processing Elements (SPEs) that only operate on data read from local
stores. The operating system only starts one thread on the PPU; the creation of
the SPE threads and all data transfers between PPU and SPEs must be explicitly
controlled by the application program. The Cell processor was mainly designed
to accelerate multi-media and graphics algorithms, but it is also well suited for
various algorithms from other application areas (e.g. digital signal processing,
data compression/decompression, data encryption/decryption) [2].

Data mining represents a rather new application area of High Performance
Computing (HPC). It mainly deals with the finding of useful patterns in very
large data sets. Its algorithms are not only based on standard floating-point cal-
culations, but often operate on simple integer numbers. Three important classes
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of data mining algorithms exist: classification, clustering and association rule
mining. To analyze the suitability of the Cell architecture for such algorithms, a
representative algorithm of each of the three classes has been selected and imple-
mented exemplarily on the Cell processor: the k-means algorithm for clustering,
a neural network for classification and the Apriori algorithm for association rule
mining. The performance of these algorithms on the Cell chip will be analyzed
and compared with the performance on Xeon and Opteron.

The rest of this paper is organized as follows: Section 2 describes the archi-
tecture of the CBE. In Section 3 we present the data mining algorithms. The
optimized algorithms for CBE are presented in Section 4. Experimental results
are described in Section 5. We overview the related work in Section 6 and con-
clusions are drawn in Section 7.

2 The Cell Broadband Engine Architecture
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Fig. 1. The architecture of the Cell processor

The Cell Broadband Engine
architecture was jointly de-
veloped by Sony Computer
Entertainment, Toshiba, and
IBM. Its first commercial
application was in Sony’s
PlayStation 3 game con-
sole. The Cell architecture
emphasizes efficiency/watt,
prioritizes bandwidth over
latency, and favors peak
computational throughput
over simplicity of program
code. For these reasons, Cell
is widely regarded as a chal-
lenging environment for software development.

The Cell processor can be split into four components: external input/out-
put structures, the main processor called the Power Processing Element (PPE)
(a two-way simultaneous multithreaded Power ISA v.2.03 compliant core), eight
fully-functional co-processors called the Synergistic Processing Elements (SPEs),
and a specialized high-bandwidth circular data bus connecting the PPE, in-
put/output elements and the SPEs, called the Element Interconnect Bus (EIB),
as depicted in Figure 1. Each SPE can operate in a SIMD-like (Single Instruction,
Multiple Data) way on several elements in parallel that are packed into a 128 bit
vector. The PPE memory is not shared with the SPEs, all data transfers between
SPE and PPE memory are realized by DMA and must be programmed explic-
itly. The PPE, which is capable of running a conventional operating system,
has control over the SPEs and starts, stops, interrupts, and schedules threads
running on the SPEs. For the synchronization of threads and for the transfer of
short control words a special mailbox system can be used.
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Algorithm 1. k-Means
Input: D = Dataset

k = the number of centers
Output: Set of k centroids c ∈ C representing a good partitioning of D into k
clusters

1: Select the initial cluster centroids c
2: repeat
3: changed=0

// Find the closest centroid to every data point d ...
4: for all data point di ∈ D do
5: assignedCenter = di.center
6: for all center cj ∈ C do
7: Compute the squared Euclidean distance dist = dist(di, cj)
8: if dist < di.centerDistance then
9: di.centerDistance = dist

10: di.center = j
11: end if
12: end for
13: if di.center <> assignedCenter then
14: changed++
15: Recompute cj .new for next iteration
16: end if
17: end for
18: until changed==0

3 Data Mining Algorithms

In this section, we briefly sketch the algorithms under study.

3.1 K-Means Algorithm for Clustering

The k-means algorithm is one of the simplest unsupervised learning algorithms
to cluster n objects based on attributes into k partitions, k < n. The main idea
is to define k centroids, one for each cluster. The next step is to assign each
object to the group characterized by the closest centroid. When all objects have
been assigned, recalculate the positions of the k centroids. The last steps are
repeated until the centroids no longer move. The complete k-means algorithm is
presented in Alg. 1.

3.2 RBF Neural Network for Classification

A radial basis function network (RBF) is an artificial neural network model
with two layers that is suitable for approximation and classification. It uses
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neurons with radial basis functions as activation functions in the first (hidden)
neuron layer and linear neurons in the output layer. Each RBF neuron j in the
hidden layer (see Fig. 2) computes the squared Euclidean distance xj between
an input vector u and the weight vector cj (represented by the jth column of a
weight matrix C) and applies a radial symmetric output function f (typically a
Gaussian function) to xj . The resulting output yj = f(xj) is communicated via
weighted links wjk to the linear neurons of the output layer where the sum zk

is calculated.
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Fig. 2. Architecture of a m−h−n RBF
network (with m input nodes, h RBF
nodes and n linear outputs nodes)

To achieve good results, the RBF net-
work requires a proper initialization of all
weights cij (e.g. by a clustering algorithm)
and of the width σj of the Gaussian bells
in all RBF neurons (according to the dis-
tances between the cluster centers). After
the initialization, the network is trained
by a gradient descent training algorithm
that adapts all wights cij , wij and σj (the
center coordinates, heights and widths of
Gaussian bells) according to the error at
the network outputs. The complete RBF
training algorithm is presented in Alg. 2.
Data mining applications can either per-
form the RBF training itself or a classifi-
cation of new inputs by an already trained
RBF network. In the later case only the
forward phase of the algorithm is required.

Algorithm 2. RBF
Input: Training set of patterns (u, t)
Output: Trained RBF network with weights cij , wjk and sj

1: Initialize all cij , wjk and sj

2: for loop = 0; loop < max iterations; do
3: Select one pattern u and corresponding output class t

//Forward phase for classification
4: xj =

∑m
i=1 (ui − cij)2

5: yj = f(xj) = e−xj/2δ2
= e−xjsj

6: zk =
∑h

j=1 yjwjk

//Backward phase for training
7: δz

k = tk − zk

8: δy
j =

∑n
k=1 δz

kwjk

9: sj = sj − ηsxjyjδ
y
j

10: wjk = wjk + ηwyjδ
z
k

11: cij = cij + ηc(ui − cij)δy
j yjsj

12: end for
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Algorithm 3. Apriori
Input: D: database over the set of items j,
Output: F : the set of frequent itemsets

1: k = 1; Ck = j
2: while Ck �= 0 do
3: support count(D, Ck)
4: for all candidates c ∈ Ck do
5: if c.support ≥ minsup then
6: Fk = c
7: end if
8: end for
9: Ck+1 = candidate generation(Fk)

10: k = k + 1
11: end while
12: F = ∪k

j=1Fj

3.3 Apriori for Association Mining

Apriori is a classic data mining algorithm for learning association rules. Given
a set of itemsets, the algorithm attempts to find subsets of k elements which
are common to at least a minimum part minsup of the itemsets. The algorithm
uses a bottom-up approach: in each iteration frequent subsets of k elements
are extended to subsets of k + 1 elements (candidate generation, see Alg. 3),
and groups of candidates are tested against the data. The algorithm terminates
when no further successful extensions are found. The complete Apriori algorithm
is presented in Alg. 3.

4 Optimization on the Cell

We optimized the parallel implementation of the three algorithms using the
following methods: (1) SPE thread parallelism. The key is to minimize the com-
munication and the number of synchronization points. (2) SPE data parallelism.
Together with SPE thread parallelism, vectorization can be used to reduce the
execution time of k-means and RBF (see code snippets in Listings 1.1 and 1.2).
This approach was chosen because some data mining algorithms have the follow-
ing four characteristics: first, inherently parallel; second, wide dynamic range,
hence floating-point based; third, regular memory access patterns; last, data in-
dependent control flow. Thus the algorithms could be restructured to leverage
the SIMD intrinsics available on the Cell. (3) Data overlay. A double buffer
scheme is introduced to overlap calculation and transfer. While part i of the
data is transferred into one buffer, we concurrently execute the computation on
data part i − 1 from the other buffer. The performance might be improved if
calculation time and transfer time of each part are approximately identical. (4)
Elimination of memory consuming parts of the code.
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4.1 K-Means on the Cell

It is straightforward to parallelize k-Means. We partition the input datasets such
that the number of records on each processor is approximately equal. Note that
there are two main constraints to the address and the number of records being
passed to a SPE. First, the all addresses must be aligned to 16-byte boundary.
Second, the Cell only supports aligned transfer sizes of 1, 2, 4, or 8 byte, and
multiples of 16 byte, with a maximum transfer size of 16 kbyte.

Vectorization has the biggest impact in terms of relative gains that can be
achieved by calculating distance at once. To take advantage of vectorization,
the user must explicitly program the parallel execution in the code by applying
special SIMD instructions.

Listing 1.1. Scalar distance calculation

� �

1 for ( i =0; i<dim ; i++)
2 d i s t anc e = d i s t anc e+( f loat ) ( p [ i ]−c [ i ] ) ∗ ( p [ i ]−c [ i ] ) ;

� �

Listing 1.2. Vectorized distance calculation

� �

3 f loat r e s u l t s [ 4 ] a t t r i b u t e ( ( a l i gn ed ( 1 6 ) ) ) ;
4 vector f loat ∗vA = ( vector f loat ∗) p ;
5 vector f loat ∗vB = ( vector f loat ∗) c ;
6 vector f loat ∗vC = ( vector f loat ∗) r e s u l t s ;
7 vector f loat vD;
8 for ( i =0; i<i t e r ; i++)
9 {

10 vD = spu sub (vA [ i ] , vB [ i ] ) ;
11 vC [ 0 ] = spu madd(vD,vD,vC [ 0 ] ) ;
12 }
13 for ( i = 0 ; i < 4 ; ++i )
14 d i s t anc e = d i s t anc e + r e s u l t s [ i ] ;

� �

We include an example showing a snippet of code before and after vectoriza-
tion in Lsts. 1.1 and 1.2, respectively. Here we make use of two intrinsics, namely
spu sub and spu madd. spu sub subtracts corresponding elements of vector vA
and vB and stores the result in vD. spu madd multiplies the elements of vD
and vD and adds the results to vC. The vectorized code can effective reduce the
number of operations, especially when the number of dimensions is much greater
than 4. The complete pseudo-code for a SPE is shown in Alg. 4.

4.2 RBF on the Cell

The optimization of RBF is similar to that of k-Means. We need to partition
the matrices cij , wjk and the vectors δzk, δyj carefully so that only a part is
stored and used in each SPE. Synchronization only occurs at the end of the
forward phase for classification (after step 6 in the Alg. 2). Here the local part
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of vector z needs to be transferred to PPE, where the components zk from all
SPEs are summed up. Each SPE fetches the sum vector z from PPE and resume
its calculation. Pseudo-code for RBF has been omitted due to space constraints.

Algorithm 4. k-Means SPE (with data overlay optimization)
Input: D = Dataset, k = the number of centers, Dp = part of Dataset for one SPU
Output: Each d ∈ D is assigned to its closest center c ∈ C

1: GetContext(Dp, k); totalData = |Dp|
2: Calculate the available memory m for Dp

3: while message �= STOP do
4: wait for START message from PPE
5: Fetch centers C into local store via DMA call(s)
6: Fetch m/2 data D1

p into local store via DMA call(s)
7: while totalData > 0 do
8: Verify all transfers are finished
9: (a) Fetch m/2 data D2

p into local store via DMA call(s);
(b) Concurrently calculate distances and assign center for D1

p

10: Put the results of D1
p back into system memory

11: Verify all transfers are finished
12: (a) Fetch m/2 data D1

p into local store via DMA call(s);
(b) Concurrently calculate distances and assign center for D2

p

13: Put the results of D2
p back into system memory

14: totalData = totalData − m
15: end while
16: send COMPLETE message to PPE
17: end while

4.3 Apriori on the Cell

The optimization of Apriori is a big challenge due to the high complexity of its im-
plementation and the limited local memory on each SPE. Our code is based on the
code of Bodon which is known as one of the fastest realizations of Apriori [3]. First,
this implementation uses a red-black-tree, and it is a difficult task to parallelize a
tree-based algorithm. Second, the algorithm needs C++ STL which invokes some
memory consuming functions, e.g. new and delete. We replaced all new/delete
with malloc()/free() in both apriori programs and STL implementations, which
could help us to obtain additional 60 KByte memory in the local store.

We used the count distribution idea to parallelize Apriori [4]. The count dis-
tribution algorithm is a parallel version of Apriori that distributes the data set
over all processors. All processors generate the entire candidate k-itemset from
the set of frequent (k − 1)-itemsets. Each SPE can thus independently calcu-
late partial supports of candidates from its local data set partition. Next, the
PPE performs the sum reduction to obtain the global support counts that are
distributed to all SPEs. Compared to other parallel Apriori implementations,
count distribution algorithm has minimum communication, because only count
values are exchanged among SPEs. However, in order to exchange count values,
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it requires that the candidate k-itemsets must be identical on all SPEs, and the
entire red-black-tree must be replicated on each SPE.

5 Experimental Results

In this section we present a detailed evaluation of our parallel codes on the Cell
chip and present a comparison to implementations on Xeon and Opteron CPUs.

We execute the programs on one Cell chip of a Cell cluster built from IBM
BladeCenter QS20 dual-Cell blades; each blade houses two 3.2 GHz Cell BE
processors and 1 GB XDRAM (512 MB per processor). With a clock speed of
3.2GHz, the Cell processor has a theoretical peak performance of 204.8 GFLOP/s
(single precision). For comparison, we provide execution times for single-threaded
reference implementations on the following two processors:

Xeon E5310: 1.6GHz, 4MB L2 cache, Intel C compiler 9.1
Opteron 880: 2.6GHz, 1MB L2 cache, Intel C compiler 9.0

Tab. 1 illustrates the performance advantage of the Cell executing k-Means, RBF
and Apriori as compared to two commodity processors. The parameters for k-
Means were DataPoints=6K, Dimensions=128, and centers=4. The parameters
for RBF were InputNodes=128, RBFNodes=128, and OutputNodes=128. The
parameters for Apriori were TransactionNo=2K with transactions from the well-
known database T10I4D100K. The Cell outperforms the others a little when only
PPE is used, but it scales very well with SPEs. The second best performance
was afforded by the Opteron 880, and the Xeon E5310 gave the third.

Table 1. Performance comparison of selected algorithms for various processors

Processor k-Means (sec.) RBF (sec.) Apriori (sec.)
Xeon 2.547792 7.571673 0.059752

Opteron 2.363729 6.456178 0.059523
Cell PPE 2.091699 5.201312 0.055320

Cell 8 SPE with vectorization 0.196709 0.302930 0.023957

In Fig. 3 we present the results of our implementation when using PPE and
PPE with vectorization, and when using one or more SPEs with vectorization.
All performance data are given for small data sets, but because of the double
buffer scheme the performance for large data sets is similar. In our implementa-
tion only the centroid data (k-Means), the neural weights (RBF) and the can-
didate tree (Apriori) must fit into the local stores of the SPE. As shown in the
Figs. 3(a) and 3(d), k-Means and RBF hugely benefit from eight SPE. However,
Fig. 3(g) shows that Apriori does not benefit a lot from SPE parallelization,
since vectorization cannot be used and the 256KB local store limits the prob-
lem size. Figs. 3(b) and 3(e) present the speedup of k-Means and RBF which is
given against the PPE code. RBF is the most computing intensive application,
thus RBF achieves a high speedup of 40.67 when using 6 SPEs and computing
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Fig. 3. Experimental results

the largest RBF network 192-192-192. Finally we calculated the GFLOP/s of
k-Means and RBF using the total number of arithmetic operations divided by
the measured execution time. K-Means attains a single precision performance of
6.8 GFLOP/s, and RBF 10 GFLOP/s.

6 Related Work

The large potential of the Cell architecture for scientific computations is dis-
cussed in [5,6]. There are some additional papers in which the performance of
data mining algorithms [7] and other computation intensive algorithms [8,9] on
the Cell Broadband Engine is investigated. In [7], only the performance of three
rather similar algorithms (k-Means, k-Nearest Neighbors, ORCA) is analyzed
that are based on the calculation of Euclidean distances. This makes their opti-
mization quite similar and shows less generality. By parallelizing three important
classes of data mining algorithms, we proved that data mining algorithms can
achieve good performance on the Cell. Additionally we used data overlay to
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overcome physical limitations, thus enabling larger problem sizes on the Cell.
Moreover, no other studies have investigated how effectively the Cell BE can be
employed to perform association rules finding and neural network training, and
how it compares against the data mining implementations on other architectures
in terms of performance. The problem of finding association rules poses difficult
challenges. During the parallelization of Apriori, we encountered some problems
that were not met by others before, and proposed effective solutions.

7 Conclusion

We have demonstrated that efficient implementations of data mining algorithms
are possible on the Cell architecture. Applications with small local memory de-
mand can be implemented without many changes to the code, for example,
k-Means and RBF. Nevertheless they can operate on large data sets by applying
the data overlay technique. Operations on vectors and matrices can efficiently
be vectorized on the SPEs. The implementation of tree-based algorithms like
Apriori remains a big challenge because partitioning the tree is difficult. Here
we analyzed a parallel version of Apriori in which only the data set is distributed
over the SPEs whereas the tree is replicated in each node.

The experimental evaluations have shown that the Cell BE can achieve im-
pressive performance for data mining algorithms. Compared to other processors,
a speedup of one order of magnitude is possible. The keys to achieve high perfor-
mance are a clear understanding of characteristics of the algorithms and, more
importantly, a clear understanding of the system and environment limitations.
Other data mining algorithms can be implemented on the Cell in a similar way.
This will be a topic of our future work.
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